JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Risk factors for exudative age-related macular degeneration in a large French case-control study.
Graefes Arch. Clin. Exp. Ophthalmol.
PUBLISHED: 11-06-2014
Show Abstract
Hide Abstract
The purpose of the CAP (Creteil AMD PHRC-funded) Study was to analyze risk factors of exudative age-related macular degeneration (AMD) in a large French case-control population.
Related JoVE Video
Clinical Characteristics and Current Therapies for Inherited Retinal Degenerations.
Cold Spring Harb Perspect Med
PUBLISHED: 10-18-2014
Show Abstract
Hide Abstract
Inherited retinal degenerations (IRDs) encompass a large group of clinically and genetically heterogeneous diseases that affect approximately 1 in 3000 people (>2 million people worldwide) (Bessant DA, Ali RR, Bhattacharya SS. 2001. Molecular genetics and prospects for therapy of the inherited retinal dystrophies. Curr Opin Genet Dev 11: 307-316.). IRDs may be inherited as Mendelian traits or through mitochondrial DNA, and may affect the entire retina (e.g., rod-cone dystrophy, also known as retinitis pigmentosa, cone dystrophy, cone-rod dystrophy, choroideremia, Usher syndrome, and Bardet-Bidel syndrome) or be restricted to the macula (e.g., Stargardt disease, Best disease, and Sorsby fundus dystrophy), ultimately leading to blindness. IRDs are a major cause of severe vision loss, with profound impact on patients and society. Although IRDs remain untreatable today, significant progress toward therapeutic strategies for IRDs has marked the past two decades. This progress has been based on better understanding of the pathophysiological pathways of these diseases and on technological advances.
Related JoVE Video
"En face" optical coherence tomography imaging in type 2 idiopathic macular telangiectasia.
Retina (Philadelphia, Pa.)
PUBLISHED: 09-26-2014
Show Abstract
Hide Abstract
To comprehensively evaluate the retinal and choroidal changes in eyes with Type 2 idiopathic macular telangiectasia using "en face" and B-scan spectral domain optical coherence tomography (OCT), and to compare their respective contributions to this evaluation.
Related JoVE Video
Rods in daylight act as relay cells for cone-driven horizontal cell-mediated surround inhibition.
Nat. Neurosci.
PUBLISHED: 09-01-2014
Show Abstract
Hide Abstract
Vertebrate vision relies on two types of photoreceptors, rods and cones, which signal increments in light intensity with graded hyperpolarizations. Rods operate in the lower range of light intensities while cones operate at brighter intensities. The receptive fields of both photoreceptors exhibit antagonistic center-surround organization. Here we show that at bright light levels, mouse rods act as relay cells for cone-driven horizontal cell-mediated surround inhibition. In response to large, bright stimuli that activate their surrounds, rods depolarize. Rod depolarization increases with stimulus size, and its action spectrum matches that of cones. Rod responses at high light levels are abolished in mice with nonfunctional cones and when horizontal cells are reversibly inactivated. Rod depolarization is conveyed to the inner retina via postsynaptic circuit elements, namely the rod bipolar cells. Our results show that the retinal circuitry repurposes rods, when they are not directly sensing light, to relay cone-driven surround inhibition.
Related JoVE Video
Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome.
Hum. Mol. Genet.
PUBLISHED: 08-28-2014
Show Abstract
Hide Abstract
Primary cilia are sensory organelles present on most mammalian cells. The assembly and maintenance of primary cilia are facilitated by intraflagellar transport (IFT), a bidirectional protein trafficking along the cilium. Mutations in genes coding for IFT components have been associated with a group of diseases called ciliopathies. These genetic disorders can affect a variety of organs including the retina. Using whole exome sequencing in three families, we identified mutations in Intraflagellar Transport 172 Homolog [IFT172 (Chlamydomonas)] that underlie an isolated retinal degeneration and Bardet-Biedl syndrome. Extensive functional analyses of the identified mutations in cell culture, rat retina and in zebrafish demonstrated their hypomorphic or null nature. It has recently been reported that mutations in IFT172 cause a severe ciliopathy syndrome involving skeletal, renal, hepatic and retinal abnormalities (Jeune and Mainzer-Saldino syndromes). Here, we report for the first time that mutations in this gene can also lead to an isolated form of retinal degeneration. The functional data for the mutations can partially explain milder phenotypes; however, the involvement of modifying alleles in the IFT172-associated phenotypes cannot be excluded. These findings expand the spectrum of disease associated with mutations in IFT172 and suggest that mutations in genes originally reported to be associated with syndromic ciliopathies should also be considered in subjects with non-syndromic retinal dystrophy.
