JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Factors Associated with Mortality in Febrile Patients in a Government Referral Hospital in the Kenema District of Sierra Leone.
Am. J. Trop. Med. Hyg.
PUBLISHED: 11-17-2014
Show Abstract
Hide Abstract
There is a paucity of data on the etiologies and outcomes of febrile illness in rural Sierra Leone, especially in the Lassa-endemic district of Kenema. We conducted a retrospective study of patients with subjective or documented fever (T ? 38.0°C) who were admitted to a rural tertiary care hospital in Kenema between November 1, 2011 and October 31, 2012. Of 854 patients admitted during the study period, 429 (50.2%) patients had fever on admission. The most common diagnoses were malaria (27.3%), pneumonia (5.1%), and Lassa fever (4.9%). However, 53.4% of febrile patients had no diagnosis at discharge. The in-hospital mortality rate was 18.9% and associated with documented temperature ? 38.0°C (adjusted odds ratio [AOR] = 2.89, P = 0.001) and lack of diagnosis at discharge (AOR = 2.04, P = 0.03). Failure to diagnose the majority of febrile adults and its association with increased mortality highlight the need for improved diagnostic capacity to improve patient outcomes.
Related JoVE Video
Clinical Illness and Outcomes in Patients with Ebola in Sierra Leone.
N. Engl. J. Med.
PUBLISHED: 10-30-2014
Show Abstract
Hide Abstract
Background Limited clinical and laboratory data are available on patients with Ebola virus disease (EVD). The Kenema Government Hospital in Sierra Leone, which had an existing infrastructure for research regarding viral hemorrhagic fever, has received and cared for patients with EVD since the beginning of the outbreak in Sierra Leone in May 2014. Methods We reviewed available epidemiologic, clinical, and laboratory records of patients in whom EVD was diagnosed between May 25 and June 18, 2014. We used quantitative reverse-transcriptase-polymerase-chain-reaction assays to assess the load of Ebola virus (EBOV, Zaire species) in a subgroup of patients. Results Of 106 patients in whom EVD was diagnosed, 87 had a known outcome, and 44 had detailed clinical information available. The incubation period was estimated to be 6 to 12 days, and the case fatality rate was 74%. Common findings at presentation included fever (in 89% of the patients), headache (in 80%), weakness (in 66%), dizziness (in 60%), diarrhea (in 51%), abdominal pain (in 40%), and vomiting (in 34%). Clinical and laboratory factors at presentation that were associated with a fatal outcome included fever, weakness, dizziness, diarrhea, and elevated levels of blood urea nitrogen, aspartate aminotransferase, and creatinine. Exploratory analyses indicated that patients under the age of 21 years had a lower case fatality rate than those over the age of 45 years (57% vs. 94%, P=0.03), and patients presenting with fewer than 100,000 EBOV copies per milliliter had a lower case fatality rate than those with 10 million EBOV copies per milliliter or more (33% vs. 94%, P=0.003). Bleeding occurred in only 1 patient. Conclusions The incubation period and case fatality rate among patients with EVD in Sierra Leone are similar to those observed elsewhere in the 2014 outbreak and in previous outbreaks. Although bleeding was an infrequent finding, diarrhea and other gastrointestinal manifestations were common. (Funded by the National Institutes of Health and others.).
Related JoVE Video
A tribute to Sheik Humarr Khan and all the healthcare workers in West Africa who have sacrificed in the fight against Ebola virus disease: Mae we hush.
Antiviral Res.
PUBLISHED: 08-30-2014
Show Abstract
Hide Abstract
The Kenema Government Hospital Lassa Fever Ward in Sierra Leone, directed since 2005 by Dr. Sheikh Humarr Khan, is the only medical unit in the world devoted exclusively to patient care and research of a viral hemorrhagic fever. When Ebola virus disease unexpectedly appeared in West Africa in late 2013 and eventually spread to Kenema, Khan and his fellow healthcare workers remained at their posts, providing care to patients with this devastating illness. Khan and the chief nurse, Mbalu Fonnie, became infected and died at the end of July, a fate that they have sadly shared with more than ten other healthcare workers in Kenema and hundreds across the region. This article pays tribute to Sheik Humarr Khan, Mbalu Fonnie and all the healthcare workers who have acquired Ebola virus disease while fighting the epidemic in West Africa. Besides the emotional losses, the death of so many skilled and experienced healthcare workers will severely impair health care and research in affected regions, which can only be restored through dedicated, long-term programs.
