JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Strategic use of antimalarial drugs that block falciparum malaria parasite transmission to mosquitoes to achieve local malaria elimination.
Parasitol. Res.
PUBLISHED: 09-04-2014
Show Abstract
Hide Abstract
The ultimate aim of malaria chemotherapy is not only to treat symptomatic infection but also to reduce transmission potential. With the absence of clinically proven vaccines, drug-mediated blocking of malaria transmission gains growing interest in the research agenda for malaria control and elimination. In addition to the limited arsenal of antimalarials available, the situation is further complicated by the fact that most commonly used antimalarials are being extensively resisted by the parasite and do not assist in blocking its transmission to vectors. Most antimalarials do not exhibit gametocytocidal and/ or sporontocidal activity against the sexual stages of Plasmodium falciparum but may even enhance gametocytogenesis and gametocyte transmissibility. Artemisinin derivatives and 8-aminoquinolines are useful transmission-blocking antimalarials whose optimal actions are on different stages of gametocytes. Transmission control interventions that include gametocytocides covering the spectrum of gametocyte development should be used to reduce and, if possible, stop transmission and infectivity of gametocytes to mosquitoes. Potent gametocytocidal drugs could also help deter the spread of antimalarial drug resistance. Novel proof-of-concept compounds with gametocytocidal activity, such as trioxaquines, synthetic endoperoxides, and spiroindolone, should be further tested for possible clinical utility before investigating the possibility of integrating them in transmission-reducing interventions. Strategic use of potent gametocytocides at appropriate timing with artemisinin-based combination therapies should be given attention, at least, in the short run. This review highlights the role that antimalarials could play in blocking gametocyte transmission and infectivity to mosquitoes and, hence, in reducing the potential of falciparum malaria transmissibility and drug resistance spread.
Related JoVE Video
A modeling approach to investigate epizootic outbreaks and enzootic maintenance of Rift Valley fever virus.
Bull. Math. Biol.
PUBLISHED: 08-08-2014
Show Abstract
Hide Abstract
We propose a mathematical model to investigate the transmission dynamics of Rift Valley fever (RVF) virus among ruminants. Our findings indicate that in endemic areas RVF virus maintains at a very low level among ruminants after outbreaks and subsequent outbreaks may occur when new susceptible ruminants are recruited into endemic areas or abundant numbers of mosquitoes emerge when herd immunity decreases. Many factors have been shown to have impacts on the severity of RVF outbreaks; a higher probability of death due to RVF among ruminants, a higher mosquito:ruminant ratio, or a shorter lifespan of animals can amplify the magnitude of the outbreaks; vaccination helps to reduce the magnitude of RVF outbreaks and the loss of animals efficiently, and the maximum vaccination effort (a high vaccination rate and a larger number of vaccinated animals) is recommended before the commencement of an outbreak but can be reduced later during the enzootic.
Related JoVE Video
Ecological niche and potential distribution of Anopheles arabiensis in Africa in 2050.
Malar. J.
PUBLISHED: 05-27-2014
Show Abstract
Hide Abstract
The future distribution of malaria in Africa is likely to be much more dependent on environmental conditions than the current distribution due to the effectiveness of indoor and therapeutic anti-malarial interventions, such as insecticide-treated nets (ITNs), indoor residual spraying for mosquitoes (IRS), artemisinin-combination therapy (ACT), and intermittent presumptive treatment (IPT). Future malaria epidemiology is therefore expected to be increasingly dominated by Anopheles arabiensis, which is the most abundant exophagic mosquito competent to transmit Plasmodium falciparum and exhibits a wide geographic range.
Related JoVE Video
Expanding Integrated Vector Management to promote healthy environments.
Trends Parasitol.
PUBLISHED: 05-20-2014
Show Abstract
Hide Abstract
Integrated Vector Management (IVM) strategies are intended to protect communities from pathogen transmission by arthropods. These strategies target multiple vectors and different ecological and socioeconomic settings, but the aggregate benefits of IVM are limited by the narrow focus of its approach; IVM strategies aim only to control arthropod vectors. We argue that IVM should encompass environmental modifications at early stages - for instance, infrastructural development and sanitation services - to regulate not only vectors but also nuisance biting arthropods. An additional focus on nuisance biting arthropods will improve public health and quality of life and minimize social-disparity issues fostered by pests. Optimally, IVM could incorporate environmental awareness and promotion of control methods proactively to reduce threats of serious pest situations.
Related JoVE Video
Body size, blood feeding activity, and fecundity of Psorophora howardii, Psorophora ciliata, and Psorophora ferox (Diptera: Culicidae).
J. Med. Entomol.
PUBLISHED: 04-15-2014
Show Abstract
Hide Abstract
Field-collected female Psorophora howardii (Coquillett), Psorophora ciliate (F.), and Psorophora ferox (Humboltd) mosquitoes were tested in laboratory conditions to measure body size, blood engorgement duration, bloodmeal size, fecundity, and egg morphology. Mean bloodmeal size was significantly different among the three species of mosquitoes, whereas there was no difference in blood engorgement duration. Mean body weights and wing lengths of Ps. howardii and Ps. ciliata were significantly greater than Ps.ferox. Seven days after bloodmeals, oviposition rates for Ps. howardii, Ps. ciliata, and Ps.ferox were 18.8, 56.2, and 0%, respectively. The mean number of total eggs produced per female for the three species was 59, 81, and 73, respectively. Mean egg lengths of Ps. howardii and Ps. ciliata were significantly greater than Ps.ferox, and egg diameters for each of the three species were significantly different from one another. Length per diameter ratios of Ps. howardii and Ps. ciliata were significantly smaller than Ps. ferox. Bloodmeal size was positively related to body weight, but not related to blood engorgement duration, and the total egg number was positively related to bloodmeal size.
Related JoVE Video
Modeling the distribution of the West Nile and Rift Valley Fever vector Culex pipiens in arid and semi-arid regions of the Middle East and North Africa.
Parasit Vectors
PUBLISHED: 04-11-2014
Show Abstract
Hide Abstract
The Middle East North Africa (MENA) region is under continuous threat of the re-emergence of West Nile virus (WNV) and Rift Valley Fever virus (RVF), two pathogens transmitted by the vector species Culex pipiens. Predicting areas at high risk for disease transmission requires an accurate model of vector distribution, however, most Cx. pipiens distribution modeling has been confined to temperate, forested habitats. Modeling species distributions across a heterogeneous landscape structure requires a flexible modeling method to capture variation in mosquito response to predictors as well as occurrence data points taken from a sufficient range of habitat types.
