JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
BioMart Central Portal: an open database network for the biological community.
Database (Oxford)
PUBLISHED: 01-01-2011
Show Abstract
Hide Abstract
BioMart Central Portal is a first of its kind, community-driven effort to provide unified access to dozens of biological databases spanning genomics, proteomics, model organisms, cancer data, ontology information and more. Anybody can contribute an independently maintained resource to the Central Portal, allowing it to be exposed to and shared with the research community, and linking it with the other resources in the portal. Users can take advantage of the common interface to quickly utilize different sources without learning a new system for each. The system also simplifies cross-database searches that might otherwise require several complicated steps. Several integrated tools streamline common tasks, such as converting between ID formats and retrieving sequences. The combination of a wide variety of databases, an easy-to-use interface, robust programmatic access and the array of tools make Central Portal a one-stop shop for biological data querying. Here, we describe the structure of Central Portal and show example queries to demonstrate its capabilities.
Related JoVE Video
BioMart: a data federation framework for large collaborative projects.
Database (Oxford)
PUBLISHED: 01-01-2011
Show Abstract
Hide Abstract
BioMart is a freely available, open source, federated database system that provides a unified access to disparate, geographically distributed data sources. It is designed to be data agnostic and platform independent, such that existing databases can easily be incorporated into the BioMart framework. BioMart allows databases hosted on different servers to be presented seamlessly to users, facilitating collaborative projects between different research groups. BioMart contains several levels of query optimization to efficiently manage large data sets and offers a diverse selection of graphical user interfaces and application programming interfaces to ensure that queries can be performed in whatever manner is most convenient for the user. The software has now been adopted by a large number of different biological databases spanning a wide range of data types and providing a rich source of annotation available to bioinformaticians and biologists alike.
Related JoVE Video
International Cancer Genome Consortium Data Portal--a one-stop shop for cancer genomics data.
Database (Oxford)
PUBLISHED: 01-01-2011
Show Abstract
Hide Abstract
The International Cancer Genome Consortium (ICGC) is a collaborative effort to characterize genomic abnormalities in 50 different cancer types. To make this data available, the ICGC has created the ICGC Data Portal. Powered by the BioMart software, the Data Portal allows each ICGC member institution to manage and maintain its own databases locally, while seamlessly presenting all the data in a single access point for users. The Data Portal currently contains data from 24 cancer projects, including ICGC, The Cancer Genome Atlas (TCGA), Johns Hopkins University, and the Tumor Sequencing Project. It consists of 3478 genomes and 13 cancer types and subtypes. Available open access data types include simple somatic mutations, copy number alterations, structural rearrangements, gene expression, microRNAs, DNA methylation and exon junctions. Additionally, simple germline variations are available as controlled access data. The Data Portal uses a web-based graphical user interface (GUI) to offer researchers multiple ways to quickly and easily search and analyze the available data. The web interface can assist in constructing complicated queries across multiple data sets. Several application programming interfaces are also available for programmatic access. Here we describe the organization, functionality, and capabilities of the ICGC Data Portal.
Related JoVE Video
Caulobacter chromosome segregation is an ordered multistep process.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 07-26-2010
Show Abstract
Hide Abstract
Despite its fundamental nature, bacterial chromosome segregation remains poorly understood. Viewing segregation as a single process caused multiple proposed mechanisms to appear in conflict and failed to explain how asymmetrically dividing bacteria break symmetry to move only one of their chromosomes. Here, we demonstrate that the ParA ATPase extends from one cell pole and pulls the chromosome by retracting upon association with the ParB DNA-binding protein. Surprisingly, ParA disruption has a specific effect on chromosome segregation that only perturbs the latter stages of this process. Using quantitative high-resolution imaging, we demonstrate that this specificity results from the multistep nature of chromosome translocation. We propose that Caulobacter chromosome segregation follows an ordered pathway of events with distinct functions and mechanisms. Initiation releases polar tethering of the origin of replication, distinction spatially differentiates the two chromosomes, and commitment irreversibly translocates the distal centromeric locus. Thus, much as eukaryotic mitosis involves a sequence of distinct subprocesses, Caulobacter cells also segregate their chromosomes through an orchestrated series of steps. We discuss how the multistep view of bacterial chromosome segregation can help to explain and reconcile outstanding puzzles and frame future investigation.
Related JoVE Video
International network of cancer genome projects.
