JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Homology-dependent repair is involved in 45S rDNA loss in plant CAF-1 mutants.
Plant J.
PUBLISHED: 05-30-2014
Show Abstract
Hide Abstract
Arabidopsis thaliana mutants in FAS1 and FAS2 subunits of Chromatin Assembly Factor 1 (CAF1) show progressive loss of 45S rDNA copies and telomeres. We hypothesized that homology-dependent DNA damage repair (HDR) may contribute to the loss of these repeats in fas mutants. To test this, we generated double mutants by crossing fas mutants with knock out mutants in RAD51B, one of the Rad51 paralogs of A. thaliana. Our results show that the absence of RAD51B decreases the rate of rDNA loss, confirming the implication of RAD51B-dependent recombination in rDNA loss in the CAF1 mutants. Interestingly, this effect is not observed for telomeric repeat loss, which thus differs from that acting in rDNA loss. Involvement of DNA damage repair in rDNA dynamics in fas mutants is further supported by accumulation of double-strand breaks (measured as ?-H2AX foci) in 45S rDNA. Occurrence of the foci is not specific for S-phase, and is ATM-independent. While the foci in fas mutants occur both in the transcribed (intranucleolar) and non-transcribed (nucleoplasmic) fraction of rDNA, double fas rad51b mutants show a specific increase in number of the intranucleolar foci. These results suggest that the repair of double-strand breaks present in the transcribed rDNA region is RAD51B-dependent and that this contributes to rDNA repeat loss in fas mutants, presumably via the single strand annealing recombination pathway. Our results also highlight the importance of proper chromatin assembly in the maintenance of genome stability. This article is protected by copyright. All rights reserved.
Related JoVE Video
Epigenetic regulation of telomere maintenance.
Cytogenet. Genome Res.
PUBLISHED: 04-01-2014
Show Abstract
Hide Abstract
As chromatin structures, telomeres undergo epigenetic regulation of their maintenance and function. In plants, these processes are likely of a higher complexity than in animals or yeasts, as exemplified by methylation of cytosines in plant telomeric DNA or reversible developmental regulation of plant telomerase. We highlight the dual role of telomeres from the epigenetic point of view: (i) as chromatin structures that are the subject of epigenetic regulation (e.g. DNA and histone modifications), and (ii) as chromosome domains acting themselves as epigenetic regulatory elements (e.g. in the telomere position effect). Possibly, some molecular tools (e.g. telomeric transcripts) are common to both these aspects of telomere epigenetics. We further discuss the justification for the classical textbook view of telomeres as heterochromatic structures.
Related JoVE Video
Telomere repeat binding proteins are functional components of Arabidopsis telomeres and interact with telomerase.
Plant J.
PUBLISHED: 02-18-2014
Show Abstract
Hide Abstract
Although telomere-binding proteins constitute an essential part of telomeres, in vivo data indicating the existence of a structure similar to mammalian shelterin complex in plants are limited. Partial characterization of a number of candidate proteins has not identified true components of plant shelterin or elucidated their functional mechanisms. Telomere repeat binding (TRB) proteins from Arabidopsis thaliana bind plant telomeric repeats through a Myb domain of the telobox type in vitro, and have been shown to interact with POT1b (Protection of telomeres 1). Here we demonstrate co-localization of TRB1 protein with telomeres in situ using fluorescence microscopy, as well as in vivo interaction using chromatin immunoprecipitation. Classification of the TRB1 protein as a component of plant telomeres is further confirmed by the observation of shortening of telomeres in knockout mutants of the trb1 gene. Moreover, TRB proteins physically interact with plant telomerase catalytic subunits. These findings integrate TRB proteins into the telomeric interactome of A. thaliana.
Related JoVE Video
Chromatin features of plant telomeric sequences at terminal vs. internal positions.
Front Plant Sci
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Epigenetic mechanisms are involved in regulation of crucial cellular processes in eukaryotic organisms. Data on the epigenetic features of plant telomeres and their epigenetic regulation were published mostly for Arabidopsis thaliana, in which the presence of interstitial telomeric repeats (ITRs) may interfere with genuine telomeres in most analyses. Here, we studied the epigenetic landscape and transcription of telomeres and ITRs in Nicotiana tabacum with long telomeres and no detectable ITRs, and in Ballantinia antipoda with large blocks of pericentromeric ITRs and relatively short telomeres. Chromatin of genuine telomeres displayed heterochromatic as well as euchromatic marks, while ITRs were just heterochromatic. Methylated cytosines were present at telomeres and ITRs, but showed a bias with more methylation toward distal telomere positions and different blocks of B. antipoda ITRs methylated to different levels. Telomeric transcripts TERRA (G-rich) and ARRET (C-rich) were identified in both plants and their levels varied among tissues with a maximum in blossoms. Plants with substantially different proportions of internally and terminally located telomeric repeats are instrumental in clarifying the chromatin status of telomeric repeats at distinct chromosome locations.