Related JoVE Video
Rare and common variants in extracellular matrix gene Fibrillin 2 (FBN2) are associated with macular degeneration.
Hum. Mol. Genet.
PUBLISHED: 06-04-2014
Show Abstract
Hide Abstract
Neurodegenerative diseases affecting the macula constitute a major cause of incurable vision loss and exhibit considerable clinical and genetic heterogeneity, from early-onset monogenic disease to multifactorial late-onset age-related macular degeneration (AMD). As part of our continued efforts to define genetic causes of macular degeneration, we performed whole exome sequencing in four individuals of a two-generation family with autosomal dominant maculopathy and identified a rare variant p.Glu1144Lys in Fibrillin 2 (FBN2), a glycoprotein of the elastin-rich extracellular matrix (ECM). Sanger sequencing validated the segregation of this variant in the complete pedigree, including two additional affected and one unaffected individual. Sequencing of 192 maculopathy patients revealed additional rare variants, predicted to disrupt FBN2 function. We then undertook additional studies to explore the relationship of FBN2 to macular disease. We show that FBN2 localizes to Bruch's membrane and its expression appears to be reduced in aging and AMD eyes, prompting us to examine its relationship with AMD. We detect suggestive association of a common FBN2 non-synonymous variant, rs154001 (p.Val965Ile) with AMD in 10 337 cases and 11 174 controls (OR = 1.10; P-value = 3.79 × 10(-5)). Thus, it appears that rare and common variants in a single gene-FBN2-can contribute to Mendelian and complex forms of macular degeneration. Our studies provide genetic evidence for a key role of elastin microfibers and Bruch's membrane in maintaining blood-retina homeostasis and establish the importance of studying orphan diseases for understanding more common clinical phenotypes.
Related JoVE Video
From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 05-27-2014
Show Abstract
Hide Abstract
Progress in retinal-cell therapy derived from human pluripotent stem cells currently faces technical challenges that require the development of easy and standardized protocols. Here, we developed a simple retinal differentiation method, based on confluent human induced pluripotent stem cells (hiPSC), bypassing embryoid body formation and the use of exogenous molecules, coating, or Matrigel. In 2 wk, we generated both retinal pigmented epithelial cells and self-forming neural retina (NR)-like structures containing retinal progenitor cells (RPCs). We report sequential differentiation from RPCs to the seven neuroretinal cell types in maturated NR-like structures as floating cultures, thereby revealing the multipotency of RPCs generated from integration-free hiPSCs. Furthermore, Notch pathway inhibition boosted the generation of photoreceptor precursor cells, crucial in establishing cell therapy strategies. This innovative process proposed here provides a readily efficient and scalable approach to produce retinal cells for regenerative medicine and for drug-screening purposes, as well as an in vitro model of human retinal development and disease.
Related JoVE Video
Targeting Channelrhodopsin-2 to ON-bipolar Cells With Vitreally Administered AAV Restores ON and OFF Visual Responses in Blind Mice.
Mol. Ther.
