JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Androgen receptor interacting protein HSPBAP1 facilitates growth of prostate cancer cells in androgen-deficient conditions.
Int. J. Cancer
PUBLISHED: 10-16-2014
Show Abstract
Hide Abstract
Hormonal therapies targeting androgen receptor (AR) are effective in prostate cancer (PCa), but often the cancer progress to fatal castrate-resistant disease. Improved understanding of the cellular events during androgen-deprivation would help to identify survival and stress pathways whose inhibition could synergize with androgen-deprivation. Towards this aim, we performed an RNAi screen on 2068 genes, including kinases, phosphatases, epigenetic enzymes and other druggable gene targets. High-content cell spot microarray (CSMA) screen was performed in VCaP cells in the presence and absence of androgens with detection of Ki67 and cleaved ADP-ribose polymerase (cPARP) as assays for cell proliferation and apoptosis. 39 candidate genes were identified, whose silencing inhibited proliferation or induced apoptosis of VCaP cells exclusively under androgen-deprived conditions. One of the candidates, HSPB (heat shock 27 kDa) associated protein 1 (HSPBAP1) was confirmed to be highly expressed in tumor samples and its mRNA expression levels increased with the Gleason grade. We found that strong HSPBAP1 immuno-histochemical staining (IHC) was associated with shorter disease-specific survival of PCa patients compared with negative to moderate staining. Furthermore, we demonstrate that HSPBAP1 interacts with AR in the nucleus of PCa cells specifically during androgen-deprived conditions, occupy chromatin at PSA/klk3 and TMPRSS2/tmprss2 enahncers and regulates their expression. In conclusion, we suggest that HSPBAP1 aids in sustaining cell viability by maintaining AR signaling during androgen-deprived conditions. © 2014 Wiley Periodicals, Inc.
Related JoVE Video
A community effort to assess and improve drug sensitivity prediction algorithms.
Nat. Biotechnol.
PUBLISHED: 03-12-2014
Show Abstract
Hide Abstract
Predicting the best treatment strategy from genomic information is a core goal of precision medicine. Here we focus on predicting drug response based on a cohort of genomic, epigenomic and proteomic profiling data sets measured in human breast cancer cell lines. Through a collaborative effort between the National Cancer Institute (NCI) and the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we analyzed a total of 44 drug sensitivity prediction algorithms. The top-performing approaches modeled nonlinear relationships and incorporated biological pathway information. We found that gene expression microarrays consistently provided the best predictive power of the individual profiling data sets; however, performance was increased by including multiple, independent data sets. We discuss the innovations underlying the top-performing methodology, Bayesian multitask MKL, and we provide detailed descriptions of all methods. This study establishes benchmarks for drug sensitivity prediction and identifies approaches that can be leveraged for the development of new methods.
Related JoVE Video
High-throughput RNAi screening for novel modulators of vimentin expression identifies MTHFD2 as a regulator of breast cancer cell migration and invasion.
Oncotarget
PUBLISHED: 01-09-2013
Show Abstract
Hide Abstract
Vimentin is an intermediate filament protein, with a key role in the epithelial to mesenchymal transition as well as cell invasion, and it is often upregulated during cancer progression. However, relatively little is known about its regulation in cancer cells. Here, we performed an RNA interference screen followed by protein lysate microarray analysis in bone metastatic MDA-MB-231(SA) breast cancer cells to identify novel regulators of vimentin expression. Out of the 596 genes investigated, three novel vimentin regulators EPHB4, WIPF2 and MTHFD2 were identified. The reduced vimentin expression in response to EPHB4, WIPF2 and MTHFD2 silencing was observed at mRNA and protein levels. Bioinformatic analysis of gene expression data across cancers indicated overexpression of EPHB4 and MTHFD2 in breast cancer and high expression associated with poor clinical characteristics. Analysis of 96 cDNA samples derived from both normal and malignant human tissues suggested putative association with metastatic disease. MTHFD2 knockdown resulted in impaired cell migration and invasion into extracellular matrix as well as decreased the fraction of cells with a high CD44 expression, a marker of cancer stem cells. Furthermore, MTHFD2 expression was induced in response to TGF-? stimulation in breast cancer cells. Our results show that MTHFD2 is overexpressed in breast cancer, associates with poor clinical characteristics and promotes cellular features connected with metastatic disease, thus implicating MTHFD2 as a potential drug target to block breast cancer cell migration and invasion.
