JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Metabolic engineering of Escherichia coli for poly(3-hydroxypropionate) production from glycerol and glucose.
Biotechnol. Lett.
PUBLISHED: 05-13-2014
Show Abstract
Hide Abstract
A new poly(3-hydroxypropionate) (P3HP) biosynthetic pathway employing ?-alanine as an intermediate from an inexpensive carbon source was developed in recombinant Escherichia coli. After a series of systematic optimization, the genes for L-aspartate decarboxylase and its maturation factor (panD and panM, from E. coli), ?-alanine-pyruvate transaminase (pp0596, from Pseudomonas putida), 3-hydroxy acid dehydrogenase and 3-hydroxypropionyl-CoA synthase (ydfG and prpE respectively, from E. coli), and polyhydroxyalkanoate synthase (phaC1, from Cupriavidus necator) were cloned and expressed in E. coli. Under shake-flask conditions, the recombinant strain produced 0.5 g P3HP l(-1) from glycerol and glucose, up to 10.2 % of CDW. Though the content of P3HP was low, this pathway has some advantages over other reported pathways, such as being redox neutral, does not require any coenzyme, and can use a wide range of carbon sources.
Related JoVE Video
Pseudoginsenoside-F11 (PF11) exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-?B, MAPKs and Akt signaling pathways.
Neuropharmacology
PUBLISHED: 01-10-2014
Show Abstract
Hide Abstract
Pseudoginsenoside-F11 (PF11), an ocotillol-type ginsenoside, has been shown to possess significant neuroprotective activity. Since microglia-mediated inflammation is critical for induction of neurodegeneration, this study was designed to investigate the effect of PF11 on activated microglia. PF11 significantly suppressed the release of ROS and proinflammatory mediators induced by LPS in a microglial cell line N9 including NO, PGE2, IL-1?, IL-6 and TNF-?. Moreover, PF11 inhibited interaction and expression of TLR4 and MyD88 in LPS-activated N9 cells, resulting in an inhibition of the TAK1/IKK/NF-?B signaling pathway. PF11 also inhibited the phosphorylation of Akt and MAPKs induced by LPS in N9 cells. Importantly, PF11 significantly alleviated the death of SH-SY5Y neuroblastoma cells and primary cortical neurons induced by the conditioned-medium from activated microglia. At last, the effect of PF11 on neuroinflammation was confirmed in vivo: PF11 mitigated the microglial activation and proinflammatory factors expression obviously in both cortex and hippocampus in mice injected intrahippocampally with LPS. These findings indicate that PF11 exerts anti-neuroinflammatory effects on LPS-activated microglial cells by inhibiting TLR4-mediated TAK1/IKK/NF-?B, MAPKs and Akt signaling pathways, suggesting its therapeutic implication for neurodegenerative disease associated with neuroinflammation.
Related JoVE Video
Production of free monounsaturated fatty acids by metabolically engineered Escherichia coli.
Biotechnol Biofuels
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Monounsaturated fatty acids (MUFAs) are the best components for biodiesel when considering the low temperature fluidity and oxidative stability. However, biodiesel derived from vegetable oils or microbial lipids always consists of significant amounts of polyunsaturated and saturated fatty acids (SFAs) alkyl esters, which hampers its practical applications. Therefore, the fatty acid composition should be modified to increase MUFA contents as well as enhancing oil and lipid production.
Related JoVE Video
si-DNMT1 restore tumor suppressor genes expression through the reversal of DNA hypermethylation in cholangiocarcinoma.
Clin Res Hepatol Gastroenterol
PUBLISHED: 08-10-2013
Show Abstract
Hide Abstract
The aim of our study was to evaluate the effect of shorthairpin RNA plasmid vector knockdown of human DNA methyltransferase 1 on proliferation and the methylation status and expression of tumor suppressor genes in hilar cholangiocarcinoma.
Related JoVE Video
Banking human umbilical cord-derived mesenchymal stromal cells for clinical use.
Cell Transplant
PUBLISHED: 09-16-2011
Show Abstract
Hide Abstract
A great deal of interest has arisen recently with respect to human mesenchymal stem cells (MSCs), due to their broad therapeutic potential. However, the safety and efficacy of MSCs expanded ex vivo for clinical applications remain a concern. In this article, we establish a standardized process for manufacture of human umbilical cord-derived MSCs (UC-MSCs), which encompasses donor screening and testing, recovery, two-stage expansion, and administration. The biological properties and safety of UC-MSCs were then characterized and tested. The safety data from use in human patients have also been reported. After clinical-scale expansion, a yield of 1.03-3.78 × 10(8) MSCs was achieved in 10 batch manufacturing runs. The biological properties, such as plastic adherence, morphology, specific surface antigen (CD105, CD73, CD90, positive ? 95%; CD45, CD34, CD31, CD11b, CD19, HLA-DR, negative ?2%), and multipotent differentiation potential (osteogenesis and adipogenesis) were retained. Bacterial and mycoplasma tests were negative and endotoxin levels were lower than 2 EU/ml. No adverse events were noted in two patients treated with intravenously and/or intrathecally administered MSCs. The data obtained indicate that banking UC-MSCs for clinical use is feasible.