Related JoVE Video
Caring for critically ill patients with ebola virus disease. Perspectives from West Africa.
Am. J. Respir. Crit. Care Med.
PUBLISHED: 08-29-2014
Show Abstract
Hide Abstract
The largest ever Ebola virus disease outbreak is ravaging West Africa. The constellation of little public health infrastructure, low levels of health literacy, limited acute care and infection prevention and control resources, densely populated areas, and a highly transmissible and lethal viral infection have led to thousands of confirmed, probable, or suspected cases thus far. Ebola virus disease is characterized by a febrile severe illness with profound gastrointestinal manifestations and is complicated by intravascular volume depletion, shock, profound electrolyte abnormalities, and organ dysfunction. Despite no proven Ebola virus-specific medical therapies, the potential effect of supportive care is great for a condition with high baseline mortality and one usually occurring in resource-constrained settings. With more personnel, basic monitoring, and supportive treatment, many of the sickest patients with Ebola virus disease do not need to die. Ebola virus disease represents an illness ready for a paradigm shift in care delivery and outcomes, and the profession of critical care medicine can and should be instrumental in helping this happen.
Related JoVE Video
Related JoVE Video
How natural disasters change natural patterns: coccidioidomycosis imported to New Orleans.
J La State Med Soc
PUBLISHED: 09-11-2013
Show Abstract
Hide Abstract
To identify cases of coccidioidomycosis in the New Orleans area following Hurricane Katrina.
Related JoVE Video
A historical look at the first reported cases of Lassa fever: IgG antibodies 40 years after acute infection.
Am. J. Trop. Med. Hyg.
PUBLISHED: 02-08-2013
Show Abstract
Hide Abstract
Lassa fever is an acute and sometimes severe viral hemorrhagic illness endemic in West Africa. One important question regarding Lassa fever is the duration of immunoglobulin G (IgG) antibody after infection. We were able to locate three persons who worked in Nigeria dating back to the 1940s, two of whom were integrally involved in the early outbreaks and investigations of Lassa fever in the late 1960s, including the person from whom Lassa virus was first isolated. Two persons had high titers of Lassa virus-specific IgG antibody over 40 years after infection, indicating the potential for long-term duration of these antibodies. One person was likely infected in 1952, 17 years before the first recognized outbreak. We briefly recount the fascinating stories of these three pioneers and their important contribution to our understanding of Lassa fever.
Related JoVE Video
Neutralizing and non-neutralizing monoclonal antibodies against dengue virus E protein derived from a naturally infected patient.
Virol. J.
PUBLISHED: 02-04-2010
Show Abstract
Hide Abstract
Antibodies produced in response to infection with any of the four serotypes of dengue virus generally provide homotypic immunity. However, prior infection or circulating maternal antibodies can also mediate a non-protective antibody response that can enhance the course of disease in a subsequent heterotypic infection. Naturally occurring human monoclonal antibodies can help us understand the protective and pathogenic roles of the humoral immune system in dengue virus infection.
Related JoVE Video
Mechanistic study of broadly neutralizing human monoclonal antibodies against dengue virus that target the fusion loop.
J. Virol.
Show Abstract
Hide Abstract
There are no available vaccines for dengue, the most important mosquito-transmitted viral disease. Mechanistic studies with anti-dengue virus (DENV) human monoclonal antibodies (hMAbs) provide a rational approach to identify and characterize neutralizing epitopes on DENV structural proteins that can serve to inform vaccine strategies. Here, we report a class of hMAbs that is likely to be an important determinant in the human humoral response to DENV infection. In this study, we identified and characterized three broadly neutralizing anti-DENV hMAbs: 4.8A, D11C, and 1.6D. These antibodies were isolated from three different convalescent patients with distinct histories of DENV infection yet demonstrated remarkable similarities. All three hMAbs recognized the E glycoprotein with high affinity, neutralized all four serotypes of DENV, and mediated antibody-dependent enhancement of infection in Fc receptor-bearing cells at subneutralizing concentrations. The neutralization activities of these hMAbs correlated with a strong inhibition of virus-liposome and intracellular fusion, not virus-cell binding. We mapped epitopes of these antibodies to the highly conserved fusion loop region of E domain II. Mutations at fusion loop residues W101, L107, and/or G109 significantly reduced the binding of the hMAbs to E protein. The results show that hMAbs directed against the highly conserved E protein fusion loop block viral entry downstream of virus-cell binding by inhibiting E protein-mediated fusion. Characterization of hMAbs targeting this region may provide new insights into DENV vaccine and therapeutic strategies.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.