Related JoVE Video
Compromised telomere maintenance in hypomethylated Arabidopsis thaliana plants.
Nucleic Acids Res.
PUBLISHED: 12-10-2013
Show Abstract
Hide Abstract
Telomeres, nucleoprotein structures at the ends of linear eukaryotic chromosomes, are important for the maintenance of genomic stability. Telomeres were considered as typical heterochromatic regions, but in light of recent results, this view should be reconsidered. Asymmetrically located cytosines in plant telomeric DNA repeats may be substrates for a DNA methyltransferase enzyme and indeed, it was shown that these repeats are methylated. Here, we analyse the methylation of telomeric cytosines and the length of telomeres in Arabidopsis thaliana methylation mutants (met 1-3 and ddm 1-8), and in their wild-type siblings that were germinated in the presence of hypomethylation drugs. Our results show that cytosine methylation in telomeric repeats depends on the activity of MET1 and DDM1 enzymes. Significantly shortened telomeres occur in later generations of methylation mutants as well as in plants germinated in the presence of hypomethylation drugs, and this phenotype is stably transmitted to the next plant generation. A possible role of compromised in vivo telomerase action in the observed telomere shortening is hypothesized based on telomere analysis of hypomethylated telomerase knockout plants. Results are discussed in connection with previous data in this field obtained using different model systems.
Related JoVE Video
New perspectives of valproic acid in clinical practice.
Expert Opin Investig Drugs
PUBLISHED: 10-28-2013
Show Abstract
Hide Abstract
Valproic acid (VPA) has been used in clinical practice as an anticonvulsant for more than four decades. Its pharmacokinetics and toxicity are thus well documented. VPA is also a potent class-selective histone deacetylase (HDAC) inhibitor at nontoxic therapeutic concentrations. New areas of application for VPA are currently opening up in clinical practice.
Related JoVE Video
Subnuclear partitioning of rRNA genes between the nucleolus and nucleoplasm reflects alternative epiallelic states.
Genes Dev.
PUBLISHED: 07-23-2013
Show Abstract
Hide Abstract
Eukaryotes can have thousands of 45S ribosomal RNA (rRNA) genes, many of which are silenced during development. Using fluorescence-activated sorting techniques, we show that active rRNA genes in Arabidopsis thaliana are present within sorted nucleoli, whereas silenced rRNA genes are excluded. DNA methyltransferase (met1), histone deacetylase (hda6), or chromatin assembly (caf1) mutants that disrupt silencing abrogate this nucleoplasmic-nucleolar partitioning. Bisulfite sequencing data indicate that active nucleolar rRNA genes are nearly completely demethylated at promoter CGs, whereas silenced genes are nearly fully methylated. Collectively, the data reveal that rRNA genes occupy distinct but changeable nuclear territories according to their epigenetic state.
Related JoVE Video
A broad phylogenetic survey unveils the diversity and evolution of telomeres in eukaryotes.
Genome Biol Evol
PUBLISHED: 02-12-2013
Show Abstract
Hide Abstract
Telomeres, ubiquitous and essential structures of eukaryotic chromosomes, are known to come in a variety of forms, but knowledge about their actual diversity and evolution across the whole phylogenetic breadth of the eukaryotic life remains fragmentary. To fill this gap, we employed a complex experimental approach to probe telomeric minisatellites in various phylogenetically diverse groups of algae. Our most remarkable results include the following findings: 1) algae of the streptophyte class Klebsormidiophyceae possess the Chlamydomonas-type telomeric repeat (TTTTAGGG) or, in at least one species, a novel TTTTAGG repeat, indicating an evolutionary transition from the Arabidopsis-type repeat (TTTAGGG) ancestral for Chloroplastida; 2) the Arabidopsis-type repeat is also present in telomeres of Xanthophyceae, in contrast to the presence of the human-type repeat (TTAGGG) in other ochrophytes studied, and of the photosynthetic alveolate Chromera velia, consistent with its phylogenetic position close to apicomplexans and dinoflagellates; 3) glaucophytes and haptophytes exhibit the human-type repeat in their telomeres; and 4) ulvophytes and rhodophytes have unusual telomere structures recalcitrant to standard analysis. To obtain additional details on the distribution of different telomere types in eukaryotes, we performed in silico analyses of genomic data from major eukaryotic lineages, utilizing also genome assemblies from our on-going genome projects for representatives of three hitherto unsampled lineages (jakobids, malawimonads, and goniomonads). These analyses confirm the human-type repeat as the most common and possibly ancestral in eukaryotes, but alternative motifs replaced it along the phylogeny of diverse eukaryotic lineages, some of them several times independently.
