JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Synthesis and biological evaluation of guanidino analogues of roscovitine.
Eur J Med Chem
PUBLISHED: 01-11-2013
Show Abstract
Hide Abstract
A series of 2,9-substituted 6-guanidinopurines, structurally related to the cyclin-dependent kinase (CDK) inhibitors olomoucine and roscovitine, has been synthesized and characterized. A new copper-catalyzed method for the synthesis of 2-substituted 6-guanidino-9-isopropylpurines under mild reaction conditions has been developed. All prepared compounds were screened for their CDK1 and CDK2 inhibitory activities, cytotoxicity and antiproliferative effects in the breast cancer-derived cell line MCF7. The most active derivative 16g possessed an identical side chain in the C2 position to roscovitine; this compound displayed approximately five fold higher inhibitory activity towards CDK2/cyclin E and more than ten fold increase in cytotoxicity in MCF7 cells. Interestingly and in contrast to previously described findings, (S)-6-guanidinopurine derivatives were generally more active than their (R)-counterparts. Kinase selectivity profiling of (R)- and (S)-enantiomers 16e and 16g, respectively, revealed that introduction of a guanidino group at the C6 position of the purine moiety decreased selectivity towards protein kinases compared to roscovitine. Nevertheless, increased inhibitory activity and decreased selectivity offer a good starting point for further development of new protein kinase inhibitors.
Related JoVE Video
The selective P-TEFb inhibitor CAN508 targets angiogenesis.
Eur J Med Chem
PUBLISHED: 05-09-2011
Show Abstract
Hide Abstract
Small molecule inhibitors of cyclin-dependent kinases (CDK) have been developed as anticancer drugs with cytostatic and cytotoxic properties, but some of them have also been shown to limit angiogenesis. Here, we report that the 3,5-diaminopyrazole CAN508 inhibits endothelial cell migration and tube formation. In addition, it reduces phosphorylation of the C-terminus of RNA polymerase II and inhibits mRNA synthesis in endothelial cells, in accordance with previous observations that it has high selectivity towards the positive transcriptional regulator P-TEFb. Moreover, CAN508 reduces expression of vascular endothelial growth factor by several human cancer cell lines. The findings suggest that P-TEFb may be an attractive target for anti-angiogenic therapy.
Related JoVE Video
Pyrazolo[4,3-d]pyrimidine bioisostere of roscovitine: evaluation of a novel selective inhibitor of cyclin-dependent kinases with antiproliferative activity.
J. Med. Chem.
PUBLISHED: 04-06-2011
Show Abstract
Hide Abstract
Inhibition of cyclin-dependent kinases (CDKs) with small molecules has been suggested as a strategy for treatment of cancer, based on deregulation of CDKs commonly found in many types of human tumors. Here, a new potent CDK2 inhibitor with pyrazolo[4,3-d]pyrimidine scaffold has been synthesized, characterized, and evaluated in cellular and biochemical assays. 7-Benzylamino-5(R)-[2-(hydroxymethyl)propyl]amino-3-isopropyl-1(2)H-pyrazolo[4,3-d]pyrimidine, compound 7, was prepared as a bioisostere of the well-known CDK inhibitor roscovitine. An X-ray crystal structure of compound 7 bound to CDK2 has been determined, revealing a binding mode similar to that of roscovitine. Protein kinase selectivity profile of compound 7 and its biological effects (cell cycle arrest, dephosphorylation of the retinoblastoma protein, accumulation of the tumor suppressor protein p53, induction of apoptosis, inhibition of homologous recombination) are consistent with CDK inhibition as a primary mode of action. Importantly, as the anticancer activities of the pyrazolo[4,3-d]pyrimidine 7 exceed those of its bioisostere roscovitine, compound 7 reported here may be preferable for cancer therapy.
Related JoVE Video
Anti-leishmanial activity of disubstituted purines and related pyrazolo[4,3-d]pyrimidines.
Bioorg. Med. Chem. Lett.
PUBLISHED: 03-22-2011
Show Abstract
Hide Abstract
We report here results of screening directed to finding new anti-leishmanial drugs among 2,6-disubstituted purines and corresponding 3,7-disubstituted pyrazolo[4,3-d]pyrimidines. These compounds have previously been shown to moderately inhibit human cyclin-dependent kinases. Since some compounds reduced viability of axenic amastigotes of Leishmania donovani, we screened them for interaction with recombinant leishmanial cdc-2 related protein kinase (CRK3/CYC6), an important cell cycle regulator of the parasitic protozoan. Eighteen pairs of corresponding isomers were tested for viability of amastigotes and for inhibition of CRK3/CYC6 kinase activity. Some compounds (9A, 12A and 13A) show activity against amastigotes with EC(50) in a range 1.5-12.4?M. Structure-activity relationships for the tested compounds are discussed and related to the lipophilicity of the compounds.
Related JoVE Video
Tandem mass spectrometry identification and LC-MS quantification of intact cytokinin nucleotides in K-562 human leukemia cells.
Anal Bioanal Chem
PUBLISHED: 05-10-2010
Show Abstract
Hide Abstract
We describe here a new reversed-phase high-performance liquid chromatography with mass spectrometry detection method for quantifying intact cytokinin nucleotides in human K-562 leukemia cells. Tandem mass spectrometry was used to identify the intracellular metabolites (cytokinin monophosphorylated, diphosphorylated, and triphosphorylated nucleotides) in riboside-treated cells. For the protein precipitation and sample preparation, a trichloroacetic acid extraction method is used. Samples are then back-extracted with diethyl ether, lyophilized, reconstituted, and injected into the LC system. Analytes were quantified in negative selected ion monitoring mode using a single quadrupole mass spectrometer. The method was validated in terms of retention time stabilities, limits of detection, linearity, recovery, and analytical accuracy. The developed method was linear in the range of 1-1,000 pmol for all studied compounds. The limits of detection for the analytes vary from 0.2 to 0.6 pmol.