Related JoVE Video
Response of the sand fly Phlebotomuspapatasi to visual, physical and chemical attraction features in the field.
Acta Trop.
PUBLISHED: 04-10-2014
Show Abstract
Hide Abstract
In this study, 27 CDC traps were modified with various attractive features and compared with a CDC trap with no light source or baits to evaluate the effects on attraction to Phlebotomus papatasi (Scopoli) north of the Dead Sea near Jericho. Attractive features included CO2, lights, colored trap bodies, heat, moisture, chemical lures and different combinations of the same. Traps were placed 20m apart and rotated from one trap location to the next after 24h trapping periods. The most significant attractive feature was CO2, which attracted more sand flies than any other feature evaluated. Ultraviolet light was the next most attractive feature, followed by incandescent light. When evaluated alone, black or white trap bodies, heat and moisture, all influenced trap catch but effects were greater when these attractive features were used together. The results of this study suggest that traps with CO2 and UV light could be used in batteries as control interventions if suitable CO2 sources become available.
Related JoVE Video
Vector control programs in Saint Johns County, Florida and Guayas, Ecuador: successes and barriers to integrated vector management.
BMC Public Health
PUBLISHED: 01-13-2014
Show Abstract
Hide Abstract
Vector-borne diseases (VBDs) and mosquito control programs (MCPs) diverge in settings and countries, and lead control specialists need to be aware of the most effective control strategies. Integrated Vector Management (IVM) strategies, once implemented in MCPs, aim to reduce cost and optimize protection of the populations against VBDs. This study presents a strengths, weaknesses, opportunities, and threats (SWOT) analysis to compare IVM strategies used by MCPs in Saint Johns County, Florida and Guayas, Ecuador. This research evaluates MCPs strategies to improve vector control activities.
Related JoVE Video
Attractive toxic sugar baits: control of mosquitoes with the low-risk active ingredient dinotefuran and potential impacts on nontarget organisms in morocco.
Environ. Entomol.
PUBLISHED: 12-17-2013
Show Abstract
Hide Abstract
We evaluated the efficacy of attractive toxic sugar baits (ATSB) in the laboratory and field with the low-risk active ingredient dinotefuran against mosquito populations. Preliminary laboratory assays indicated that dinotefuran in solution with the sugar baits was ingested and resulted in high mortality of female Culex quinquefasciatus Say and Aedes aegypti Linnaeus. Field studies demonstrated >70% reduction of mosquito populations at 3 wk post-ATSB application. Nontarget feeding of seven insect orders-Hymenoptera, Lepidoptera, Coleoptera, Diptera, Hemiptera, Orthoptera, and Neuroptera-was evaluated in the field after application of attractive sugar baits (ASB) on vegetation by dissecting the guts and searching for food dye with a dissecting microscope. Nontargets were found stained with ASB 0.9% of the time when the application was applied on green nonflowering vegetation. Only two families were significantly impacted by the ASB application: Culicidae (mosquitoes) and Chironomidae (nonbiting midges) of the order Diptera. Pollinators of the other insect orders were not significantly impacted. No mortality was observed in the laboratory studies with predatory nontargets, wolf spiders or ground beetles, after feeding for 3 d on mosquitoes engorged on ATSB applied to vegetation. Overall, this novel control strategy had little impact on nontarget organisms, including pollinators and beneficial insects, and was effective at controlling mosquito populations, further supporting the development of ATSB for commercial use.
Related JoVE Video
Resting and energy reserves of Aedes albopictus collected in common landscaping vegetation in St. Augustine, Florida.
J. Am. Mosq. Control Assoc.
PUBLISHED: 11-09-2013
Show Abstract
Hide Abstract
The resting behavior of Aedes albopictus was evaluated by aspirating diurnal resting mosquitoes from common landscape vegetation in residential communities in St. Augustine, FL. Energy reserves of the resting mosquitoes were analyzed to determine if there was a correlation between mosquito resting habitat and energy accumulation. Six species of plants were selected and 9 collections of resting mosquitoes were aspirated from each plant using a modified John W. Hock backpack aspirator during June and July 2012. Eight mosquito species were collected, with Ae. albopictus representing 74% of the overall collection. The number of Ae. albopictus collected varied significantly with the species of vegetation. When comparing the vegetation and abundance of resting mosquitoes, the highest percentages of Ae. albopictus were collected resting on Ruellia brittoniana (Mexican petunia), Asplenium platyneuron (fern), Gibasis geniculate (Tahitian bridal veil), followed by Plumba goauriculata (plumbago), Setcreasea pallida (purple heart), and Hibiscus tiliaceus (hibiscus). There were significant differences in lipid and glycogen accumulation based on type of vegetation Ae. albopictus was found resting in. Resting mosquitoes sugar reserves were not influenced by species of vegetation. However, there was an overall correlation between vegetation that serves as a resting habitat and energy reserve accumulation. The results of our study demonstrate the potential to target specific vegetation for control of diurnal resting mosquitoes.
Related JoVE Video
Ecology and behavior of Anopheles arabiensis in relation to agricultural practices in central Kenya.
J. Am. Mosq. Control Assoc.
PUBLISHED: 11-09-2013
Show Abstract
Hide Abstract
Ecological changes associated with anthropogenic ecosystem disturbances can influence human risk of exposure to malaria and other vector-borne infectious diseases. This study in Mwea, Kenya, investigated the pattern of insecticide use in irrigated and nonirrigated agroecosystems and association with the density, survival, and blood-feeding behavior of the malaria vector Anopheles arabiensis. The parity rates of adult An. arabiensis from randomly selected houses were determined by examining their ovaries for tracheal distension, and polymerase chain reaction was used to identify the host blood meals. In addition, structured questionnaires were used to generate data on insecticide use. Anopheles arabiensis densities were highest in irrigated rice agroecosystems, intermediate in irrigated French beans agroecosystems, and lowest in the nonirrigated agroecosystem. Anopheles arabiensis adult survivorship was significantly lower in irrigated rice agroecosystems than in irrigated French beans agroecosystems. The human blood index (HBI) was significantly higher in the nonirrigated agroecosystem compared to irrigated agroecosystems. Moreover, there was marked variation in HBI among villages in irrigated agroecosystems with significantly lower HBI in Kangichiri and Mathangauta compared to Kiuria, Karima, and Kangai. The proportion of mosquitoes with mixed blood meals varied among villages ranging from 0.25 in Kangichiri to 0.83 in Kiuria. Sumithion, dimethoate, and alpha cypermethrin were the most commonly used insecticides. The 1st was used mostly in irrigated rice agroecosystems, and the last 2 were used mostly in irrigated French beans agroecosystems. These findings indicate that agricultural practices may influence the ecology and behavior of malaria vectors and ultimately the risk of malaria transmission.