Related JoVE Video
Engineering of high purity ultra-long optical needle field through reversing the electric dipole array radiation.
Opt Express
PUBLISHED: 10-14-2010
Show Abstract
Hide Abstract
We report a new method to create high purity longitudinally polarized field with extremely long depth of focus in the focal volume of a high numerical aperture (NA) objective lens. Through reversing the radiated field from an electric dipole array situated near the focus of the high-NA lens, the required incident field distribution in the pupil plane for the creation of an ultra-long optical needle field can be found. Numerical examples demonstrate that an optical needle field with a depth of focus up to 8? is obtainable. Throughout the depth of focus, this engineered focal field maintains a diffraction limited transverse spot size (<0.43?) with high longitudinal polarization purity. From the calculated pupil plane distribution, a simplified discrete complex pupil filter can be designed and significant improvements over the previously reported complex filters are clearly demonstrated.
Related JoVE Video
Reduction of IKKalpha expression promotes chronic ultraviolet B exposure-induced skin inflammation and carcinogenesis.
Am. J. Pathol.
PUBLISHED: 03-19-2010
Show Abstract
Hide Abstract
Ultraviolet B light (UVB) is a common cause of human skin cancer. UVB irradiation induces mutations in the tumor suppressor p53 gene as well as chronic inflammation, which are both essential for UVB carcinogenesis. Inhibitor of nuclear factor kappaB kinase-alpha (IKKalpha) plays an important role in maintaining skin homeostasis, and expression of IKKalpha was found to be down-regulated in human and murine skin squamous cell carcinomas. However, the role of IKKalpha in UVB skin carcinogenesis has not been investigated. Thus, here we performed UVB carcinogenesis experiments on Ikkalpha(+/+) and Ikkalpha(+/-) mice. Ikkalpha(+/-) mice were found to develop a twofold greater number of skin tumors than Ikkalpha(+/+) mice after chronic UVB irradiation. In addition, tumor latency was significantly shorter and tumors were bigger in Ikkalpha(+/-) than in Ikkalpha(+/+) mice. At an early stage of carcinogenesis, an increase in UVB-induced p53 mutations as well as macrophage recruitment and mitogenic activity, and a decrease in UVB-induced apoptosis, were detected in Ikkalpha(+/-) compared with those in Ikkalpha(+/+) skin. Also, reduction of IKKalpha levels in keratinocytes up-regulated the expression of monocyte chemoattractant protein-1 (MCP-1/CCL2), TNFalpha, IL-1, and IL-6, and elevated macrophage migration, which might promote macrophage recruitment and inflammation. Therefore, these findings suggest that reduction of IKKalpha expression orchestrates UVB carcinogen, accelerating tumorigenesis.
Related JoVE Video
Therapeutic benefit of human umbilical cord derived mesenchymal stromal cells in intracerebral hemorrhage rat: implications of anti-inflammation and angiogenesis.
Cell. Physiol. Biochem.
PUBLISHED: 06-09-2009
Show Abstract
Hide Abstract
Cell-based therapy represents a promising strategy in the treatment of neurological disorders. Human umbilical cord tissue has recently been recognized as an ideal source of mesenchymal stromal cells due to accessibility, vast abundance and safety. Here, an intracerebral hemorrhage (ICH) rat model was established by injection of bacterial collagenase VII and CM-DiI labeled human umbilical cord tissue derived mesenchymal stromal cells (UC-MSC) were intracerebrally transplanted into rat brain 24 h after ICH. The results demonstrated that UC-MSC treatment significantly improved neurological function deficits and decreased injury volume of ICH rats. Leukocytes infiltration, microglial activation, ROS level and matrix metalloproteinases (MMPs) production were substantially reduced in peri-ICH area in cell-treated group as compared with PBS control at day 3 post-transplantation. In addition, UC-MSC treatment significantly increased vascular density in peri-ICH area and transplanted UC-MSC were found to be able to incorporate into cerebral vasculature in ipsilateral hemisphere at 14 days after transplantation. In summary, intracerebral administration of UC-MSC could accelerate neurological function recovery of ICH rat, the underlying mechanism may ascribe to their ability to inhibit inflammation and promote angiogenesis. Thus UC-MSC may provide a potential cell candidate for cell-based therapy in neurological disorders.
Related JoVE Video
Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke.
Transplantation
PUBLISHED: 02-10-2009
Show Abstract
Hide Abstract
Human umbilical cord multipotent mesenchymal stromal cells (UC-MSC) have recently been identified as ideal candidate stem cells for cell-based therapy. The present study was designed to evaluate therapeutic potentials of intracerebral administration of UC-MSC in a rat model of stroke.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.