Related JoVE Video
Anticancer activity of natural cytokinins: a structure-activity relationship study.
Phytochemistry
PUBLISHED: 01-12-2010
Show Abstract
Hide Abstract
Cytokinin ribosides (N(6)-substituted adenosine derivatives) have been shown to have anticancer activity both in vitro and in vivo. This study presents the first systematic analysis of the relationship between the chemical structure of cytokinins and their cytotoxic effects against a panel of human cancer cell lines with diverse histopathological origins. The results confirm the cytotoxic activity of N(6)-isopentenyladenosine, kinetin riboside, and N(6)-benzyladenosine and show that the spectrum of cell lines that are sensitive to these compounds and their tissues of origin are wider than previously reported. The first evidence that the hydroxylated aromatic cytokinins (ortho-, meta-, para-topolin riboside) and the isoprenoid cytokinin cis-zeatin riboside have cytotoxic activities is presented. Most cell lines in the panel showed greatest sensitivity to ortho-topolin riboside (IC(50)=0.5-11.6 microM). Cytokinin nucleotides, some synthesized for the first time in this study, were usually active in a similar concentration range to the corresponding ribosides. However, cytokinin free bases, 2-methylthio derivatives and both O- and N-glucosides showed little or no toxicity. Overall the study shows that structural requirements for cytotoxic activity of cytokinins against human cancer cell lines differ from the requirements for their activity in plant bioassays. The potent anticancer activity of ortho-topolin riboside (GI(50)=0.07-84.60 microM, 1st quartile=0.33 microM, median=0.65 microM, 3rd quartile=1.94 microM) was confirmed using NCI(60), a standard panel of 59 cell lines, originating from nine different tissues. Further, the activity pattern of oTR was distinctly different from those of standard anticancer drugs, suggesting that it has a unique mechanism of activity. In comparison with standard drugs, oTR showed exceptional cytotoxic activity against NCI(60) cell lines with a mutated p53 tumour suppressor gene. oTR also exhibited significant anticancer activity against several tumour models in in vivo hollow fibre assays.
Related JoVE Video
Synthesis, characterization and biological activity of ring-substituted 6-benzylamino-9-tetrahydropyran-2-yl and 9-tetrahydrofuran-2-ylpurine derivatives.
Bioorg. Med. Chem.
PUBLISHED: 01-15-2009
Show Abstract
Hide Abstract
In an attempt to improve specific biological functions of cytokinins routinely used in plant micropropagation, 33 6-benzylamino-9-tetrahydropyran-2-ylpurine (THPP) and 9-tetrahydrofuran-2-ylpurine (THFP) derivatives, with variously positioned hydroxy and methoxy functional groups on the benzyl ring, were prepared. The new derivatives were prepared by condensation of 6-chloropurine with 3,4-dihydro-2H-pyran or 2,3-dihydrofuran and then by the condensation of these intermediates with the corresponding benzylamines. The prepared compounds were characterized by elemental analyses, TLC, HPLC, melting point determinations, CI+ MS and (1)H NMR spectroscopy. The cytokinin activity of all the prepared derivatives was assessed in three classical cytokinin bioassays (tobacco callus, wheat leaf senescence and Amaranthus bioassay). The derivatives 6-(3-hydroxybenzylamino)-9-tetrahydropyran-2-ylpurine (3) and 6-(3-hydroxybenzylamino)-9-tetrahydrofuran-2-ylpurine (23) were selected, because of the high affinity of their parent compound meta-topolin (mT, 6-(3-hydroxybenzylamino)purine) to cytokinin receptors, as model compounds for studying their perception by the receptors CRE1/AHK4 and AHK3 in a bacterial assay. Both receptors perceived these two derivatives less well than they perceived the parent compound. Subsequently, the susceptibility of several new derivatives to enzyme degradation by cytokinin oxidase/dehydrogenase was studied. Substitution of tetrahydropyran-2-yl (THP) at the N(9) position decreased the turnover rates of all new derivatives to some extent. To provide a practical perspective, the cytotoxicity of the prepared compounds against human diploid fibroblasts (BJ) and the human cancer cell lines K-562 and MCF-7 was also assayed in vitro. The prepared compounds showed none or marginal cytotoxicity compared to the corresponding N(9)-ribosides. Finally, the pH stability of the two model compounds was assessed in acidic and neutral water solutions (pH 3-7) by high-performance liquid chromatography (HPLC).
Related JoVE Video
Synthesis and in vitro biological evaluation of 2,6,9-trisubstituted purines targeting multiple cyclin-dependent kinases.
Eur J Med Chem
Show Abstract
Hide Abstract
Several inhibitors of cyclin-dependent kinases (CDKs), including the 2,6,9-trisubstituted purine derivative roscovitine, are currently being evaluated in clinical trials as potential anticancer drugs. Here, we describe a new series of roscovitine derivatives that show increased potency in vitro. The series was tested for cytotoxicity against six cancer cell lines and for inhibition of CDKs. For series bearing 2-(hydroxyalkylamino) moiety, cytotoxic potency strongly correlated with anti-CDK2 activity. Importantly, structural changes that increase biochemical and anticancer activities of these compounds also increase elimination half-life. The most potent compounds were investigated further to assess their ability to influence cell cycle progression, p53-regulated transcription and apoptosis. All the observed biological effects were consistent with inhibition of CDKs involved in the regulation of cell cycle and transcription.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.