Related JoVE Video
Temporal and micro-spatial heterogeneity in the distribution of Anopheles vectors of malaria along the Kenyan coast.
Parasit Vectors
PUBLISHED: 06-18-2013
Show Abstract
Hide Abstract
The distribution of anopheline mosquitoes is determined by temporally dynamic environmental and human-associated variables, operating over a range of spatial scales. Macro-spatial short-term trends are driven predominantly by prior (lagged) seasonal changes in climate, which regulate the abundance of suitable aquatic larval habitats. Micro-spatial distribution is determined by the location of these habitats, proximity and abundance of available human bloodmeals and prevailing micro-climatic conditions. The challenge of analysing-in a single coherent statistical framework-the lagged and distributed effect of seasonal climate changes simultaneously with the effects of an underlying hierarchy of spatial factors has hitherto not been addressed.
Related JoVE Video
Quantifying the mosquitos sweet tooth: modelling the effectiveness of attractive toxic sugar baits (ATSB) for malaria vector control.
Malar. J.
PUBLISHED: 05-27-2013
Show Abstract
Hide Abstract
Current vector control strategies focus largely on indoor measures, such as long-lasting insecticide treated nets (LLINs) and indoor residual spraying (IRS); however mosquitoes frequently feed on sugar sources outdoors, inviting the possibility of novel control strategies. Attractive toxic sugar baits (ATSB), either sprayed on vegetation or provided in outdoor bait stations, have been shown to significantly reduce mosquito densities in these settings.
Related JoVE Video
Effect of predation on Anopheles larvae by five sympatric insect families in coastal Kenya.
J Vector Borne Dis
PUBLISHED: 05-25-2013
Show Abstract
Hide Abstract
The use of insecticides to eliminate mosquito larvae from ground pools may disrupt atural predator-induced control of mosquito larvae. Detrimental effects on predators may be directly from toxicity or by eliminating prey organisms. Identifying the principal predators responsible for mosquito suppression is needed to select non-target indicator species for insecticide studies. In this study, we sought to determine trophic level interactions between predators and immature stages of Anopheles gambiae Giles mosquitoes under experimental conditions in the coastal region of Kenya.
Related JoVE Video
Evaluation of a new formulation of permethrin applied by water-based thermal fogger against Aedes albopictus in residential communities in St. Augustine, Florida.
J. Am. Mosq. Control Assoc.
PUBLISHED: 05-22-2013
Show Abstract
Hide Abstract
The efficacy of a new water-based formulation containing 30% permethrin and 30% piperonyl butoxide against laboratory and field populations of Aedes albopictus was evaluated in the laboratory, in semifield experiments, and in residential communities in St. Augustine, FL. In laboratory bottle bioassay, 3 doses (3.18 g/ml, 2.26 g/ml, and 1.59 g/ml) of the permethrin product resulted in 100% mortality of adult mosquitoes in 1 h. In semifield experiments, the insecticide sprayed by the water-based thermal fogger at 381.5 ml/min application rate caused 99% mortality of caged mosquitoes. At 24 h posttreatment in the residential communities, there was 79% and 83% reduction of the natural population (numbers) of adult Ae. albopictus and all adult mosquito species collected in BioGent (BG) sentinel traps baited with a BG lure in the 3 test sites, respectively. There was also a 79% reduction in the number of Ae. albopictus eggs collected in ovitrap used in the treated sites. The reductions were significant for adult Ae. albopictus and all mosquito species at 1 wk posttreatment, but no significant reduction was observed at 2-3 wk posttreatment. These findings demonstrate the effectiveness of the new water-based permethrin product against Ae. albopictus populations in residential communities.
Related JoVE Video
Evaluation of attractive toxic sugar bait (ATSB)-Barrier for control of vector and nuisance mosquitoes and its effect on non-target organisms in sub-tropical environments in Florida.
Acta Trop.
PUBLISHED: 05-21-2013
Show Abstract
Hide Abstract
The efficacy of attractive toxic sugar baits (ATSB) with the active ingredient eugenol, an Environmental Protection Agency exempt compound, was evaluated against vector and nuisance mosquitoes in both laboratory and field studies. In the laboratory, eugenol combined in attractive sugar bait (ASB) solution provided high levels of mortality for Aedes aegypti, Culex quinquefasciatus, and Anopheles quadrimaculatus. Field studies demonstrated significant control: >70% reduction for Aedes atlanticus, Aedes. infirmatus, and Culex nigripalpus and >50% reduction for Anopheles crucians, Uranotaenia sapphirina, Culiseta melanura, and Culex erraticus three weeks post ATSB application. Furthermore, non-target feeding of six insect orders, Hymenoptera, Lepidoptera, Coleoptera, Diptera, Hemiptera, and Orthoptera, was evaluated in the field after application of a dyed-ASB to flowering and non-flowering vegetation. ASB feeding (staining) was determined by dissecting the guts and searching for food dye with a dissecting microscope. The potential impact of ATSB on non-targets, applied on green non-flowering vegetation was low for all non-target groups (0.9%). However, application of the ASB to flowering vegetation resulted in significant staining of the non-target insect orders. This highlights the need for application guidelines to reduce non-target effects. No mortality was observed in laboratory studies with predatory non-targets, spiders, praying mantis, or ground beetles, after feeding for three days on mosquitoes engorged on ATSB. Overall, our laboratory and field studies support the use of eugenol as an active ingredient for controlling important vector and nuisance mosquitoes when used as an ATSB toxin. This is the first study demonstrating effective control of anophelines in non-arid environments which suggest that even in highly competitive sugar rich environments this method could be used for control of malaria in Latin American countries.
Related JoVE Video
Survivorship of adult Aedes albopictus (Diptera: Culicidae) feeding on indoor ornamental plants with no inflorescence.
Parasitol. Res.