Related JoVE Video
Structure-function relationships during transgenic telomerase expression in Arabidopsis.
Physiol Plant
PUBLISHED: 01-24-2013
Show Abstract
Hide Abstract
Although telomerase (EC 2.7.7.49) is important for genome stability and totipotency of plant cells, the principles of its regulation are not well understood. Therefore, we studied subcellular localization and function of the full-length and truncated variants of the catalytic subunit of Arabidopsis thaliana telomerase, AtTERT, in planta. Our results show that multiple sites in AtTERT may serve as nuclear localization signals, as all the studied individual domains of the AtTERT were targeted to the nucleus and/or the nucleolus. Although the introduced genomic or cDNA AtTERT transgenes display expression at transcript and protein levels, they are not able to fully complement the lack of telomerase functions in tert -/- mutants. The failure to reconstitute telomerase function in planta suggests a more complex telomerase regulation in plant cells than would be expected based on results of similar experiments in mammalian model systems.
Related JoVE Video
Decrease in abundance of apurinic/apyrimidinic endonuclease causes failure of base excision repair in culture-adapted human embryonic stem cells.
Stem Cells
PUBLISHED: 01-15-2013
Show Abstract
Hide Abstract
The inevitable accumulation of chromosomal abnormalities in human embryonic stem cells (hESCs) during in vitro expansion represents a considerable obstacle for cell replacement therapies. To determine the source of chromosomal abnormalities, we examined hESCs maintained in culture for over 55 months for defects in telomere maintenance and DNA repair. Although prolonged culture affected neither telomerase activity nor nonhomologous end joining, the efficiency of base excision repair (BER) was significantly decreased and correlated with reduced expression of apurinic/apyrimidinic endonuclease 1 (APE1), the major nuclease required for BER. Interestingly, the expression of other BER enzymes was unchanged. Addition of human recombinant APE1 protein to nuclear extracts from late passage hESCs increased BER efficiency to the level typical of early passage hESCs. The link between BER and double-strand breaks (DSB) was demonstrated by decreased DSB release after downregulation of APE1 in early passage hESCs via siRNA. Correspondingly lower APE1 level in late passage hESC resulted in slower and less intensive but long lasting DSB release upon ionizing radiation (IR). Downregulation of APE1 in early passage hESCs also led to approximately 30% decrease in ?-H2AX signaling following IR, similar to that in late passage hESCs. We suggest that downregulation of APE1 significantly contributes to the failure of BER during long-term culture of hESCs, and further that BER failure is one of the factors affecting the genomic instability of hESCs by altering BER-dependent DSB release and cell cycle/checkpoint signaling.
Related JoVE Video
A telomerase-independent component of telomere loss in chromatin assembly factor 1 mutants of Arabidopsis thaliana.
Chromosoma
PUBLISHED: 01-03-2013
Show Abstract
Hide Abstract
Dysfunction of chromatin assembly factor 1 in FASCIATA mutants (fas) of Arabidopsis thaliana results in progressive loss of telomeric DNA. Although replicative telomere shortening is typically associated with incomplete resynthesis of their ends by telomerase, no change in telomerase activity could be detected in vitro in extracts from fas mutants. Besides a possible telomerase malfunction, the telomere shortening in fas mutants could presumably be due to problems with conventional replication of telomeres. To distinguish between the possible contribution of suboptimal function of telomerase in fas mutants under in vivo conditions and problems in conventional telomere replication, we crossed fas and tert (telomerase reverse transcriptase) knockout mutants and analyzed telomere shortening in segregated fas mutants, tert mutants, and double fas tert mutants in parallel. We demonstrate that fas tert knockouts show greater replicative telomere shortening than that observed even in the complete absence of telomerase (tert mutants). While the effect of tert and fas mutations on telomere lengths in double mutants is additive, manifestations of telomere dysfunction in double fas tert mutants (frequency of anaphase bridges, onset of chromosome end fusions, and common involvement of 45S rDNA in chromosome fusion sites) are similar to those in tert mutants. We conclude that in addition to possible impairment of telomerase action, a further mechanism contributes to telomere shortening in fas mutants.