PUBLISHED: 05-05-2014
Show Abstract
Hide Abstract
Most inherited retinal dystrophies display progressive photoreceptor cell degeneration leading to severe visual impairment. Optogenetic reactivation of retinal neurons mediated by adeno-associated virus (AAV) gene therapy has the potential to restore vision regardless of patient-specific mutations. The challenge for clinical translatability is to restore a vision as close to natural vision as possible, while using a surgically safe delivery route for the fragile degenerated retina. To preserve the visual processing of the inner retina, we targeted ON bipolar cells, which are still present at late stages of disease. For safe gene delivery, we used a recently engineered AAV variant that can transduce the bipolar cells after injection into the eye's easily accessible vitreous humor. We show that AAV encoding channelrhodopsin under the ON bipolar cell-specific promoter mediates long-term gene delivery restricted to ON-bipolar cells after intravitreal administration. Channelrhodopsin expression in ON bipolar cells leads to restoration of ON and OFF responses at the retinal and cortical levels. Moreover, light-induced locomotory behavior is restored in treated blind mice. Our results support the clinical relevance of a minimally invasive AAV-mediated optogenetic therapy for visual restoration.Molecular Therapy (2014); doi:10.1038/mt.2014.154.
Related JoVE Video
Cell specific electrodes for neuronal network reconstruction and monitoring.
Analyst
PUBLISHED: 04-05-2014
Show Abstract
Hide Abstract
Direct interfacing of neurons with electronic devices has been investigated for both prosthetic and neuro-computing applications. In vitro neuronal networks provide great tools not only for improving neuroprostheses but also to take advantage of their computing abilities. However, it is often difficult to organize neuronal networks according to specific cell distributions. Our aim was to develop a cell-type specific immobilization of neurons on individual electrodes to produce organized in vitro neuronal networks on multi-electrode arrays (MEAs). We demonstrate the selective capture of retinal neurons on antibody functionalized surfaces following the formation of self-assembled monolayers from protein-thiol conjugates by simple contact and protein-polypyrrole deposits by electrochemical functionalization. This neuronal selection was achieved on gold for either cone photoreceptors or retinal ganglion neurons using a PNA lectin or a Thy1 antibody, respectively. Anti-fouling of un-functionalized gold surfaces was optimized to increase the capture efficiencies. The technique was extended to electrode arrays by addressing electropolymerization of pyrrole monomers and pyrrole-protein conjugates to active electrodes. Retinal ganglion cell recording on the array further demonstrated the integrity of these neurons following their selection on polypyrrole-coated electrodes. Therefore, this protein-polypyrrole electrodeposition could provide a new approach to generate organized in vitro neuronal networks.
Related JoVE Video
The cost-effectiveness of the Argus II retinal prosthesis in Retinitis Pigmentosa patients.
BMC Ophthalmol
PUBLISHED: 04-03-2014
Show Abstract
Hide Abstract
Retinitis Pigmentosa (RP) is a hereditary genetic disease causing bilateral retinal degeneration. RP is a leading cause of blindness resulting in incurable visual impairment and drastic reduction in the Quality of life of the patients. Second Sight Medical Products Inc. developed Argus II, a retinal prosthesis system for treating RP. Argus II is the world's first ever-commercial implant intended to restore some vision in the blind patients. The objective of this study was to assess the cost-effectiveness of the Argus® II Retinal Prosthesis System (Argus II) in Retinitis Pigmentosa (RP) patients.
Related JoVE Video
Taurine: the comeback of a neutraceutical in the prevention of retinal degenerations.
Prog Retin Eye Res
PUBLISHED: 03-11-2014
Show Abstract
Hide Abstract
Taurine is the most abundant amino acid in the retina. In the 1970s, it was thought to be involved in retinal diseases with photoreceptor degeneration, because cats on a taurine-free diet presented photoreceptor loss. However, with the exception of its introduction into baby milk and parenteral nutrition, taurine has not yet been incorporated into any commercial treatment with the aim of slowing photoreceptor degeneration. Our recent discovery that taurine depletion is involved in the retinal toxicity of the antiepileptic drug vigabatrin has returned taurine to the limelight in the field of neuroprotection. However, although the retinal toxicity of vigabatrin principally involves a deleterious effect on photoreceptors, retinal ganglion cells (RGCs) are also affected. These findings led us to investigate the possible role of taurine depletion in retinal diseases with RGC degeneration, such as glaucoma and diabetic retinopathy. The major antioxidant properties of taurine may influence disease processes. In addition, the efficacy of taurine is dependent on its uptake into retinal cells, microvascular endothelial cells and the retinal pigment epithelium. Disturbances of retinal vascular perfusion in these retinal diseases may therefore affect the retinal uptake of taurine, resulting in local depletion. The low plasma taurine concentrations observed in diabetic patients may further enhance such local decreases in taurine concentration. We here review the evidence for a role of taurine in retinal ganglion cell survival and studies suggesting that this compound may be involved in the pathophysiology of glaucoma or diabetic retinopathy. Along with other antioxidant molecules, taurine should therefore be seriously reconsidered as a potential treatment for such retinal diseases.