PUBLISHED: 03-11-2013
Show Abstract
Hide Abstract
The international trade of lucky bamboo (Dracaena sanderiana [Asparagaceae]) is responsible for certain introductions of the exotic species Aedes albopictus (Skuse) in California and the Netherlands. Understanding the association of this species with lucky bamboo and other ornamental plants is important from a public health standpoint. The aim of this study was to investigate the importance of indoor ornamental plants as sugar sources for adult A. albopictus. If exposed to D. sanderiana, bromeliad (Guzmania spp. hybrid [Bromeliaceae]), Moses-in-the-cradle (Rhoeo spathacea [Commelinaceae]), 10 % sucrose solution, and a negative water control as the only nutrient source, adult female A. albopictus mean survival time was 12, 7, 6, 15, and 4 days, respectively. Mean survival times for adult males were not significantly different (P?>?0.05) from the females and were 10, 7, 6, 14, and 3 days, respectively. Combined male and female survival times were not significantly different on lucky bamboo compared to survival times on a 10 % sucrose control. Based on our findings, A. albopictus can readily survive long enough to complete a gonotrophic cycle and potentially complete the extrinsic incubation period for many arboviruses when only provided access to lucky bamboo plants or possibly other common ornamentals. Vector control professionals should be aware of potential in-home infestations and public health concerns associated with mosquito breeding and plant tissue feeding on ornamental plants.
Related JoVE Video
Evaluation of boric acid sugar baits against Aedes albopictus (Diptera: Culicidae) in tropical environments.
Parasitol. Res.
PUBLISHED: 01-18-2013
Show Abstract
Hide Abstract
Attractive toxic sugar bait (active ingredient, 1% boric acid) was evaluated against Aedes albopictus Skuse populations in the laboratory, semi-field trials, and field trials in residential communities in St. Augustine, Florida. Laboratory evaluations of boric acid sugar baits applied to the plant Pentas lanceolata (Rubiaceae) demonstrated 100 and 92% mortality of A. albopictus at day 7 and 14, respectively. A semi-field study evaluating the bait application to the upperside or topside of leaves resulted in no significant difference on mortality (P>0.05). Overall combined top and bottom boric acid sugar bait application mortality at day 7 was 95% based on leaf bioassays. Field application of the boric acid sugar baits significantly (P<0.05) decreased adult A. albopictus populations up to day 21 post-treatment compared to the pre-treatment population numbers. A significant reduction in oviposition was demonstrated both at day 7 and 14 post-application (P=0.001) as monitored by ovitraps. Attractive toxic sugar bait application in tropical environments demonstrated efficacy, persistence, and feasibility in controlling A. albopictus populations.
Related JoVE Video
Modeling the spatial spread of Rift Valley fever in Egypt.
Bull. Math. Biol.
PUBLISHED: 01-17-2013
Show Abstract
Hide Abstract
Rift Valley fever (RVF) is a severe viral zoonosis in Africa and the Middle East that harms both human health and livestock production. It is believed that RVF in Egypt has been repeatedly introduced by the importation of infected animals from Sudan. In this paper, we propose a three-patch model for the process by which animals enter Egypt from Sudan, are moved up the Nile, and then consumed at population centers. The basic reproduction number for each patch is introduced and then the threshold dynamics of the model are established. We simulate an interesting scenario showing a possible explanation of the observed phenomenon of the geographic spread of RVF in Egypt.
Related JoVE Video
How much vector control is needed to achieve malaria elimination?
Trends Parasitol.
PUBLISHED: 01-09-2013
Show Abstract
Hide Abstract
Roll Back Malarias ambitious goals for global malaria reduction by 2015 represent a dilemma for National Malaria Control Programs (NMCPs) that are still far from malaria elimination. Current vector control efforts by NMCPs generally fall short of their potential, leaving many NMCPs wondering how much vector control it will take to achieve malaria elimination. We believe the answer is detailed in the relationships between the entomological inoculation rate (EIR) and four epidemiological measures of malaria in humans. To achieve adequate vector control, NMCPs must evaluate EIRs to identify problematic foci of transmission and reduce annual EIRs to less than one infectious bite per person.
Related JoVE Video
Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years.
Malar. J.
PUBLISHED: 01-06-2013
Show Abstract
Hide Abstract
Over the past 20 years, numerous studies have investigated the ecology and behaviour of malaria vectors and Plasmodium falciparum malaria transmission on the coast of Kenya. Substantial progress has been made to control vector populations and reduce high malaria prevalence and severe disease. The goal of this paper was to examine trends over the past 20 years in Anopheles species composition, density, blood-feeding behaviour, and P. falciparum sporozoite transmission along the coast of Kenya.
Related JoVE Video
Mosquito species abundance and diversity in Malindi, Kenya and their potential implication in pathogen transmission.
Parasitol. Res.
PUBLISHED: 05-10-2011
Show Abstract
Hide Abstract
Mosquitoes (Diptera: Culicidae) are important vectors of human disease-causing pathogens. Mosquitoes are found both in rural and urban areas. Deteriorating infrastructure, poor access to health, water and sanitation services, increasing population density, and widespread poverty contribute to conditions that modify the environment, which directly influences the risk of disease within the urban and peri-urban ecosystem. The objective of this study was to evaluate the mosquito vector abundance and diversity in urban, peri-urban, and rural strata in Malindi along the Kenya coast. The study was conducted in the coastal district of Malindi between January and December 2005. Three strata were selected which were described as urban, peri-urban, and rural. Sampling was done during the wet and dry seasons. Sampling in the wet season was done in the months of April and June to cover the long rainy season and in November and December to cover the short rainy season, while the dry season was between January and March and September and October. Adult mosquito collection was done using Pyrethrum Spray Collection (PSC) and Centers for Disease Control and Prevention (CDC) light traps inside houses and specimens were identified morphologically. In the three strata (urban, peri-urban, and rural), 78.5% of the total mosquito (n?=?7,775) were collected using PSC while 18.1% (n?=?1,795) were collected using the CDC light traps. Using oviposition traps, mosquito eggs were collected and reared in the insectary which yielded 329 adults of which 83.8% (n?=?276) were Aedes aegypti and 16.2% (n?=?53) were Culex quinquefasciatus. The mosquito distribution in the three sites varied significantly in each collection site. Anopheles gambiae, Anopheles funestus and Anopheles coustani were predominant in the rural stratum while C. quinquefasciatus was mostly found in urban and peri-urban strata. However, using PSC and CDC light trap collection techniques, A. aegypti was only found in urban strata. In the three strata, mosquitoes were mainly found in high numbers during the wet season. Further, A. gambiae, C. quinquefasciatus, and A. aegypti mosquitoes were found occurring together inside the houses. This in turn exposes the inhabitants to an array of mosquito-borne diseases including malaria, bancroftian filariasis, and arboviruses (dengue fever, Yellow fever, Rift Valley fever, Chikungunya fever, and West Nile Virus). In conclusion, our findings provide useful information for the design of integrated mosquito and disease control programs in East African environments.