Related JoVE Video
Molecular analysis of T-DNA insertion mutants identified putative regulatory elements in the AtTERT gene.
J. Exp. Bot.
PUBLISHED: 08-23-2011
Show Abstract
Hide Abstract
Analysis of plants bearing a T-DNA insertion is a potent tool of modern molecular biology, providing valuable information about the function and involvement of genes in metabolic pathways. A collection of 12 Arabidopsis thaliana lines with T-DNA insertions in the gene coding for the catalytic subunit of telomerase (AtTERT) and in adjacent regions was screened for telomerase activity [telomere repeat amplification protocol (TRAP) assay], telomere length (terminal restriction fragments), and AtTERT transcription (quantitative reverse transcription-PCR). Lines with the insertion located upstream of the start codon displayed unchanged telomere stability and telomerase activity, defining a putative minimal AtTERT promoter and the presence of a regulatory element linked to increased transcription in the line SALK_048471. Lines bearing a T-DNA insertion inside the protein-coding region showed telomere shortening and lack of telomerase activity. Transcription in most of these lines was unchanged upstream of the T-DNA insertion, while it was notably decreased downstream. The expression profile varied markedly in mutant lines harbouring insertions at the 5 end of AtTERT which showed increased transcription and abolished tissue specificity. Moreover, the line FLAG_385G01 (T-DNA insertion inside intron 1) revealed the presence of a highly abundant downstream transcript with normal splicing but without active telomerase. The role of regulatory elements found along the AtTERT gene is discussed in respect to natural telomerase expression and putative intron-mediated enhancement.
Related JoVE Video
Hypomethylating drugs efficiently decrease cytosine methylation in telomeric DNA and activate telomerase without affecting telomere lengths in tobacco cells.
Plant Mol. Biol.
PUBLISHED: 04-13-2011
Show Abstract
Hide Abstract
Telomere homeostasis is regulated at multiple levels, including the local chromatin structure of telomeres and subtelomeres. Recent reports demonstrated that a decrease in repressive chromatin marks, such as levels of cytosine methylation in subtelomeric regions, results in telomere elongation in mouse cells. Here we show that a considerable fraction of cytosines is methylated not only in subtelomeric, but also in telomeric DNA of tobacco BY-2 cells. Drug-induced hypomethylation (demonstrated at subtelomeric, telomeric, and global DNA levels) results in activation of telomerase. However, in contrast to mouse cells, the decrease in 5-methylcytosine levels and upregulation of telomerase do not result in any changes of telomere lengths. These results demonstrate the involvement of epigenetic mechanisms in the multilevel process of regulation of telomerase activity in plant cells and, at the same time, they indicate that changes in telomerase activity can be overridden by other factors governing telomere length stability.
Related JoVE Video
Non-telomeric activities of telomerase.
Mol Biosyst
PUBLISHED: 02-01-2011
Show Abstract
Hide Abstract
Recent results suggest that telomerase is involved in many more cellular processes than merely telomere elongation. These include telomere-independent anti-apoptotic, cytoprotective and pro-proliferative effects of telomerase or protection of mitochondrial DNA against oxidative stress. Telomerase also participates in DNA repair and its essential subunits, hTR and hTERT, are able to modulate independently the cells response to DNA damage. Recent high throughput analyses of gene expression showed that hTERT expression modulates expression of about 300 genes, including genes involved in the regulation of cell cycle progression, proliferation and differentiation. Besides the well-known telomerase catalytic activity of RNA-dependent DNA polymerase, its RNA-dependent RNA polymerase activity was recently described in association with the RNA subunit of mitochondrial RNA processing endoribonuclease, thus suggesting involvement of telomerase in RNA interference processes. These recent discoveries open novel possibilities and entirely unexpected research perspectives, branching off from the mainstream telomere and telomerase research.
Related JoVE Video
Using the telobox to search for plant telomere binding proteins.
Curr. Protein Pept. Sci.
PUBLISHED: 01-10-2011
Show Abstract
Hide Abstract
Telobox is a Myb-related DNA-binding domain which is present in a number of yeast, plant and animal proteins. Its capacity to bind preferentially double-stranded telomeric DNA has been used in numerous studies to search for candidate telomeric proteins in various organisms, including plants. Here we provide an overview of these studies with a special emphasis on plants, where a specific subfamily of the proteins possessing the N-terminally positioned telobox is present in addition to more common C-terminal telobox proteins. We further demonstrate the presence of a telobox protein (CpTBP1) in Cestrum parqui, a plant lacking typical telomeres and telomerase. The protein shows nuclear localisation and association with chromatin. The role of this protein in ancestral and current telomere structure is discussed in the evolutionary context. Altogether, the present overview shows the importance of the telobox domain in a search for candidate telomere proteins but at the same time warns against oversimplified identification of any telobox protein with telomere structure without appropriate evidence of its telomeric localisation and function.