Related JoVE Video
High-throughput 3D screening reveals differences in drug sensitivities between culture models of JIMT1 breast cancer cells.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The traditional method for studying cancer in vitro is to grow immortalized cancer cells in two-dimensional monolayers on plastic. However, many cellular features are impaired in these artificial conditions, and large changes in gene expression compared to tumors have been reported. Three-dimensional cell culture models have become increasingly popular and are suggested to be better models than two-dimensional monolayers due to improved cell-to-cell contact and structures that resemble in vivo architecture. The aim of this study was to develop a simple high-throughput three-dimensional drug screening method and to compare drug responses in JIMT1 breast cancer cells when grown in two dimensions, in poly(2-hydroxyethyl methacrylate) induced anchorage-independent three-dimensional models, and in Matrigel three-dimensional cell culture models. We screened 102 compounds with multiple concentrations and biological replicates for their effects on cell proliferation. The cells were either treated immediately upon plating, or they were allowed to grow in three-dimensional cultures for 4 days before the drug treatment. Large variations in drug responses were observed between the models indicating that comparisons of culture model-influenced drug sensitivities cannot be made based on the effects of a single drug. However, we show with the 63 most prominent drugs that, in general, JIMT1 cells grown on Matrigel were significantly more sensitive to drugs than cells grown in two-dimensional cultures, while the responses of cells grown in poly(2-hydroxyethyl methacrylate) resembled those of the two-dimensional cultures. Furthermore, comparing the gene expression profiles of the cell culture models to xenograft tumors indicated that cells cultured in Matrigel and as xenografts most closely resembled each other. In this study, we also suggest that three-dimensional cultures can provide a platform for systematic experimentation of larger compound collections in a high-throughput mode and be used as alternatives to traditional two-dimensional screens for better comparability to the in vivo state.
Related JoVE Video
Plasticity of blood- and lymphatic endothelial cells and marker identification.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The distinction between lymphatic and blood vessels is biologically fundamental. Here we wanted to rigorously analyze the universal applicability of vascular markers and characteristics of the two widely used vascular model systems human microvascular endothelial cell line-1 (HMEC-1) and telomerase-immortalized microvascular endothelial cell line (TIME). Therefore we studied the protein expression and functional properties of the endothelial cell lines HMEC-1 and TIME by flow cytometry and in vitro flow assays. We then performed microarray analyses of the gene expression in these two cell lines and compared them to primary endothelial cells. Using bioinformatics we then defined 39 new, more universal, endothelial-type specific markers from 47 primary endothelial microarray datasets and validated them using immunohistochemistry with normal and pathological tissues. We surprisingly found that both HMEC-1 and TIME are hybrid blood- and lymphatic cells. In addition, we discovered great discrepancies in the previous identifications of blood- and lymphatic endothelium-specific genes. Hence we identified and validated new, universally applicable vascular markers. Summarizing, the hybrid blood-lymphatic endothelial phenotype of HMEC-1 and TIME is indicative of plasticity in the gene expression of immortalized endothelial cell lines. Moreover, we identified new, stable, vessel-type specific markers for blood- and lymphatic endothelium, useful for basic research and clinical diagnostics.
Related JoVE Video
ARLTS1 and prostate cancer risk--analysis of expression and regulation.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Prostate cancer (PCa) is a heterogeneous trait for which several susceptibility loci have been implicated by genome-wide linkage and association studies. The genomic region 13q14 is frequently deleted in tumour tissues of both sporadic and familial PCa patients and is consequently recognised as a possible locus of tumour suppressor gene(s). Deletions of this region have been found in many other cancers. Recently, we showed that homozygous carriers for the T442C variant of the ARLTS1 gene (ADP-ribosylation factor-like tumour suppressor protein 1 or ARL11, located at 13q14) are associated with an increased risk for both unselected and familial PCa. Furthermore, the variant T442C was observed in greater frequency among malignant tissue samples, PCa cell lines and xenografts, supporting its role in PCa tumourigenesis. In this study, 84 PCa cases and 15 controls were analysed for ARLTS1 expression status in blood-derived RNA. A statistically significant (p?=?0.0037) decrease of ARLTS1 expression in PCa cases was detected. Regulation of ARLTS1 expression was analysed with eQTL (expression quantitative trait loci) methods. Altogether fourteen significant cis-eQTLs affecting the ARLTS1 expression level were found. In addition, epistatic interactions of ARLTS1 genomic variants with genes involved in immune system processes were predicted with the MDR program. In conclusion, this study further supports the role of ARLTS1 as a tumour suppressor gene and reveals that the expression is regulated through variants localised in regulatory regions.