Related JoVE Video
Malaria transmission blocking immunity and sexual stage vaccines for interrupting malaria transmission in Latin America.
Mem. Inst. Oswaldo Cruz
PUBLISHED: 04-06-2011
Show Abstract
Hide Abstract
Malaria is a vector-borne disease that is considered to be one of the most serious public health problems due to its high global mortality and morbidity rates. Although multiple strategies for controlling malaria have been used, many have had limited impact due to the appearance and rapid dissemination of mosquito resistance to insecticides, parasite resistance to multiple antimalarial drug, and the lack of sustainability. Individuals in endemic areas that have been permanently exposed to the parasite develop specific immune responses capable of diminishing parasite burden and the clinical manifestations of the disease, including blocking of parasite transmission to the mosquito vector. This is referred to as transmission blocking (TB) immunity (TBI) and is mediated by specific antibodies and other factors ingested during the blood meal that inhibit parasite development in the mosquito. These antibodies recognize proteins expressed on either gametocytes or parasite stages that develop in the mosquito midgut and are considered to be potential malaria vaccine candidates. Although these candidates, collectively called TB vaccines (TBV), would not directly stop malaria from infecting individuals, but would stop transmission from infected person to non-infected person. Here, we review the progress that has been achieved in TBI studies and the development of TBV and we highlight their potential usefulness in areas of low endemicity such as Latin America.
Related JoVE Video
Characteristics of resting habitats of adult Phlebotomus papatasi in Neot Hakikar, an oasis south of the Dead Sea.
J. Vector Ecol.
PUBLISHED: 03-04-2011
Show Abstract
Hide Abstract
Knowledge about diurnal resting sites of sand flies is scanty and often anecdotal. In this study, we explored a part natural - part agricultural oasis in Neot Hakikar, Israel, looking for sand fly resting sites. To achieve this, we developed a new type of emergence trap. Sixteen types of microhabitats were examined and in seven of these, we also investigated the rodent burrows. We found that Phlebotomus papatasi showed clear preferences for resting sites characterized by vegetation cover, type of vegetation, and the presence of a mulch layer. In habitats with bare soil and little shade, few or no resting sand flies were found outside rodent burrows. Apart from the trunks of date trees, most resting P. papatasi were found in disturbed habitats, especially in large piles of organic waste and in a plowed field. Though catches from rodent burrow exits were always higher than from the nearby ground, it is safe to assume that the few burrows in this vast oasis do not play an important role for breeding and resting of P. papatasi. It also appears that disturbing the natural environment further increases the already considerable sand fly population.
Related JoVE Video
Prospects for malaria elimination in non-Amazonian regions of Latin America.
Acta Trop.
PUBLISHED: 02-22-2011
Show Abstract
Hide Abstract
Latin America contributes 1-1.2 million clinical malaria cases to the global malaria burden of about 300 million per year. In 21 malaria endemic countries, the population at risk in this region represents less than 10% of the total population exposed worldwide. Factors such as rapid deforestation, inadequate agricultural practices, climate change, political instability, and both increasing parasite drug resistance and vector resistance to insecticides contribute to malaria transmission. Recently, several malaria endemic countries have experienced a significant reduction in numbers of malaria cases. This is most likely due to actions taken by National Malaria Control Programs (NMCP) with the support from international funding agencies. We describe here the research strategies and activities to be undertaken by the Centro Latino Americano de Investigación en Malaria (CLAIM), a new research center established for the non-Amazonian region of Latin America by the National Institute of Allergy and Infectious Diseases (NIAID). Throughout a network of countries in the region, initially including Colombia, Guatemala, Panama, and Peru, CLAIM will address major gaps in our understanding of changing malaria epidemiology, vector biology and control, and clinical malaria mainly due to Plasmodium vivax. In close partnership with NMCPs, CLAIM seeks to conduct research on how and why malaria is decreasing in many countries of the region as a basis for developing and implementing new strategies that will accelerate malaria elimination.
Related JoVE Video
Geographic profiling as a novel spatial tool for targeting infectious disease control.
Int J Health Geogr
PUBLISHED: 02-14-2011
Show Abstract
Hide Abstract
Geographic profiling is a statistical tool originally developed in criminology to prioritise large lists of suspects in cases of serial crime. Here, we use two data sets--one historical and one modern--to show how it can be used to locate the sources of infectious disease.
Related JoVE Video
Characterization of Plasmodium vivax transmission-blocking activity in low to moderate malaria transmission settings of the Colombian Pacific coast.
Am. J. Trop. Med. Hyg.
PUBLISHED: 02-05-2011
Show Abstract
Hide Abstract
Malaria infection induces antibodies capable of suppressing the infectivity of gametocytes and gametes, however, little is known about the duration of the antibody response, the parasite specificity, and the role of complement. We report the analyses of the transmission-blocking (TB) activity of sera collected from 105 Plasmodium vivax-infected and 44 non-infected individuals from a malaria endemic region of Colombia, using a membrane feeding assay in Anopheles albimanus mosquitoes. In infected donors we found that TB activity was antibody dose dependent (35%), lasted for 2-4 months after infection, and in 70% of the cases different P. vivax wild isolates displayed differential susceptibility to blocking antibodies. Additionally, in a number of assays TB was complement-dependent. Twenty-seven percent of non-infected individuals presented TB activity that correlated with antibody titers. Studies here provide preliminary data on factors of great importance for further work on the development of TB vaccines.
Related JoVE Video
Mosquito ingestion of antibodies against mosquito midgut microbiota improves conversion of ookinetes to oocysts for Plasmodium falciparum, but not P. yoelii.
Parasitol. Int.