Related JoVE Video
Role of HMGB proteins in chromatin dynamics and telomere maintenance in Arabidopsis thaliana.
Curr. Protein Pept. Sci.
PUBLISHED: 01-10-2011
Show Abstract
Hide Abstract
Chromosome stability is conditioned by functional chromatin structure of chromosome ends - telomeres. Organisation and regulation of telomere maintenance represent a complex process whose details still remain enigmatic, especially in plants. Several telomere-binding or telomere-associated proteins and distinct epigenetic marks have been shown to influence telomere length and telomerase activity. HMGB proteins play important role in dynamic changes of chromatin structure and are involved in regulation of cellular processes of key importance, such as replication, transcription, recombination and DNA-repair. HMGB proteins in plants are more diversified than in other eukaryotes. Here, we summarise the roles of plant HMGB proteins in regulation of chromatin structure and dynamics and report on the newly identified role of AtHMGB1 protein in the regulation of plant telomere length. Astonishingly, contrary to mice mHMGB1 homologue, AtHMGB1 does not affect telomerase activity and AtHMGB1 loss or overexpression does not cause any obvious changes in chromatin architecture.
Related JoVE Video
Dysfunction of chromatin assembly factor 1 induces shortening of telomeres and loss of 45S rDNA in Arabidopsis thaliana.
Plant Cell
PUBLISHED: 08-10-2010
Show Abstract
Hide Abstract
Chromatin Assembly Factor 1 (CAF1) is a three-subunit H3/H4 histone chaperone responsible for replication-dependent nucleosome assembly. It is composed of CAC 1-3 in yeast; p155, p60, and p48 in humans; and FASCIATA1 (FAS1), FAS2, and MULTICOPY SUPPRESSOR OF IRA1 in Arabidopsis thaliana. We report that disruption of CAF1 function by fas mutations in Arabidopsis results in telomere shortening and loss of 45S rDNA, while other repetitive sequences (5S rDNA, centromeric 180-bp repeat, CACTA, and Athila) are unaffected. Substantial telomere shortening occurs immediately after the loss of functional CAF1 and slows down at telomeres shortened to median lengths around 1 to 1.5 kb. The 45S rDNA loss is progressive, leaving 10 to 15% of the original number of repeats in the 5th generation of mutants affecting CAF1, but the level of the 45S rRNA transcripts is not altered in these mutants. Increasing severity of the fas phenotype is accompanied by accumulation of anaphase bridges, reduced viability, and plant sterility. Our results show that appropriate replication-dependent chromatin assembly is specifically required for stable maintenance of telomeres and 45S rDNA.
Related JoVE Video
Telomere maintenance in liquid crystalline chromosomes of dinoflagellates.
Chromosoma
PUBLISHED: 01-29-2010
Show Abstract
Hide Abstract
The organisation of dinoflagellate chromosomes is exceptional among eukaryotes. Their genomes are the largest in the Eukarya domain, chromosomes lack histones and may exist in liquid crystalline state. Therefore, the study of the structural and functional properties of dinoflagellate chromosomes is of high interest. In this work, we have analysed the telomeres and telomerase in two Dinoflagellata species, Karenia papilionacea and Crypthecodinium cohnii. Active telomerase, synthesising exclusively Arabidopsis-type telomere sequences, was detected in cell extracts. The terminal position of TTTAGGG repeats was determined by in situ hybridisation and BAL31 digestion methods and provides evidence for the linear characteristic of dinoflagellate chromosomes. The length of telomeric tracts, 25-80 kb, is the largest among unicellular eukaryotic organisms to date. Both the presence of long arrays of perfect telomeric repeats at the ends of dinoflagellate chromosomes and the existence of active telomerase as the primary tool for their high-fidelity maintenance demonstrate the general importance of these structures throughout eukaryotes. We conclude that whilst chromosomes of dinoflagellates are unique in many aspects of their structure and composition, their telomere maintenance follows the most common scenario.
Related JoVE Video
Genomic characterization of large rearrangements of the LDLR gene in Czech patients with familial hypercholesterolemia.
BMC Med. Genet.
