JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Mitochondrial and chromosomal insights into karyotypic evolution of the pygmy mouse, Mus minutoides, in South Africa.
Chromosome Res.
PUBLISHED: 04-21-2010
Show Abstract
Hide Abstract
The African pygmy mouse, Mus minutoides, displays extensive Robertsonian (Rb) diversity. The two extremes of the karyotypic range are found in South Africa, with populations carrying 2n = 34 and 2n = 18. In order to reconstruct the scenario of chromosomal evolution of M. minutoides and test the performance of Rb fusions in resolving fine-scale phylogenetic relationships, we first describe new karyotypes, and then perform phylogenetic analyses by two independent methods, using respectively mitochondrial cytochrome b sequences and chromosomal rearrangements as markers. The molecular and chromosomal phylogenies were in perfect congruence, providing strong confidence both for the tree topology and the chronology of chromosomal rearrangements. The analysis supports a division of South African specimens into two clades showing opposite trends of chromosomal evolution, one containing all specimens with 34 chromosomes (karyotypic stasis) and the other grouping all mice with 18 chromosomes that have further diversified by the fixation of different Rb fusions (extensive karyotypic reshuffling). The results confirm that Rb fusions are by far the predominant rearrangement in M. minutoides but strongly suggest that recurrent whole-arm reciprocal translocations have also shaped this genome.
Related JoVE Video
A novel sex determination system in a close relative of the house mouse.
Proc. Biol. Sci.
PUBLISHED: 12-09-2009
Show Abstract
Hide Abstract
Therian mammals have an extremely conserved XX/XY sex determination system. A limited number of mammal species have, however, evolved to escape convention and present aberrant sex chromosome complements. In this study, we identified a new case of atypical sex determination in the African pygmy mouse Mus minutoides, a close evolutionary relative of the house mouse. The pygmy mouse is characterized by a very high proportion of XY females (74%, n = 27) from geographically widespread Southern and Eastern African populations. Sequencing of the high mobility group domain of the mammalian sex determining gene Sry, and karyological analyses using fluorescence in situ hybridization and G-banding data, suggest that the sex reversal is most probably not owing to a mutation of Sry, but rather to a chromosomal rearrangement on the X chromosome. In effect, two morphologically different X chromosomes were identified, one of which, designated X*, is invariably associated with sex-reversed females. The asterisk designates the still unknown mutation converting X*Y individuals into females. Although relatively still unexplored, such an atypical sex chromosome system offers a unique opportunity to unravel new genetic interactions involved in the initiation of sex determination in mammals.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.