Related JoVE Video
Contribution of ARLTS1 Cys148Arg (T442C) variant with prostate cancer risk and ARLTS1 function in prostate cancer cells.
PLoS ONE
PUBLISHED: 04-26-2011
Show Abstract
Hide Abstract
ARLTS1 is a recently characterized tumor suppressor gene at 13q14.3, a region frequently deleted in both sporadic and hereditary prostate cancer (PCa). ARLTS1 variants, especially Cys148Arg (T442C), increase susceptibility to different cancers, including PCa. In this study the role of Cys148Arg substitution was investigated as a risk factor for PCa using both genetic and functional analysis. Cys148Arg genotypes and expression of the ARLTS1 were explored in a large set of familial and unselected PCa cases, clinical tumor samples, xenografts, prostate cancer cell lines and benign prostatic hyperplasia (BPH) samples. The frequency of the variant genotype CC was significantly higher in familial (OR?=?1.67, 95% CI?=?1.08-2.56, P?=?0.019) and unselected patients (OR?=?1.52, 95% CI?=?1.18-1.97, P?=?0.001) and the overall risk was increased (OR?=?1.54, 95% CI?=?1.20-1.98, P?=?0.0007). Additional analysis with clinicopathological data revealed an association with an aggressive disease (OR?=?1.28, 95% CI?=?1.05-?, P?=?0.02). The CC genotype of the Cys148Arg variant was also contributing to the lowered ARLTS1 expression status in lymphoblastoid cells from familial patients. In addition significantly lowered ARLTS1 expression was observed in clinical tumor samples compared to BPH samples (P?=?0.01). The ARLTS1 co-expression signature based on previously published microarray data was generated from 1587 cancer samples confirming the low expression of ARLTS1 in PCa and showed that ARLTS1 expression was strongly associated with immune processes. This study provides strong confirmation of the important role of ARLTS1 Cys148Arg variant as a contributor in PCa predisposition and a potential marker for aggressive disease outcome.
Related JoVE Video
A cell spot microarray method for production of high density siRNA transfection microarrays.
BMC Genomics
PUBLISHED: 03-28-2011
Show Abstract
Hide Abstract
High-throughput RNAi screening is widely applied in biological research, but remains expensive, infrastructure-intensive and conversion of many assays to HTS applications in microplate format is not feasible.
Related JoVE Video
Arachidonic acid pathway members PLA2G7, HPGD, EPHX2, and CYP4F8 identified as putative novel therapeutic targets in prostate cancer.
Am. J. Pathol.
PUBLISHED: 02-02-2011
Show Abstract
Hide Abstract
The arachidonic acid and prostaglandin pathway has been implicated in prostate carcinogenesis, but comprehensive studies of the individual members in this key pathway are lacking. Here, we first conducted a systematic bioinformatic study of the expression of 36 arachidonic acid pathway genes across 9783 human tissue samples. The results showed that the PLA2G7, HPGD, EPHX2, and CYP4F8 genes are highly expressed in prostate cancer. Functional studies using RNA interference in prostate cancer cells indicated that all four genes are also essential for cell growth and survival. Clinical validation confirmed high PLA2G7 expression, especially in ERG oncogene-positive prostate cancers, and its silencing sensitized ERG-positive prostate cancer cells to oxidative stress. HPGD was highly expressed in androgen receptor (AR)-overexpressing advanced tumors, as well as in metastatic prostate cancers. EPHX2 mRNA correlated with AR in primary prostate cancers, and its inhibition in vitro reduced AR signaling and potentiated the effect of antiandrogen flutamide in cultured prostate cancer cells. In summary, we identified four novel putative therapeutic targets with biomarker potential for different subtypes of prostate cancer. In addition, our results indicate that inhibition of these enzymes may be particularly powerful when combined with other treatments, such as androgen deprivation or induction of oxidative stress.
Related JoVE Video
GTI: a novel algorithm for identifying outlier gene expression profiles from integrated microarray datasets.
PLoS ONE
PUBLISHED: 01-27-2011
Show Abstract
Hide Abstract
Meta-analysis of gene expression microarray datasets presents significant challenges for statistical analysis. We developed and validated a new bioinformatic method for the identification of genes upregulated in subsets of samples of a given tumour type (outlier genes), a hallmark of potential oncogenes.
Related JoVE Video
FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal transition in human prostate cancer cells.