Related JoVE Video
Whole-exome sequencing identifies KIZ as a ciliary gene associated with autosomal-recessive rod-cone dystrophy.
Am. J. Hum. Genet.
PUBLISHED: 03-11-2014
Show Abstract
Hide Abstract
Rod-cone dystrophy (RCD), also known as retinitis pigmentosa, is a progressive inherited retinal disorder characterized by photoreceptor cell death and genetic heterogeneity. Mutations in many genes have been implicated in the pathophysiology of RCD, but several others remain to be identified. Herein, we applied whole-exome sequencing to a consanguineous family with one subject affected with RCD and identified a homozygous nonsense mutation, c.226C>T (p.Arg76(?)), in KIZ, which encodes centrosomal protein kizuna. Subsequent Sanger sequencing of 340 unrelated individuals with sporadic and autosomal-recessive RCD identified two other subjects carrying pathogenic variants in KIZ: one with the same homozygous nonsense mutation (c.226C>T [p.Arg76(?)]) and another with compound-heterozygous mutations c.119_122delAACT (p.Lys40Ilefs(?)14) and c.52G>T (p.Glu18(?)). Transcriptomic analysis in mice detected mRNA levels of the mouse ortholog (Plk1s1) in rod photoreceptors, as well as its decreased expression when photoreceptors degenerated in rd1 mice. The presence of the human KIZ transcript was confirmed by quantitative RT-PCR in the retina, the retinal pigment epithelium, fibroblasts, and whole-blood cells (highest expression was in the retina). RNA in situ hybridization demonstrated the presence of Plk1s1 mRNA in the outer nuclear layer of the mouse retina. Immunohistology revealed KIZ localization at the basal body of the cilia in human fibroblasts, thus shedding light on another ciliary protein implicated in autosomal-recessive RCD.
Related JoVE Video
Gene therapy for mitochondrial diseases: Leber Hereditary Optic Neuropathy as the first candidate for a clinical trial.
C. R. Biol.
PUBLISHED: 02-24-2014
Show Abstract
Hide Abstract
Mitochondrial disorders cannot be ignored anymore in most medical disciplines; indeed their minimum estimated prevalence is superior to 1 in 5000 births. Despite the progress made in the last 25 years on the identification of gene mutations causing mitochondrial pathologies, only slow progress was made towards their effective treatments. Ocular involvement is a frequent feature in mitochondrial diseases and corresponds to severe and irreversible visual handicap due to retinal neuron loss and optic atrophy. Interestingly, three clinical trials for Leber Congenital Amaurosis due to RPE65 mutations are ongoing since 2007. Overall, the feasibility and safety of ocular Adeno-Associated Virus delivery in adult and younger patients and consistent visual function improvements have been demonstrated. The success of gene-replacement therapy for RPE65 opens the way for the development of similar approaches for a broad range of eye disorders, including those with mitochondrial etiology such as Leber Hereditary Optic Neuropathy (LHON).
Related JoVE Video
Therapeutic strategy for handling inherited retinal degenerations in a gene-independent manner using rod-derived cone viability factors.