, Thomas J Hudson, Warwick Anderson, Axel Artez, Anna D Barker, Cindy Bell, Rosa R Bernabé, M K Bhan, Fabien Calvo, Iiro Eerola, Daniela S Gerhard, Alan Guttmacher, Mark Guyer, Fiona M Hemsley, Jennifer L Jennings, David Kerr, Peter Klatt, Patrik Kolar, Jun Kusada, David P Lane, Frank Laplace, Lu Youyong, Gerd Nettekoven, Brad Ozenberger, Jane Peterson, T S Rao, Jacques Remacle, Alan J Schafer, Tatsuhiro Shibata, Michael R Stratton, Joseph G Vockley, Koichi Watanabe, Huanming Yang, Matthew M F Yuen, Bartha M Knoppers, Martin Bobrow, Anne Cambon-Thomsen, Lynn G Dressler, Stephanie O M Dyke, Yann Joly, Kazuto Kato, Karen L Kennedy, Pilar Nicolás, Michael J Parker, Emmanuelle Rial-Sebbag, Carlos M Romeo-Casabona, Kenna M Shaw, Susan Wallace, Georgia L Wiesner, Nikolajs Zeps, Peter Lichter, Andrew V Biankin, Christian Chabannon, Lynda Chin, Bruno Clément, Enrique De Alava, Françoise Degos, Martin L Ferguson, Peter Geary, D Neil Hayes, Amber L Johns, Arek Kasprzyk, Hidewaki Nakagawa, Robert Penny, Miguel A Piris, Rajiv Sarin, Aldo Scarpa, Marc van de Vijver, P Andrew Futreal, Hiroyuki Aburatani, Mònica Bayés, David D L Botwell, Peter J Campbell, Xavier Estivill, Sean M Grimmond, Ivo Gut, Martin Hirst, Carlos Lopez-Otin, Partha Majumder, Marco Marra, John D McPherson, Zemin Ning, Xose S Puente, Yijun Ruan, Hendrik G Stunnenberg, Harold Swerdlow, Victor E Velculescu, Richard K Wilson, Hong H Xue, Liu Yang, Paul T Spellman, Gary D Bader, Paul C Boutros, Paul Flicek, Gad Getz, Roderic Guigo, Guangwu Guo, David Haussler, Simon Heath, Tim J Hubbard, Tao Jiang, Steven M Jones, Qibin Li, Nuria López-Bigas, Ruibang Luo, Lakshmi Muthuswamy, B F Francis Ouellette, John V Pearson, Víctor Quesada, Benjamin J Raphael, Chris Sander, Terence P Speed, Lincoln D Stein, Joshua M Stuart, Jon W Teague, Yasushi Totoki, Tatsuhiko Tsunoda, Alfonso Valencia, David A Wheeler, Honglong Wu, Shancen Zhao, Guangyu Zhou, Mark Lathrop, Gilles Thomas, Teruhiko Yoshida, Myles Axton, Chris Gunter, Linda J Miller, Junjun Zhang, Syed A Haider, Jianxin Wang, Christina K Yung, Anthony Cros, Anthony Cross, Yong Liang, Saravanamuttu Gnaneshan, Jonathan Guberman, Jack Hsu, Don R C Chalmers, Karl W Hasel, Terry S H Kaan, William W Lowrance, Tohru Masui, Laura Lyman Rodriguez, Catherine Vergely, David D L Bowtell, Nicole Cloonan, Anna deFazio, James R Eshleman, Dariush Etemadmoghadam, Brooke B Gardiner, Brooke A Gardiner, James G Kench, Robert L Sutherland, Margaret A Tempero, Nicola J Waddell, Peter J Wilson, Steve Gallinger, Ming-Sound Tsao, Patricia A Shaw, Gloria M Petersen, Debabrata Mukhopadhyay, Ronald A DePinho, Sarah Thayer, Kamran Shazand, Timothy Beck, Michelle Sam, Lee Timms, Vanessa Ballin, Youyong Lu, Jiafu Ji, Xiuqing Zhang, Feng Chen, Xueda Hu, Qi Yang, Geng Tian, Lianhai Zhang, Xiaofang Xing, Xianghong Li, Zhenggang Zhu, Yingyan Yu, Jun Yu, Jörg Tost, Paul Brennan, Ivana Holcatova, David Zaridze, Alvis Brazma, Lars Egevard, Egor Prokhortchouk, Rosamonde Elizabeth Banks, Mathias Uhlén, Juris Viksna, Fredrik Ponten, Konstantin Skryabin, Ewan Birney, Ake Borg, Anne-Lise Børresen-Dale, Carlos Caldas, John A Foekens, Sancha Martin, Jorge S Reis-Filho, Andrea L Richardson, Christos Sotiriou, Giles Thoms, Laura van't Veer, Daniel Birnbaum, Hélène Blanché, Pascal Boucher, Sandrine Boyault, Jocelyne D Masson-Jacquemier, Iris Pauporté, Xavier Pivot, Anne Vincent-Salomon, Eric Tabone, Charles Theillet, Isabelle Treilleux, Paulette Bioulac-Sage, Thomas Decaens, Dominique Franco, Marta Gut, Didier Samuel, Jessica Zucman-Rossi, Roland Eils, Benedikt Brors, Jan O Korbel, Andrey Korshunov, Pablo Landgraf, Hans Lehrach, Stefan Pfister, Bernhard Radlwimmer, Guido Reifenberger, Michael D Taylor, Christof von Kalle, Partha P Majumder, Paolo Pederzoli, Rita A Lawlor, Massimo Delledonne, Alberto Bardelli, Thomas Gress, David Klimstra, Giuseppe Zamboni, Yusuke Nakamura, Satoru Miyano, Akihiro Fujimoto, Elias Campo, Silvia de Sanjosé, Emili Montserrat, Marcos Gonzalez-Díaz, Pedro Jares, Heinz Himmelbauer, Heinz Himmelbaue, Sílvia Beà, Samuel Aparicio, Douglas F Easton, Francis S Collins, Carolyn C Compton, Eric S Lander, Wylie Burke, Anthony R Green, Stanley R Hamilton, Olli P Kallioniemi, Timothy J Ley, Edison T Liu, Brandon J Wainwright.