Cancer Res.
PUBLISHED: 08-16-2010
Show Abstract
Hide Abstract
TMPRSS2-ERG and other gene fusions involving ETS factors and genes with strong promoter elements are common in prostate cancer. Although ERG activation has been linked to invasive properties of prostate cancers, the precise mechanisms and pathways of ERG-mediated oncogenesis remain poorly understood. Here, we show that ERG knockdown in VCaP prostate cancer cells causes an activation of cell adhesion, resulting in strongly induced active beta(1)-integrin and E-cadherin expression as well as changes in WNT signaling. These observations were corroborated by data from ERG-overexpressing nontransformed prostate epithelial cells as well as gene expression data from clinical prostate cancer samples, which both indicated a link between ERG and epithelial-to-mesenchymal transition (EMT). Upregulation of several WNT pathway members was seen in ERG-positive prostate cancers, with frizzled-4 (FZD4) showing the strongest overexpression as verified by both reverse transcription-PCR and immunostaining. Both ERG knockin and knockdown modulated the levels of FZD4 expression. FZD4 silencing could mimic the ERG knockdown phenotype by inducing active beta(1)-integrin and E-cadherin expression, whereas FZD4 overexpression reversed the phenotypic effects seen with ERG knockdown. Taken together, our results provide mechanistic insights to ERG oncogenesis in prostate cancer, involving activation of WNT signaling through FZD4, leading to cancer-promoting phenotypic effects, including EMT and loss of cell adhesion.
Related JoVE Video
A comprehensive panel of three-dimensional models for studies of prostate cancer growth, invasion and drug responses.
PLoS ONE
PUBLISHED: 01-24-2010
Show Abstract
Hide Abstract
Prostate epithelial cells from both normal and cancer tissues, grown in three-dimensional (3D) culture as spheroids, represent promising in vitro models for the study of normal and cancer-relevant patterns of epithelial differentiation. We have developed the most comprehensive panel of miniaturized prostate cell culture models in 3D to date (n = 29), including many non-transformed and most currently available classic prostate cancer (PrCa) cell lines. The purpose of this study was to analyze morphogenetic properties of PrCa models in 3D, to compare phenotypes, gene expression and metabolism between 2D and 3D cultures, and to evaluate their relevance for pre-clinical drug discovery, disease modeling and basic research. Primary and non-transformed prostate epithelial cells, but also several PrCa lines, formed well-differentiated round spheroids. These showed strong cell-cell contacts, epithelial polarization, a hollow lumen and were covered by a complete basal lamina (BL). Most PrCa lines, however, formed large, poorly differentiated spheroids, or aggressively invading structures. In PC-3 and PC-3M cells, well-differentiated spheroids formed, which were then spontaneously transformed into highly invasive cells. These cell lines may have previously undergone an epithelial-to-mesenchymal transition (EMT), which is temporarily suppressed in favor of epithelial maturation by signals from the extracellular matrix (ECM). The induction of lipid and steroid metabolism, epigenetic reprogramming, and ECM remodeling represents a general adaptation to 3D culture, regardless of transformation and phenotype. In contrast, PI3-Kinase, AKT, STAT/interferon and integrin signaling pathways were particularly activated in invasive cells. Specific small molecule inhibitors targeted against PI3-Kinase blocked invasive cell growth more effectively in 3D than in 2D monolayer culture, or the growth of normal cells. Our panel of cell models, spanning a wide spectrum of phenotypic plasticity, supports the investigation of different modes of cell migration and tumor morphologies, and will be useful for predictive testing of anti-cancer and anti-metastatic compounds.
Related JoVE Video
Systemic analysis of gene expression profiles identifies ErbB3 as a potential drug target in pediatric alveolar rhabdomyosarcoma.
PLoS ONE
Show Abstract
Hide Abstract
Pediatric sarcomas, including rhabdomyosarcomas, Ewings sarcoma, and osteosarcoma, are aggressive tumors with poor survival rates. To overcome problems associated with nonselectivity of the current therapeutic approaches, targeted therapeutics have been developed. Currently, an increasing number of such drugs are used for treating malignancies of adult patients but little is known about their effects in pediatric patients. We analyzed expression of 24 clinically approved target genes in a wide variety of pediatric normal and malignant tissues using a novel high-throughput systems biology approach. Analysis of the Genesapiens database of human transcriptomes demonstrated statistically significant up-regulation of VEGFC and EPHA2 in Ewings sarcoma, and ERBB3 in alveolar rhabdomyosarcomas. In silico data for ERBB3 was validated by demonstrating ErbB3 protein expression in pediatric rhabdomyosarcoma in vitro and in vivo. ERBB3 overexpression promoted whereas ERBB3-targeted siRNA suppressed rhabdomyosarcoma cell gowth, indicating a functional role for ErbB3 signaling in rhabdomyosarcoma. These data suggest that drugs targeting ErbB3, EphA2 or VEGF-C could be further tested as therapeutic targets for pediatric sarcomas.