C. R. Biol.
PUBLISHED: 02-20-2014
Show Abstract
Hide Abstract
The most common hereditary retinal degeneration, retinitis pigmentosa (RP), leads to blindness by degeneration of cone photoreceptors. Meanwhile, genetic studies have shown that a significant proportion of RP genes is expressed only by rods, which raises the question of the mechanism leading to the degeneration of cones. Following the concept of sustainability factor cones, rods secrete survival factors that are necessary to maintain the cones, named Rod-derived Cone Viability Factors (RdCVFs). In patients suffering from RP, loss of rods results in the loss of RdCVFs expression and followed by cone degeneration. We have identified the bifunctional genes nucleoredoxin-like 1 and 2 that encode for, by differential splicing, a thioredoxin enzyme and a cone survival factor, respectively RdCVF and RdCVF2. The administration of these survival factors would maintain cones and central vision in most patients suffering from RP.
Related JoVE Video
"En-face" spectral-domain optical coherence tomography findings in multiple evanescent white dot syndrome.
J Ophthalmol
PUBLISHED: 02-17-2014
Show Abstract
Hide Abstract
Purpose. The recent use of "en-face" enhanced-depth imaging spectral-domain optical coherence tomography (EDI SD-OCT) helps distinguish the retinal layers involved in the physiopathology of multiple evanescent white dot syndrome (MEWDS). Methods. Four patients presenting with MEWDS underwent a comprehensive ocular examination including C-scan ("en-face") EDI SD-OCT at the initial visit and during follow-up. Results. C-scans combined with the other multimodal imaging enabled the visualization of retinal damage. Acute lesions appeared as diffuse and focal disruptions occurring in the ellipsoid and interdigitation zones. The match between autofluorescence imaging, indocyanine green angiography, and "en-face" OCT helped identify the acute microstructural damages in the outer retina further than the choroid. Follow-up using "en-face" EDI-OCT revealed progressive and complete recovery of the central outer retinal layers. Conclusion. "En-face" EDI SD-OCT identified the site of initial damage in MEWDS as the photoreceptors and the interdigitation layers rather than the choroid. Moreover, "en-face" OCT is helpful in the follow-up of these lesions by being able to show the recovery of the outer retinal layers.
Related JoVE Video
Involvement of Bcl-2-associated transcription factor 1 in the differentiation of early-born retinal cells.
J. Neurosci.
PUBLISHED: 01-24-2014
Show Abstract
Hide Abstract
Retinal progenitor proliferation and differentiation are tightly controlled by extrinsic cues and distinctive combinations of transcription factors leading to the generation of retinal cell type diversity. In this context, we have characterized Bcl-2-associated transcription factor (Bclaf1) during rodent retinogenesis. Bclaf1 expression is restricted to early-born cell types, such as ganglion, amacrine, and horizontal cells. Analysis of developing retinas in Bclaf1-deficient mice revealed a reduction in the numbers of retinal ganglion cells, amacrine cells and horizontal cells and an increase in the numbers of cone photoreceptor precursors. Silencing of Bclaf1expression by in vitro electroporation of shRNA in embryonic retina confirmed that Bclaf1 serves to promote amacrine and horizontal cell differentiation. Misexpression of Bclaf1 in late retinal progenitors was not sufficient to directly induce the generation of amacrine and horizontal cells. Domain deletion analysis indicated that the N-terminal domain of Bclaf1 containing an arginine-serine-rich and a bZip domain is required for its effects on retinal cell differentiation. In addition, analysis revealed that Bclaf1 function occurs independently of its interaction with endogenous Bcl-2-related proteins. Altogether, our data demonstrates that Bclaf1expression in postmitotic early-born cells facilitates the differentiation of early retinal precursors into retinal ganglion cells, amacrine cells, and horizontal cells rather than into cone photoreceptors.
Related JoVE Video
Neuroglobin gene therapy prevents optic atrophy and preserves durably visual function in Harlequin mice.
Mol. Ther.