PUBLISHED: 02-04-2011
Show Abstract
Hide Abstract
The mosquito midgut is a site of complex interactions between the mosquito, the malaria parasite and the resident bacterial flora. In laboratory experiments, we observed significant enhancement of Plasmodium falciparum oocyst production when Anopheles gambiae (Diptera: Culicidae) mosquitoes were membrane-fed on infected blood containing gametocytes from in vitro cultures mixed with sera from rabbits immunized with A. gambiae midguts. To identify specific mechanisms, we evaluated whether the immune sera was interfering with the usual limiting activity of gram-negative bacteria in An. gambiae midguts. Enhancement of P. falciparum infection rates occurred at some stage between the ookinete and oocyst stage and was associated with greater numbers of oocysts in mosquitoes fed on immune sera. The same immune sera did not affect the sporogonic development of P. yoelii, a rodent malaria parasite. Not only did antibodies in the immune sera recognize several types of midgut-derived gram-negative bacteria (Pseudomonas spp. and Cedecea spp.), but gentamicin provided in the sugar meal 3 days before an infectious P. falciparum blood meal mixed with immune sera eliminated the enhancing effect. These results suggest that gram-negative bacteria, which normally impair P. falciparum development between the ookinete and oocyst stage, were altered by specific anti-bacterial antibodies produced by immunizing rabbits with non-antibiotic-treated midgut lysates. Because of the differences in developmental kinetics between human and rodent malaria species, the anti-bacterial antibodies had no effect on P. yoelii because their ookinetes leave the midgut much earlier than P. falciparum and so are not influenced as strongly by resident midgut bacteria. While this study highlights the complex interactions occurring between the parasite, mosquito, and midgut microbiota, the ultimate goal is to determine the influence of midgut microbiota on Plasmodium development in anopheline midguts in malaria endemic settings.
Related JoVE Video
Malaria in selected non-Amazonian countries of Latin America.
Acta Trop.
PUBLISHED: 01-31-2011
Show Abstract
Hide Abstract
Approximately 170 million inhabitants of the American continent live at risk of malaria transmission. Although the continents contribution to the global malaria burden is small, at least 1-1.2 million malaria cases are reported annually. Sixty percent of the malaria cases occur in Brazil and the other 40% are distributed in 20 other countries of Central and South America. Plasmodium vivax is the predominant species (74.2%) followed by P. falciparum (25.7%) and P. malariae (0.1%), and no less than 10 Anopheles species have been identified as primary or secondary malaria vectors. Rapid deforestation and agricultural practices are directly related to increases in Anopheles species diversity and abundance, as well as in the number of malaria cases. Additionally, climate changes profoundly affect malaria transmission and are responsible for malaria epidemics in some regions of South America. Parasite drug resistance is increasing, but due to bio-geographic barriers there is extraordinary genetic differentiation of parasites with limited dispersion. Although the clinical spectrum ranges from uncomplicated to severe malaria cases, due to the generally low to middle transmission intensity, features such as severe anemia, cerebral malaria and other complications appear to be less frequent than in other endemic regions and asymptomatic infections are a common feature. Although the National Malaria Control Programs (NMCP) of different countries differ in their control activities these are all directed to reduce morbidity and mortality by using strategies like health promotion, vector control and impregnate bed nets among others. Recently, international initiatives such as the Malaria Control Program in Andean-country Border Regions (PAMAFRO) (implemented by the Andean Organism for Health (ORAS) and sponsored by The Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM)) and The Amazon Network for the Surveillance of Antimalarial Drug Resistance (RAVREDA) (sponsored by the Pan American Health Organization/World Health Organization (PAHO/WHO) and several other partners), have made great investments for malaria control in the region. We describe here the current status of malaria in a non-Amazonian region comprising several countries of South and Central America participating in the Centro Latino Americano de Investigación en Malaria (CLAIM), an International Center of Excellence for Malaria Research (ICEMR) sponsored by the National Institutes of Health (NIH) National Institute of Allergy and Infectious Diseases (NIAID).
Related JoVE Video
Natural plant sugar sources of Anopheles mosquitoes strongly impact malaria transmission potential.
PLoS ONE
PUBLISHED: 01-20-2011
Show Abstract
Hide Abstract
An improved knowledge of mosquito life history could strengthen malaria vector control efforts that primarily focus on killing mosquitoes indoors using insecticide treated nets and indoor residual spraying. Natural sugar sources, usually floral nectars of plants, are a primary energy resource for adult mosquitoes but their role in regulating the dynamics of mosquito populations is unclear. To determine how the sugar availability impacts Anopheles sergentii populations, mark-release-recapture studies were conducted in two oases in Israel with either absence or presence of the local primary sugar source, flowering Acacia raddiana trees. Compared with population estimates from the sugar-rich oasis, An. sergentii in the sugar-poor oasis showed smaller population size (37,494 vs. 85,595), lower survival rates (0.72 vs. 0.93), and prolonged gonotrophic cycles (3.33 vs. 2.36 days). The estimated number of females older than the extrinsic incubation period of malaria (10 days) in the sugar rich site was 4 times greater than in the sugar poor site. Sugar feeding detected in mosquito guts in the sugar-rich site was significantly higher (73%) than in the sugar-poor site (48%). In contrast, plant tissue feeding (poor quality sugar source) in the sugar-rich habitat was much less (0.3%) than in the sugar-poor site (30%). More important, the estimated vectorial capacity, a standard measure of malaria transmission potential, was more than 250-fold higher in the sugar-rich oasis than that in the sugar-poor site. Our results convincingly show that the availability of sugar sources in the local environment is a major determinant regulating the dynamics of mosquito populations and their vector potential, suggesting that control interventions targeting sugar-feeding mosquitoes pose a promising tactic for combating transmission of malaria parasites and other pathogens.
Related JoVE Video
Field experiments of Anopheles gambiae attraction to local fruits/seedpods and flowering plants in Mali to optimize strategies for malaria vector control in Africa using attractive toxic sugar bait methods.
Malar. J.
PUBLISHED: 05-10-2010
Show Abstract
Hide Abstract
Based on recent studies in Israel demonstrating that attractive toxic sugar bait (ATSB) methods can be used to decimate local anopheline and culicine mosquito populations, an important consideration is whether the same methods can be adapted and improved to attract and kill malaria vectors in Africa. The ATSB approach uses fruit or flower scent as an attractant, sugar solution as a feeding stimulant, and an oral toxin. The ATSB solutions are either sprayed on vegetation or suspended in simple bait stations, and the mosquitoes ingesting the toxic solutions are killed. As such, this approach targets sugar-feeding female and male mosquitoes. This study examines the attractiveness of African malaria vectors to local fruits/seedpods and flowering plants, key biological elements of the ATSB approach for mosquito control.
Related JoVE Video
Successful field trial of attractive toxic sugar bait (ATSB) plant-spraying methods against malaria vectors in the Anopheles gambiae complex in Mali, West Africa.
Malar. J.
PUBLISHED: 04-03-2010
Show Abstract
Hide Abstract
Based on highly successful demonstrations in Israel that attractive toxic sugar bait (ATSB) methods can decimate local populations of mosquitoes, this study determined the effectiveness of ATSB methods for malaria vector control in the semi-arid Bandiagara District of Mali, West Africa.
