JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The endogenous peptide antisecretory factor promotes tonic GABAergic signaling in CA1 stratum radiatum interneurons.
Front Cell Neurosci
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Tonic GABAergic inhibition regulates neuronal excitability and has been implicated to be involved in both neurological and psychiatric diseases. We have previously shown that the endogenous peptide antisecretory factor (AF) decreases phasic GABAergic inhibition onto pyramidal CA1 neurons. In the present study, using whole-cell patch-clamp recordings, we investigated the mechanisms behind this disinhibition of CA1 pyramidal neurons by AF. We found that application of AF to acute rat hippocampal slices resulted in a reduction of the frequency, but not of the amplitude, of spontaneous inhibitory postsynaptic currents (sIPSCs) in CA1 pyramidal neurons. Miniature inhibitory postsynaptic currents (mIPSCs), recorded in the presence of tetrodotoxin (TTX), were however not affected by AF, neither in CA1 pyramidal cells, nor in stratum radiatum interneurons. Instead, AF caused an increase of the tonic GABAA current in stratum radiatum interneurons, leaving the tonic GABAergic transmission in CA1 pyramidal cells unaffected. These results show that the endogenous peptide AF enhances tonic, but not phasic, GABAergic signaling in CA1 stratum radiatum interneurons, without affecting tonic GABAergic signaling in CA1 pyramidal neurons. We suggest that this increased tonic GABAergic signaling in GABAergic interneurons could be a mechanism for the AF-mediated disinhibition of pyramidal neurons.
Related JoVE Video
Lamotrigine increases the number of BrdU-labeled cells in the rat hippocampus.
Neuroreport
PUBLISHED: 09-29-2011
Show Abstract
Hide Abstract
Antidepressant medication and electroconvulsive therapy stabilize mood symptoms and increase hippocampal neurogenesis. We examined whether lamotrigine, suggested to give rise to mood-stabilizing and antidepressant effects in addition to its antiepileptic properties, also increases the number of newborn cells in rat hippocampus. Rats (on day P21) received lamotrigine, valproate, or saline intraperitoneally once daily for 7 days. All animals received four intraperitoneal injections of bromodeoxyuridine (BrdU) on day P28 and were sacrificed the next day. Quantification of BrdU-labeled cells in the granule cell layer of the dentate gyrus showed an increased number of newborn cells in rats receiving lamotrigine (42.6 ± 3.5 cells/slice) compared with valproate (31.6 ± 2.8) and controls (32.2 ± 3.1; P<0.05). The increased number of BrdU-labeled cells suggests increased neurogenesis, possibly explaining the mood-stabilizing and antidepressant effects of lamotrigine.
Related JoVE Video
Adult neural stem/progenitor cells reduce NMDA-induced excitotoxicity via the novel neuroprotective peptide pentinin.
J. Neurochem.
PUBLISHED: 05-09-2009
Show Abstract
Hide Abstract
Although the potential of adult neural stem cells to repair damage via cell replacement has been widely reported, the ability of endogenous stem cells to positively modulate damage is less well studied. We investigated whether medium conditioned by adult hippocampal stem/progenitor cells altered the extent of excitotoxic cell death in hippocampal slice cultures. Conditioned medium significantly reduced cell death following 24 h of exposure to 10 microM NMDA. Neuroprotection was greater in the dentate gyrus, a region neighboring the subgranular zone where stem/progenitor cells reside compared with pyramidal cells of the cornis ammonis. Using mass spectrometric analysis of the conditioned medium, we identified a pentameric peptide fragment that corresponded to residues 26-30 of the insulin B chain which we termed pentinin. The peptide is a putative breakdown product of insulin, a constituent of the culture medium, and may be produced by insulin-degrading enzyme, an enzyme expressed by the stem/progenitor cells. In the presence of 100 pM of synthetic pentinin, the number of mature and immature neurons killed by NMDA-induced toxicity was significantly reduced in the dentate gyrus. These data suggest that progenitors in the subgranular zone may convert exogenous insulin into a peptide capable of protecting neighboring neurons from excitotoxic injury.
Related JoVE Video
Restricted cortical and amygdaloid removal of vesicular glutamate transporter 2 in preadolescent mice impacts dopaminergic activity and neuronal circuitry of higher brain function.