PUBLISHED: 01-23-2014
Show Abstract
Hide Abstract
Neuroglobin (NGB) is considered as an endogenous neuroprotective molecule against stroke, since the protein alleviates the adverse effects of hypoxic and ischemic insults. We previously demonstrated the functional link between NGB and mitochondria since it is required for respiratory chain function. Thus, here, we evaluated the relevance of this effect in the Harlequin (Hq) mouse strain, which exhibits retinal ganglion cell (RGC) loss and optic atrophy due to a respiratory chain complex I (CI) defect. A twofold decrease of NGB amounts was observed in Hq retinas. We constructed a recombinant adeno-associated virus which combines to the mouse NGB open reading frame, its 5' and 3'UTR, for guarantying mRNA stability and translation capacity. The vector was administrated intravitreally to Hq mice and NGB expression was stable for up to 7 months without negative effect on retinal architecture or function. On the contrary, RGCs and their axons were substantially preserved from degeneration; consequently, CI activity in optic nerves was protected conferring improvements in vision. Hence, we established that NGB prevents respiratory chain impairment, therefore, protecting visual function otherwise compromised by mitochondrial energetic failure.
Related JoVE Video
Microcystic changes in the retinal internal nuclear layer associated with optic atrophy: a prospective study.
J Ophthalmol
PUBLISHED: 01-16-2014
Show Abstract
Hide Abstract
Purpose. This study aimed at assessing the prevalence of pathologies presenting retinal inner nuclear layer (RINL) microcystic perimacular changes associated with optic nerve atrophy (OA). The charts of patients presenting a significant defect of the Retinal Nerve Fiber Layer (RNFL) were included prospectively in this study. Patients were classified according to the etiology of the RNFL defect. Two hundred and one eyes of 138 patients were enrolled in this analysis. Retinal images obtained showed the typical hyporeflective perifoveal crescent-shaped lesion composed of small round hyporeflective microcysts confined to the RINL in 35.3% of the eyes. Those findings were found in 75% of eyes presenting hereditary OA, 50% of eyes presenting ischemic optic neuritis, 50% of eyes with drusen of the optic nerve (ON), 44.4% of eyes presenting a compressive OA, 32% of eyes presenting inflammatory optic neuropathy from multiple sclerosis, 18.5% of eyes presenting OA from undetermined origin, and 17.6% of eyes having primary open-angle glaucoma. This study demonstrates that microcystic changes in RINL are not specific to a disease but are found in OA of various etiologies. Moreover, their incidence was found to be dependent upon the cause of OA, with the highest incidence occurring in genetic OA.
Related JoVE Video
Morphometric analysis of small arteries in the human retina using adaptive optics imaging: relationship with blood pressure and focal vascular changes.
J. Hypertens.
PUBLISHED: 01-11-2014
Show Abstract
Hide Abstract
The wall-to-lumen ratio (WLR) of retinal arteries is a recognized surrogate of end-organ damage due to aging and/or arterial hypertension. However, parietal morphometry remains difficult to assess in vivo. Recently, it was shown that adaptive optics retinal imaging can resolve parietal structures of retinal arterioles in humans in vivo. Here, using adaptive optics retinal imaging, we investigated the variations of parietal thickness of small retinal arteries with blood pressure and focal vascular damage.
Related JoVE Video
Retinal prostheses: clinical results and future challenges.
C. R. Biol.
PUBLISHED: 01-06-2014
Show Abstract
Hide Abstract
Retinal prostheses aim at restoring visual perception in blind patients affected by retinal diseases leading to the loss of photoreceptors, such as age-related macular degeneration or retinitis pigmentosa. Recent clinical trials have demonstrated the feasibility of this approach for restoring useful vision. Despite a limited number of electrodes (60), and therefore of pixels, some patients were able to read words and to recognize high-contrast objects. Face recognition and independent locomotion in unknown urban environments imply technological breakthroughs to increase the number and density of electrodes. This review presents recent clinical results and discusses future solutions to answer the major technological challenges.
Related JoVE Video
Gene therapy for inherited retinal degenerations.