Related JoVE Video
Population structure of Anopheles gambiae along the Kenyan coast.
Acta Trop.
PUBLISHED: 01-25-2010
Show Abstract
Hide Abstract
In the tropics, Anopheles mosquito abundance is greatest during the wet season and decline significantly during the dry season as larval habitats shrink. Population size fluctuations between wet and dry seasons may lead to variation in distribution of specific alleles within natural Anopheles populations, and a possible effect on the population genetic structure. We used 11 microsatellite markers to examine the effect of seasonality on population genetic structure of Anopheles gambiae s.s. at two sites along the Kenyan coast. All loci were highly polymorphic with the total number of alleles for pooled samples ranging from 7 (locus ND36) to 21 (locus AG2H46). Significant estimates of genetic differentiation between sites and seasons were observed suggesting the existence of spatio-temporal subpopulation structuring. Genetic bottleneck analysis showed no indication of excess heterozygosity in any of the populations. These findings suggest that along the Kenyan coast, seasonality and site specific ecological factors can alter the genetic structure of A. gambiae s.s. populations.
Related JoVE Video
Urban structure and dengue fever in Puntarenas, Costa Rica.
Singap J Trop Geogr
PUBLISHED: 08-14-2009
Show Abstract
Hide Abstract
Dengue is currently the most important arboviral disease globally and is usually associated with built environments in tropical areas. Remotely sensed information can facilitate the study of urban mosquito-borne diseases by providing multiple temporal and spatial resolutions appropriate to investigate urban structure and ecological characteristics associated with infectious disease. In this study, coarse, medium and fine resolution satellite imagery (Moderate Resolution Imaging Spectrometer, Advanced Spaceborne Thermal Emission and Reflection Radiometer and QuickBird respectively) and ground-based data were analyzed for the Greater Puntarenas area, Costa Rica for the years 2002-04. The results showed that the mean normalized difference vegetation index (NDVI) was generally higher in the localities with lower incidence of dengue fever during 2002, although the correlation was statistically significant only in the dry season (r=-0.40; p=0.03). Dengue incidence was inversely correlated to built area and directly correlated with tree cover (r=0.75, p=0.01). Overall, the significant correlations between dengue incidence and urban structural variables (tree cover and building density) suggest that properties of urban structure may be associated with dengue incidence in tropical urban settings.
Related JoVE Video
Expression of metallothionein and alpha-tubulin in heavy metal-tolerant Anopheles gambiae sensu stricto (Diptera: Culicidae).
Ecotoxicol. Environ. Saf.
PUBLISHED: 08-08-2009
Show Abstract
Hide Abstract
Anopheles mosquitoes have been shown to adapt to heavy metals in their natural habitats. In this study we explored the possibility of using Anopheles gambiae sensu stricto as bio-reporters for environmental heavy metal pollution through expressions of their metal-responsive metallothionein and alpha-tubulin genes. The study was undertaken with third instar larvae after selection by cadmium, copper, or lead at LC(30) through five successive generations. Expression levels were determined in the 5th generation by semi-quantitative RT-PCR on the experimental and control populations. The data were analyzed using one-way ANOVA. The highest metallothionein (F(3,11)=4.574, P=0.038) and alpha-tubulin (F(3,11)=12.961, P=0.002) responses were observed in cadmium-tolerant treatments. There was significantly higher expression of metallothionein in cadmium or copper treatments relative to the control (P=0.012), and in cadmium than in lead treatments (P=0.044). Expressions of alpha-tubulin were significantly higher in cadmium than in control treatments (P=0.008). These results demonstrate the capacity of An. gambiae s.s. to develop tolerance to increased levels of heavy metal challenge. The results also confirm the potential of heavy metal-responsive genes in mosquitoes as possible bio-indicators of heavy metal environmental pollution. How the tolerance and expressions relate to An. gambiae s.s. fitness and vectorial capacity in the environment remains to be elucidated.
Related JoVE Video
Diversity cascades and malaria vectors.
J. Med. Entomol.
PUBLISHED: 06-06-2009
Show Abstract
Hide Abstract
The interactions between predator diversity and primary consumer abundance can include direct effects and indirect, cascading effects. Understanding these effects on immature Anopheles mosquitoes is important in sub-Saharan Africa, where most cases of malaria occur. Aquatic predators and immature mosquitoes were collected from shallow pools of varying age previously excavated by brickmakers in the western highlands of Kenya. Path analysis showed an indirect negative effect of habitat age on An. gambiae (Giles, 1902) mediated by effects on predator diversity. Disturbance resets habitats to an earlier successional stage, diminishing predator diversity and increasing An. gambiae populations. The increase in vector abundance as a result of reduced predator diversity highlights the public health value in conserving native insect diversity.
Related JoVE Video
Urban mosquito species (Diptera: Culicidae) of dengue endemic communities in the Greater Puntarenas area, Costa Rica.
Rev. Biol. Trop.
PUBLISHED: 04-02-2009
Show Abstract
Hide Abstract
Field studies were conducted to determine the mosquito species richness in the urban area of Greater Puntarenas in Costa Rica. Two cross-sectional entomological surveys were performed in seven localities of Puntarenas: one survey was performed during the wet season and the other during the dry season. The sections evaluated were determined by applying a stratified cluster sampling method using satellite imagery, and a sample of 26 cells (100 x 100m) was selected for the study. The number of cells per locality was proportional to the area of each locality. The presence of mosquito larvae and pupae in water-filled artificial and natural containers was determined in each cell. Infestation was expressed as a diversity index per type of container (Ii). Eight types of larvae were identified (Aedes aegypti, Culex quinquefasciatus, Culex interrogator, Culex nigripalpus, Culex corniger, Culex tarsalis, Limatus durhamii and Toxorhynchites theobaldi) and in two cases it was only possible to identify the genus (Culex sp. and Uranotaenia sp.). A. aegypti was the most common species followed by C. quinquefascitus. Diversity of wet environments can explain the co-occurrence of various culicid species in some localities. Although A. aegypti is the only documented disease vector in the area, C quinquefasciatus, C nigripalpus, and the other species of Culex could be considered potential vectors of other pathogens. The presence and ecology of all mosquito species should be studied to optimize surveillance and prevention of dengue and to prevent the emergence of other mosquito-transmitted diseases.
Related JoVE Video
Bed bugs in healthcare settings.