J. Neurosci.
PUBLISHED: 02-21-2009
Show Abstract
Hide Abstract
A major challenge in neuroscience is to resolve the connection between gene functionality, neuronal circuits, and behavior. Most, if not all, neuronal circuits of the adult brain contain a glutamatergic component, the nature of which has been difficult to assess because of the vast cellular abundance of glutamate. In this study, we wanted to determine the role of a restricted subpopulation of glutamatergic neurons within the forebrain, the Vglut2-expressing neurons, in neuronal circuitry of higher brain function. Vglut2 expression was selectively deleted in the cortex, hippocampus, and amygdala of preadolescent mice, which resulted in increased locomotor activity, altered social dominance and risk assessment, decreased sensorimotor gating, and impaired long-term spatial memory. Presynaptic VGLUT2-positive terminals were lost in the cortex, striatum, nucleus accumbens, and hippocampus, and a downstream effect on dopamine binding site availability in the striatum was evident. A connection between the induced late-onset, chronic reduction of glutamatergic neurotransmission and dopamine signaling within the circuitry was further substantiated by a partial attenuation of the deficits in sensorimotor gating by the dopamine-stabilizing antipsychotic drug aripiprazole and an increased sensitivity to amphetamine. Somewhat surprisingly, given the restricted expression of Vglut2 in regions responsible for higher brain function, our analyses show that VGLUT2-mediated neurotransmission is required for certain aspects of cognitive, emotional, and social behavior. The present study provides support for the existence of a neurocircuitry that connects changes in VGLUT2-mediated neurotransmission to alterations in the dopaminergic system with schizophrenia-like behavioral deficits as a major outcome.
Related JoVE Video
Modulation of low-frequency-induced synaptic depression in the developing CA3-CA1 hippocampal synapses by NMDA and metabotropic glutamate receptor activation.
J. Neurophysiol.
PUBLISHED: 02-18-2009
Show Abstract
Hide Abstract
Brief test-pulse stimulation (0.2-0.05 Hz) of naïve (previously nonstimulated) developing hippocampal CA3-CA1 synapses leads to a substantial synaptic depression, explained by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) silencing. Using field recordings in hippocampal slices from P8 to P12 rats, we examined this depression of naïve synapses using more prolonged test-pulse stimulation as well as low-frequency (1 Hz) stimulation (LFS). We found that 900 stimuli produced depression during stimulation to approximately 40% of the naïve level independent of whether test-pulse stimulation or LFS was used. This result was also observed during combined blockade of N-methyl-d-aspartate/metabotropic glutamate receptors (NMDAR/mGluRs) although the depression was smaller (to approximately 55% of naïve level). Using separate blockade of either NMDARs or mGluRs, we found that this impairment of the depression resulted from the NMDAR, and not from the mGluR, blockade. In fact, during NMDAR blockade alone, depression was smaller even than that observed during combined blockade. We also found that mGluR blockade alone facilitated the LFS-induced depression. In conclusion, test-pulse stimulation produced as much depression as LFS when applied to naïve synapses even when allowing for NMDAR and mGluR activation. Our results seem in line with the notion that NMDARs and mGluRs may exert a bidirectional control on AMPA receptor recruitment to synapses.
Related JoVE Video
AMPA receptor activation causes silencing of AMPA receptor-mediated synaptic transmission in the developing hippocampus.
PLoS ONE
Show Abstract
Hide Abstract
Agonist-induced internalization of transmembrane receptors is a widespread biological phenomenon that also may serve as a mechanism for synaptic plasticity. Here we show that the agonist AMPA causes a depression of AMPA receptor (AMPAR) signaling at glutamate synapses in the CA1 region of the hippocampus in slices from developing, but not from mature, rats. This developmentally restricted agonist-induced synaptic depression is expressed as a total loss of AMPAR signaling, without affecting NMDA receptor (NMDAR) signaling, in a large proportion of the developing synapses, thus creating AMPAR silent synapses. The AMPA-induced AMPAR silencing is induced independently of activation of mGluRs and NMDARs, and it mimics and occludes stimulus-induced depression, suggesting that this latter form of synaptic plasticity is expressed as agonist-induced removal of AMPARs. Induction of long-term potentiation (LTP) rendered the developing synapses resistant to the AMPA-induced depression, indicating that LTP contributes to the maturation-related increased stability of these synapses. Our study shows that agonist binding to AMPARs is a sufficient triggering stimulus for the creation of AMPAR silent synapses at developing glutamate synapses.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.