C. R. Biol.
PUBLISHED: 01-06-2014
Show Abstract
Hide Abstract
Gene therapy is quickly becoming a reality applicable in the clinic for inherited retinal diseases. Progress over the past decade has moved proof-of-concept gene therapies from bench to bedside. The remarkable success in safety and efficacy, in the phase I/II clinical trials for the form of the severe childhood-onset blindness, Leber's Congenital Amaurosis (LCA) type II (due to mutations in the RPE65 gene) generated significant interest and opened up possibilities for a new era of retinal gene therapies. Success in these clinical trials was due to combining the favorable features of both the retina as a target organ and adeno-associated virus (AAV) as a vector. The retina offers several advantages for gene therapy approaches. It is an anatomically defined structure that is readily accessible for therapy and has some degree of immune privilege, making it suitable for application of viral vectors. AAV, on the other hand, is a non-pathogenic helper dependent virus that has little immunogenicity. This viral vector transduces quiescent cells efficiently and thanks to its small size diffuses well in the interneural matrix, making it suitable for applications in neural tissue. Building on this initial clinical success with LCA II, we have now many opportunities to extend this proof-of-concept to other retinal diseases. This article will discuss what are some of the most imminent targets for such therapies and what are the challenges that we face in moving these therapies to the clinic.
Related JoVE Video
AAV-mediated gene delivery in Dp71-null mouse model with compromised barriers.
Glia
PUBLISHED: 01-03-2014
Show Abstract
Hide Abstract
Formation and maintenance of the blood-retinal barrier (BRB) is required for proper vision and breaching of this barrier contributes to the pathology in a wide variety of retinal conditions such as retinal detachment and diabetic retinopathy. Dystrophin Dp71 being a key membrane cytoskeletal protein, expressed mainly in Müller cells, its absence has been related to BRB permeability through delocalization and down-regulation of the AQP4 and Kir4.1 channels. Dp71-null mouse is thus an excellent model to approach the study of retinal pathologies showing blood-retinal barrier permeability. We aimed to investigate the participation of Müller cells in the BRB and in the inner limiting membrane of Dp71-null mice compared with wild-type mice in order to understand how these barriers work in this model of permeable BRB. To this aim, we used an Adeno-associated virus (AAV) variant, ShH10-GFP, engineered to target Müller cells specifically. ShH10 coding GFP was introduced by intravitreal injection and Müller cell transduction was studied in Dp71-null mice in comparison to wild-type animals. We show that Müller cell transduction follows a significantly different pattern in Dp71-null mice indicating changes in viral cell-surface receptors as well as differences in the permeability of the inner limiting membrane in this mouse line. However, the compromised BRB of the Dp71-null mice does not lead to virus leakage into the bloodstream when the virus is injected intravitreally - an important consideration for AAV-mediated retinal gene therapy.
Related JoVE Video
Determination of morphological, biometric and biochemical susceptibilities in healthy eurasier dogs with suspected inherited glaucoma.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
In both humans and dogs, the primary risk factor for glaucoma is high intraocular pressure (IOP), which may be caused by iridocorneal angle (ICA) abnormalities. Oxidative stress has also been implicated in retinal ganglion cell damage associated with glaucoma. A suspected inherited form of glaucoma was recently identified in Eurasier dogs (EDs), a breed for which pedigrees are readily available. Because of difficulties in assessing ICA morphology in dogs with advanced glaucoma, we selected a cohort of apparently healthy dogsfor the investigation of ICA morphological status, IOP and plasma concentrations of oxidative stress biomarkers. We aimed to establish correlations between these factors, to identify predictive markers of glaucoma in this dog breed. A cohort of 28 subjects, volunteered for inclusion by their owners, was selected by veterinary surgeons. These dogs were assigned to four groups: young males, young females (1-3 years old), adult males and adult females (4-8 years old). Ocular examination included ophthalmoscopy, tonometry, gonioscopy, biometry and ultrasound biomicroscopy (UBM), and the evaluation of oxidative stress biomarkers consisting of measurements of plasma glutathione peroxidase (GP) activity and taurine and metabolic precursor (methionine and cysteine) concentrations in plasma. The prevalence of pectinate ligament abnormalities was significantly higher in adult EDs than in young dogs. Moreover, in adult females, high IOP was significantly correlated with a short axial globe length, and a particularly large distance between Schwalbe's line and the anterior lens capsule. GP activity levels were significantly lower in EDs than in a randomized control group of dogs, and plasma taurine concentrations were higher. Hence, ICA abnormalities were associated with weaker antioxidant defenses in EDs, potentially counteracted by higher plasma taurine concentrations. This study suggests that EDs may constitute an appropriate canine model for the development of glaucoma. This cohort will be used as a sentinel for longitudinal monitoring.