Infect Control Hosp Epidemiol
Show Abstract
Hide Abstract
Infestations caused by bed bugs have resurfaced during the past decade across all continents. Even though bed bugs primarily cause skin manifestations in humans, a major stigma is placed upon people or institutions found to carry them. It is important for healthcare facilities to be prepared for this pest by implementing policies, carefully selecting materials used for hospital furniture, and educating providers on early identification and control.
Related JoVE Video
Modeling Plasmodium vivax: relapses, treatment, seasonality, and G6PD deficiency.
J. Theor. Biol.
Show Abstract
Hide Abstract
Plasmodium vivax (P. vivax) is one of the most important human malaria species that is geographically widely endemic and causes social and economic burden globally. However, its consequences have long been neglected and underestimated as it has been mistakenly considered a benign and inconsequential malaria species as compared to Plasmodium falciparum. One of the important differences between P. falciparum and P. vivax is the formation of P. vivax latent-stage parasites (hypnozoites) that can cause relapses after a course of treatment. In this work, mathematical modeling is employed to investigate how patterns of incubation periods and relapses of P. vivax, variation in treatment, and seasonal abundance of mosquitoes influence the number of humans infected with P. vivax and the mean age at infection of humans in tropical and temperate regions. The model predicts that: (i) the number of humans infected with P. vivax may increase when an incubation period of parasites in humans and a latent period of hypnozoites decrease; (ii) without primaquine, the only licensed drug to prevent relapses, P. vivax may be highly prevalent; (iii) the mean age at infection of humans may increase when a latent period of hypnozoites increases; (iv) the number of infectious humans may peak at a few months before the middle of each dry season and the number of hypnozoite carriers may peak at nearly the middle of each dry season. In addition, glucose-6-phosphate-dehydrogenase (G6PD) deficiency, which is the most common enzyme defect in humans that may provide some protection against P. vivax infection and severity, is taken into account to study its impact on the number of humans infected with P. vivax. Modeling results indicate that the increased number of infected humans may result from a combination of a larger proportion of humans with G6PD deficiency in the population, a lesser protection of G6PD deficiency to P. vivax infection, and a shorter latent period of hypnozoites.
Related JoVE Video
Linking land cover and species distribution models to project potential ranges of malaria vectors: an example using Anopheles arabiensis in Sudan and Upper Egypt.
Malar. J.
Show Abstract
Hide Abstract
Anopheles arabiensis is a particularly opportunistic feeder and efficient vector of Plasmodium falciparum in Africa and may invade areas outside its normal range, including areas separated by expanses of barren desert. The purpose of this paper is to demonstrate how spatial models can project future irrigated cropland and potential, new suitable habitat for vectors such as An. arabiensis.
Related JoVE Video
Controlling and sampling adult sand flies with a fumigant containing permethrin and deltamethrin.
J. Vector Ecol.
Show Abstract
Hide Abstract
The efficacy of a new smoke-generating formulation (fumigant, MidMos Solutions Ltd., GB), containing the active ingredients permethrin and deltamethrin, was evaluated against adult sand flies in an apartment (280 m(3)), a semi-open large animal shelter (enclosing an area of 300 m(2)), a closed Bedouin animal tent (104 m(3)), and a garden (141 m(2)) enclosed by a stone wall. In each location, four cages with approx. 100 Phlebotomus papatasi were exposed to the fumigant 0.5 m and 2.0 m above ground for 15 and 60 min. Controls were kept in untreated similar rooms and there were two repetitions. In the apartment and the animal tent, a single cartridge caused 100% mortality within 15 min. In the large animal shelter, one fumigant caused mortality of 86% in the lower cages and 75% in the upper cages after 15 min. After 60 min, mortality was 94 and 87%, respectively. With two fumigants, mortality was 98.5 and 91% after 15 min and after 60 min all sand flies were dead. In the garden, one fumigant caused mortality of 93% in the lower cages and 85.5% in the upper cages after 15 min. After 60 min the mortality was 98 and 92%, respectively. With two fumigants, all flies were dead within 15 min.
Related JoVE Video
Near-present and future distribution of Anopheles albimanus in Mesoamerica and the Caribbean Basin modeled with climate and topographic data.
Int J Health Geogr
Show Abstract
Hide Abstract
Anopheles albimanus is among the most important vectors of human malaria in Mesoamerica and the Caribbean Basin (M-C). Here, we use topographic data and 1950-2000 climate (near present), and future climate (2080) layers obtained from general circulation models (GCMs) to project the probability of the species presence, p(s), using the species distribution model MaxEnt.
Related JoVE Video
Attractive toxic sugar bait (ATSB) methods decimate populations of Anopheles malaria vectors in arid environments regardless of the local availability of favoured sugar-source blossoms.
Malar. J.
Show Abstract
Hide Abstract
Attractive toxic sugar bait (ATSB) methods are a new and promising "attract and kill" strategy for mosquito control. Sugar-feeding female and male mosquitoes attracted to ATSB solutions, either sprayed on plants or in bait stations, ingest an incorporated low-risk toxin such as boric acid and are killed. This field study in the arid malaria-free oasis environment of Israel compares how the availability of a primary natural sugar source for Anopheles sergentii mosquitoes: flowering Acacia raddiana trees, affects the efficacy of ATSB methods for mosquito control.
Related JoVE Video
Control of Aedes albopictus with attractive toxic sugar baits (ATSB) and potential impact on non-target organisms in St. Augustine, Florida.
Parasitol. Res.
Show Abstract
Hide Abstract
The purpose of this study was to test the efficacy of bait stations and foliar applications containing attractive toxic sugar baits (ATSB) and eugenol to control Aedes albopictus. At the same time, the potential impact of these control methods was evaluated on non-target organisms. The study was conducted at five tire sites in St. Augustine, Florida. A. albopictus populations were significantly reduced with ATSB-eugenol applications applied directly to non-flowering vegetation and as bait stations compared with non-attractive sugar baits and control. The application of ATSB made to non-flowering vegetation resulted in more significant reductions of mosquito populations compared to the application of ATSB presented in a bait station. Over 5.5 % of the non-targets were stained in the flowering vegetation application site. However, when the attractive sugar bait application was made to non-flowering vegetation or presented in bait stations, the impact on non-target insects was very low for all non-target orders as only 0.6 % of the individual insects were stained with the dye from the sugar solutions, respectively. There were no significant differences between the staining of mosquitoes collected in flowering vegetation (206/1000) or non-flowering vegetation (242/1000) sites during the non-target evaluation. Our field studies support the use of eugenol as an active ingredient for controlling the dengue vector A. albopictus when used as an ATSB toxin and demonstrates potential use in sub-tropical and tropical environments for dengue control.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.