Nature
PUBLISHED: 04-16-2010
Show Abstract
Hide Abstract
The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.
Related JoVE Video
A distance-weighted interaction map reveals a previously uncharacterized layer of the Bacillus subtilis spore coat.
Curr. Biol.
PUBLISHED: 03-18-2010
Show Abstract
Hide Abstract
Bacillus subtilis spores are encased in a protein assembly called the spore coat that is made up of at least 70 different proteins. Conventional electron microscopy shows the coat to be organized into two distinct layers. Because the coat is about as wide as the theoretical limit of light microscopy, quantitatively measuring the localization of individual coat proteins within the coat is challenging. We used fusions of coat proteins to green fluorescent protein to map genetic dependencies for coat assembly and to define three independent subnetworks of coat proteins. To complement the genetic data, we measured coat protein localization at subpixel resolution and integrated these two data sets to produce a distance-weighted genetic interaction map. Using these data, we predict that the coat comprises at least four spatially distinct layers, including a previously uncharacterized glycoprotein outermost layer that we name the spore crust. We found that crust assembly depends on proteins we predicted to localize to the crust. The crust may be conserved in all Bacillus spores and may play critical functions in the environment.
Related JoVE Video
Quantitative genome-scale analysis of protein localization in an asymmetric bacterium.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 04-22-2009
Show Abstract
Hide Abstract
Despite the importance of subcellular localization for cellular activities, the lack of high-throughput, high-resolution imaging and quantitation methodologies has limited genomic localization analysis to a small number of archival studies focused on C-terminal fluorescent protein fusions. Here, we develop a high-throughput pipeline for generating, imaging, and quantitating fluorescent protein fusions that we use for the quantitative genomic assessment of the distributions of both N- and C-terminal fluorescent protein fusions. We identify nearly 300 localized Caulobacter crescentus proteins, up to 10-fold more than were previously characterized. The localized proteins tend to be involved in spatially or temporally dynamic processes and proteins that function together and often localize together as well. The distributions of the localized proteins were quantitated by using our recently described projected system of internal coordinates from interpolated contours (PSICIC) image analysis toolkit, leading to the identification of cellular regions that are over- or under-enriched in localized proteins and of potential differences in the mechanisms that target proteins to different subcellular destinations. The Caulobacter localizome data thus represent a resource for studying both global properties of protein localization and specific protein functions, whereas the localization analysis pipeline is a methodological resource that can be readily applied to other systems.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.