PUBLISHED: 01-12-2010
Show Abstract
Hide Abstract
Mutations in the LDLR gene are the most frequent cause of Familial hypercholesterolemia, an autosomal dominant disease characterised by elevated concentrations of LDL in blood plasma. In many populations, large genomic rearrangements account for approximately 10% of mutations in the LDLR gene.
Related JoVE Video
AtTRB1, a telomeric DNA-binding protein from Arabidopsis, is concentrated in the nucleolus and shows highly dynamic association with chromatin.
Plant J.
PUBLISHED: 11-27-2009
Show Abstract
Hide Abstract
AtTRB1, 2 and 3 are members of the SMH (single Myb histone) protein family, which comprises double-stranded DNA-binding proteins that are specific to higher plants. They are structurally conserved, containing a Myb domain at the N-terminus, a central H1/H5-like domain and a C-terminally located coiled-coil domain. AtTRB1, 2 and 3 interact through their Myb domain specifically with telomeric double-stranded DNA in vitro, while the central H1/H5-like domain interacts non-specifically with DNA sequences and mediates protein-protein interactions. Here we show that AtTRB1, 2 and 3 preferentially localize to the nucleus and nucleolus during interphase. Both the central H1/H5-like domain and the Myb domain from AtTRB1 can direct a GFP fusion protein to the nucleus and nucleolus. AtTRB1-GFP localization is cell cycle-regulated, as the level of nuclear-associated GFP diminishes during mitotic entry and GFP progressively re-associates with chromatin during anaphase/telophase. Using fluorescence recovery after photobleaching and fluorescence loss in photobleaching, we determined the dynamics of AtTRB1 interactions in vivo. The results reveal that AtTRB1 interaction with chromatin is regulated at two levels at least, one of which is coupled with cell-cycle progression, with the other involving rapid exchange.
Related JoVE Video
Structure-function relationships in telomerase genes.
Biol. Cell
PUBLISHED: 05-08-2009
Show Abstract
Hide Abstract
The TERT (telomerase reverse transcriptase) subunit of telomerase is an intensively studied macromolecule due to its key importance in maintaining genome integrity and role in cellular aging and cancer. In an effort to provide an up-to-date overview of the topic, we discuss the structure of TERT genes, their alternative splicing products and their functions. Nucleotide databases contain more than 90 full-length cDNA sequences of telomerase protein subunits. Numerous in silico, in vitro and in vivo experimental techniques have revealed a great deal of structural and functional data describing particular features of the telomerase subunit in various model organisms. We explore whether particular findings are generally applicable to telomerases or species-specific. We also discuss in an evolutionary context the role of identified functional TERT subdomains.
Related JoVE Video
Single-Myb-histone proteins from Arabidopsis thaliana: a quantitative study of telomere-binding specificity and kinetics.
Biochem. J.
PUBLISHED: 03-25-2009
Show Abstract
Hide Abstract
Proteins that bind telomeric DNA modulate the structure of chromosome ends and control telomere function and maintenance. It has been shown that AtTRB (Arabidopsis thaliana telomere-repeat-binding factor) proteins from the SMH (single-Myb-histone) family selectively bind double-stranded telomeric DNA and interact with the telomeric protein AtPOT1b (A. thaliana protection of telomeres 1b), which is involved in telomere capping. In the present study, we performed the first quantitative DNA-binding study of this plant-specific family of proteins. Interactions of full-length proteins AtTRB1 and AtTRB3 with telomeric DNA were analysed by electrophoretic mobility-shift assay, fluorescence anisotropy and surface plasmon resonance to reveal their binding stoichiometry and kinetics. Kinetic analyses at different salt conditions enabled us to estimate the electrostatic component of binding and explain different affinities of the two proteins to telomeric DNA. On the basis of available data, a putative model explaining the binding stoichiometry and the protein arrangement on telomeric DNA is presented.
Related JoVE Video
A combined approach for the study of histone deacetylase inhibitors.
Mol Biosyst
Show Abstract
Hide Abstract
Overexpression of histone deacetylases (HDACs), with consequent hypoacetylation of histones, is reportedly associated with transcriptional repression of tumour suppressor genes. Thus, inhibition of HDACs has emerged as a promising strategy in cancer therapy. In order to monitor the effects of potential HDAC inhibitors, a multi-level approach consisting of preliminary screening (measurement of HDAC activity and semi-quantitative evaluation of histone H4 modification profile by MALDI-TOF MS) and detailed analysis of histone modification forms (using 2-D AUT/AU PAGE and LC-ESI-IT MS) has been used in this study. The data obtained provide a global insight into the effects of HDAC inhibitors on the histone acetylation status that participates in gene transcription control. Using two example inhibitors, valproic acid sodium salt and entinostat, we show that similar levels of HDAC inhibition induced by different agents can lead to distinct rates of histone hyperacetylation, suggesting that except for the direct inhibition of HDACs, additional molecular mechanisms amplifying the response are likely to be involved in the inhibitory process. The approach used in our study makes it possible not only to follow the dynamics of individual histone modification forms, but also of their combined occurrence in the N-terminal fragment.
