JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol.
Nat. Chem. Biol.
PUBLISHED: 04-01-2011
Show Abstract
Hide Abstract
1,4-Butanediol (BDO) is an important commodity chemical used to manufacture over 2.5 million tons annually of valuable polymers, and it is currently produced exclusively through feedstocks derived from oil and natural gas. Herein we report what are to our knowledge the first direct biocatalytic routes to BDO from renewable carbohydrate feedstocks, leading to a strain of Escherichia coli capable of producing 18 g l(-1) of this highly reduced, non-natural chemical. A pathway-identification algorithm elucidated multiple pathways for the biosynthesis of BDO from common metabolic intermediates. Guided by a genome-scale metabolic model, we engineered the E. coli host to enhance anaerobic operation of the oxidative tricarboxylic acid cycle, thereby generating reducing power to drive the BDO pathway. The organism produced BDO from glucose, xylose, sucrose and biomass-derived mixed sugar streams. This work demonstrates a systems-based metabolic engineering approach to strain design and development that can enable new bioprocesses for commodity chemicals that are not naturally produced by living cells.
Related JoVE Video
Staphylococcus aureus TargetArray: comprehensive differential essential gene expression as a mechanistic tool to profile antibacterials.
Antimicrob. Agents Chemother.
PUBLISHED: 06-14-2010
Show Abstract
Hide Abstract
The widespread emergence of antibiotic-resistant bacteria and a lack of new pharmaceutical development have catalyzed a need for new and innovative approaches for antibiotic drug discovery. One bottleneck in antibiotic discovery is the lack of a rapid and comprehensive method to identify compound mode of action (MOA). Since a hallmark of antibiotic action is as an inhibitor of essential cellular targets and processes, we identify a set of 308 essential genes in the clinically important pathogen Staphylococcus aureus. A total of 446 strains differentially expressing these genes were constructed in a comprehensive platform of sensitized and resistant strains. A subset of strains allows either target underexpression or target overexpression by heterologous promoter replacements with a suite of tetracycline-regulatable promoters. A further subset of 236 antisense RNA-expressing clones allows knockdown expression of cognate targets. Knockdown expression confers selective antibiotic hypersensitivity, while target overexpression confers resistance. The antisense strains were configured into a TargetArray in which pools of sensitized strains were challenged in fitness tests. A rapid detection method measures strain responses toward antibiotics. The TargetArray antibiotic fitness test results show mechanistically informative biological fingerprints that allow MOA elucidation.
Related JoVE Video
Multiple pathways of mitochondrial-nuclear communication in yeast: intergenomic signaling involves ABF1 and affects a different set of genes than retrograde regulation.
Biochim. Biophys. Acta
PUBLISHED: 04-01-2009
Show Abstract
Hide Abstract
Mitochondrial-nuclear communication is taking on increased importance in models of oxygen sensing, oxidative stress, aging, and disease. The deletion of the mitochondrial genome (mtDNA) and, hence, the ability to respire, affects expression of several nuclear genes through at least two different mitochondrial-nuclear communication pathways. One of the pathways, retrograde regulation, is activated by a reduction in respiration, while another, intergenomic signaling, is unaffected by respiration but requires mtDNA. Using DNA microarrays, we identify here a set of nuclear genes in Saccharomyces cerevisiae that are targets of intergenomic signaling. These nuclear genes are down-regulated in rho degrees cells that lack mtDNA but not in nuclear pet mutant rho(+)cells that possess mtDNA but lack respiration. Many of these nuclear genes encode mitochondrial proteins, implying that intergenomic signaling functions in coordinating mitochondrial and nuclear gene expression. In addition, analyses of deletion and linker scanning mutations in the promoter of the COX6 gene, a nuclear gene affected by intergenomic signaling, suggest an involvement of Abf1p transcription factor in intergenomic signaling. Together, these findings indicate that intergenomic signaling is distinct from retrograde regulation both in the nuclear genes that it regulates and in the way in which it affects their expression.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.