Related JoVE Video
High-throughput transcriptomic and RNAi analysis identifies AIM1, ERGIC1, TMED3 and TPX2 as potential drug targets in prostate cancer.
PLoS ONE
Show Abstract
Hide Abstract
Prostate cancer is a heterogeneous group of diseases and there is a need for more efficient and targeted methods of treatment. In this study, the potential of gene expression data and RNA interference technique were combined to advance future personalized prostate cancer therapeutics. To distinguish the most promising in vivo prevalidated prostate cancer drug targets, a bioinformatic analysis was carried out using genome-wide gene expression data from 9873 human tissue samples. In total, 295 genes were selected for further functional studies in cultured prostate cancer cells due to their high mRNA expression in prostate, prostate cancer or in metastatic prostate cancer samples. Second, RNAi based cell viability assay was performed in VCaP and LNCaP prostate cancer cells. Based on the siRNA results, gene expression patterns in human tissues and novelty, endoplasmic reticulum function associated targets AIM1, ERGIC1 and TMED3, as well as mitosis regulating TPX2 were selected for further validation. AIM1, ERGIC1, and TPX2 were shown to be highly expressed especially in prostate cancer tissues, and high mRNA expression of ERGIC1 and TMED3 associated with AR and ERG oncogene expression. ERGIC1 silencing specifically regulated the proliferation of ERG oncogene positive prostate cancer cells and inhibited ERG mRNA expression in these cells, indicating that it is a potent drug target in ERG positive subgroup of prostate cancers. TPX2 expression associated with PSA failure and TPX2 silencing reduced PSA expression, indicating that TPX2 regulates androgen receptor mediated signaling. In conclusion, the combinatorial usage of microarray and RNAi techniques yielded in a large number of potential novel biomarkers and therapeutic targets, for future development of targeted and personalized approaches for prostate cancer management.
Related JoVE Video
Comprehensive data-driven analysis of the impact of chemoinformatic structure on the genome-wide biological response profiles of cancer cells to 1159 drugs.
BMC Bioinformatics
Show Abstract
Hide Abstract
Detailed and systematic understanding of the biological effects of millions of available compounds on living cells is a significant challenge. As most compounds impact multiple targets and pathways, traditional methods for analyzing structure-function relationships are not comprehensive enough. Therefore more advanced integrative models are needed for predicting biological effects elicited by specific chemical features. As a step towards creating such computational links we developed a data-driven chemical systems biology approach to comprehensively study the relationship of 76 structural 3D-descriptors (VolSurf, chemical space) of 1159 drugs with the microarray gene expression responses (biological space) they elicited in three cancer cell lines. The analysis covering 11350 genes was based on data from the Connectivity Map. We decomposed the biological response profiles into components, each linked to a characteristic chemical descriptor profile.
Related JoVE Video
A functional genetic screen reveals new regulators of ?1-integrin activity.
J. Cell. Sci.
Show Abstract
Hide Abstract
?1 integrins constitute a large group of widely distributed adhesion receptors, which regulate the ability of cells to interact with their surroundings. This regulation of the expression and activity of integrins is crucial for tissue homeostasis and development and contributes to inflammation and cancer. We report an RNA interference screen to uncover genes involved in the regulation of ?1-integrin activity using cell spot microarray technology in cancer cell lines. Altogether, ten cancer and two normal cell lines were used to identify regulators of ?1 integrin activity. Cell biological analysis of the identified ?1-integrin regulatory genes revealed that modulation of integrin activity can influence cell invasion in a three-dimensional matrix. We demonstrate with loss-of-function and rescue experiments that CD9 activates and MMP8 inactivates ?1 integrins and that both proteins associate with ?1 integrins in cells. Furthermore, CD9 and MMP8 regulate cancer cell extravasation in vivo. Our discovery of new regulators of ?1-integrin activity highlight the complexity of integrin activity regulation and provide a set of new genes involved in regulation of integrin function.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.