Related JoVE Video
Synergism of the two Myb domains of Tay1 protein results in high affinity binding to telomeres.
J. Biol. Chem.
Show Abstract
Hide Abstract
Double-stranded regions of the telomeres are recognized by proteins containing Myb-like domains conferring specificity toward telomeric repeats. Although biochemical and structural studies revealed basic molecular principles involved in DNA binding, relatively little is known about evolutionary pathways leading to various types of Myb domain-containing proteins in divergent species of eukaryotes. Recently we identified a novel type of telomere-binding protein YlTay1p from the yeast Yarrowia lipolytica containing two Myb domains (Myb1, Myb2) very similar to the Myb domain of mammalian TRF1 and TRF2. In this study we prepared mutant versions of YlTay1p lacking Myb1, Myb2, or both Myb domains and found that YlTay1p carrying either Myb domain exhibits preferential affinity to both Y. lipolytica (GGGTTAGTCA)(n) and human (TTAGGG)(n) telomeric sequences. Quantitative measurements of the protein binding to telomeric DNA revealed that the presence of both Myb domains is required for a high affinity of YlTay1p to either telomeric repeat. Additionally, we performed detailed thermodynamic analysis of the YlTay1p interaction with its cognate telomeric DNA, which is to our knowledge the first energetic description of a full-length telomeric-protein binding to DNA. Interestingly, when compared with human TRF1 and TRF2 proteins, YlTay1p exhibited higher affinity not only for Y. lipolytica telomeres but also for human telomeric sequences. The duplication of the Myb domain region in YlTay1p thus produces a synergistic effect on its affinity toward the cognate telomeric sequence, alleviating the need for homodimerization observed in TRF-like proteins possessing a single Myb domain.
Related JoVE Video
HMGB1 gene knockout in mouse embryonic fibroblasts results in reduced telomerase activity and telomere dysfunction.
Chromosoma
Show Abstract
Hide Abstract
Telomere repeats are added onto chromosome ends by telomerase, consisting of two main core components: a catalytic protein subunit (telomerase reverse trancriptase, TERT), and an RNA subunit (telomerase RNA, TR). Here, we report for the first time evidence that HMGB1 (a chromatin-associated protein in mammals, acting as a DNA chaperone in transcription, replication, recombination, and repair) can modulate cellular activity of mammalian telomerase. Knockout of the HMGB1 gene (HMGB1 KO) in mouse embryonic fibroblasts (MEFs) results in chromosomal abnormalities, enhanced colocalization of ?-H2AX foci at telomeres, and a moderate shortening of telomere lengths. HMGB1 KO MEFs also exhibit significantly (>5-fold) lower telomerase activity than the wild-type MEFs. Correspondingly, enhanced telomerase activity is observed upon overexpression of HMGB1 in MEFs. HMGB1 physically interacts with both TERT and TR, as well as with active telomerase complex in vitro. However, direct interaction of HMGB1 with telomerase is most likely not accountable for the observed higher telomerase activity in HMGB1-containing cells, as revealed from the inability of purified HMGB1 protein to stimulate telomerase activity in vitro. While no transcriptional silencing of TERT is observed in HMGB1 KO MEFs, levels of TR are diminished (~3-fold), providing possible explanation for the observed lower telomerase activity in HMGB1 KO cells. Interestingly, knockout of the HMGB2 gene elevates telomerase activity (~3-fold) in MEFs, suggesting that the two closely related proteins of the HMGB family, HMGB1 and HMGB2, have opposite effects on telomerase activity in the cell. The ability of HMGB1 to modulate cellular activity of telomerase and to maintain telomere integrity can help to understand some aspects of the protein involvement in chromosome stability and cancer.
Related JoVE Video
Three TERT genes in Nicotiana tabacum.
Chromosome Res.
Show Abstract
Hide Abstract
Telomerase is essential for proper functioning of telomeres in eukaryotes. We cloned and characterised genes for the protein subunit of telomerase (TERT) in the allotetraploid Nicotiana tabacum (tobacco) and its diploid progenitor species Nicotiana sylvestris and Nicotiana tomentosiformis with the aim of determining if allopolyploidy (hybridisation and genome duplication) influences TERT activity and divergence. Two of the three sequence variants present in the tobacco genome (NtTERT-C/s and NtTERT-D) revealed similarity to two sequence variants found in N. sylvestris and another variant (NtTERT-C/t) was similar to TERT of N. tomentosiformis. Variants of N. sylvestris origin showed less similarity to each other (80.5 % in the genomic region; 90.1 % in the coding sequence) than that between the NtTERT-C/s and NtTERT-C/t variants (93.6 and 97.2 %, respectively). The NtTERT-D variant was truncated at the 5 end, and indels indicated that it was a pseudogene. All tobacco variants were transcribed and alternatively spliced sequences were detected. Analysis of gene arrangements uncovered a novel exon in the N-terminal domain of TERT variants, a feature that is likely to be commonly found in Solanaceae species. In addition, species-specific duplications were observed within exon 5. The putative function, copy number and evolutionary origin of these NtTERT sequence variants are discussed.
Related JoVE Video
Developmental silencing of the AtTERT gene is associated with increased H3K27me3 loading and maintenance of its euchromatic environment.
J. Exp. Bot.
Show Abstract
Hide Abstract
Telomerase, an enzyme responsible for the maintenance of linear chromosome ends, is precisely regulated during plant development. In animals, involvement of the epigenetic state of the telomerase reverse transcriptase (TERT) gene in the complex regulation of telomerase activity has been reported. To reveal whether epigenetic mechanisms participate in the regulation of plant telomerase, the relationship between telomerase activity in tissues of Arabidopsis thaliana and DNA methylation and histone modifications in the A. thaliana TERT (AtTERT) upstream region was studied. As expected, a gradual decrease of telomerase activity during leaf maturation was observed. A different pattern with a more progressive loss of telomerase activity and AtTERT transcription during leaf development was revealed in MET1 gene-knockout mutants. Analysis of DNA methylation in the AtTERT upstream region showed low levels of methylated cytosines without notable differences between telomerase-positive and telomerase-negative wild-type tissues. Surprisingly, a high level of CG methylation was found in the AtTERT coding region, although this type of methylation is a characteristic attribute of constitutively expressed genes. Analysis of chromatin modifications in the AtTERT upstream region and in exon 5 showed increased loading of the H3K27me3 mark in the telomerase-negative mature leaf compared to telomerase-positive seedlings, whereas H3K4me3, H3K9Ac, and H3K9me2 were approximately at the same level. Consistently, the chromatin structure of the AtTERT gene was maintained. These results are discussed in the context of the general involvement of epigenetic mechanisms in the regulation of gene expression and with respect to similar studies performed in animal models.
Related JoVE Video
Dynamic evolution of telomeric sequences in the green algal order Chlamydomonadales.
Genome Biol Evol
Show Abstract
Hide Abstract
Telomeres, which form the protective ends of eukaryotic chromosomes, are a ubiquitous and conserved structure of eukaryotic genomes but the basic structural unit of most telomeres, a repeated minisatellite motif with the general consensus sequence T(n)A(m)G(o), may vary between eukaryotic groups. Previous studies on several species of green algae revealed that this group exhibits at least two types of telomeric sequences, a presumably ancestral type shared with land plants (Arabidopsis type, TTTAGGG) and conserved in, for example, Ostreococcus and Chlorella species, and a novel type (Chlamydomonas type, TTTTAGGG) identified in Chlamydomonas reinhardtii. We have employed several methodical approaches to survey the diversity of telomeric sequences in a phylogenetically wide array of green algal species, focusing on the order Chlamydomonadales. Our results support the view that the Arabidopsis-type telomeric sequence is ancestral for green algae and has been conserved in most lineages, including Mamiellophyceae, Chlorodendrophyceae, Trebouxiophyceae, Sphaeropleales, and most Chlamydomonadales. However, within the Chlamydomonadales, at least two independent evolutionary changes to the Chlamydomonas type occurred, specifically in a subgroup of the Reinhardtinia clade (including C. reinhardtii and Volvox carteri) and in the Chloromonadinia clade. Furthermore, a complex structure of telomeric repeats, including a mix of the ancestral Arabidopsis-type motifs and derived motifs identical to the human-type telomeric repeats (TTAGGG), was found in the chlamydomonadalean clades Dunaliellinia and Stephanosphaeria. Our results indicate that telomere evolution in green algae, particularly in the order Chlamydomonadales, is far more dynamic and complex than thought before. General implications of our findings for the mode of telomere evolution are discussed.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.