Related JoVE Video
Spectral-domain optical coherence tomography of the rodent eye: highlighting layers of the outer retina using signal averaging and comparison with histology.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Spectral-Domain Optical Coherence Tomography (SD-OCT) is a widely used method to observe retinal layers and follow pathological events in human. Recently, this technique has been adapted for animal imaging. This non-invasive technology brings a cross-sectional visualization of the retina, which permits to observe precisely each layer. There is a clear expansion of the use of this imaging modality in rodents, thus, a precise characterization of the different outer retinal layers observed by SD-OCT is now necessary to make the most of this technology. The identification of the inner strata until the outer nuclear layer has already been clearly established, while the attribution of the layers observed by SD-OCT to the structures corresponding to photoreceptors segments and retinal pigment epithelium is much more questionable. To progress in the understanding of experimental SD-OCT imaging, we developed a method for averaging SD-OCT data to generate a mean image allowing to better delineate layers in the retina of pigmented and albino strains of mice and rats. It allowed us to locate precisely the interface between photoreceptors and retinal pigment epithelium and to identify unambiguously four layers corresponding to the inner and outer parts of photoreceptors segments. We show that the thickness of the various layers can be measured as accurately in vivo on SD-OCT images, than post-mortem by a morphometric analysis of histological sections. We applied SD-OCT to different models and demonstrated that it allows analysis of focal or diffuse retinal pathological processes such as mutation-dependent damages or light-driven modification of photoreceptors. Moreover, we report a new method of combined use of SD-OCT and integration to quantify laser-induced choroidal neovascularization. In conclusion, we clearly demonstrated that SD-OCT represents a valuable tool for imaging the rodent retina that is at least as accurate as histology, non-invasive and allows longitudinal follow-up of the same animal.
Related JoVE Video
Distinctive glial and neuronal interfacing on nanocrystalline diamond.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth.
Related JoVE Video
Lrit3 deficient mouse (nob6): a novel model of complete congenital stationary night blindness (cCSNB).
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Mutations in LRIT3, coding for a Leucine-Rich Repeat, immunoglobulin-like and transmembrane domains 3 protein lead to autosomal recessive complete congenital stationary night blindness (cCSNB). The role of the corresponding protein in the ON-bipolar cell signaling cascade remains to be elucidated. Here we genetically and functionally characterize a commercially available Lrit3 knock-out mouse, a model to study the function and the pathogenic mechanism of LRIT3. We confirm that the insertion of a Bgeo/Puro cassette in the knock-out allele introduces a premature stop codon, which presumably codes for a non-functional protein. The mouse line does not harbor other mutations present in common laboratory mouse strains or in other known cCSNB genes. Lrit3 mutant mice exhibit a so-called no b-wave (nob) phenotype with lacking or severely reduced b-wave amplitudes in the scotopic and photopic electroretinogram (ERG), respectively. Optomotor tests reveal strongly decreased optomotor responses in scotopic conditions. No obvious fundus auto-fluorescence or histological retinal structure abnormalities are observed. However, spectral domain optical coherence tomography (SD-OCT) reveals thinned inner nuclear layer and part of the retina containing inner plexiform layer, ganglion cell layer and nerve fiber layer in these mice. To our knowledge, this is the first time that SD-OCT technology is used to characterize an animal model for CSNB. This phenotype is noted at 6 weeks and at 6 months. The stationary nob phenotype of mice lacking Lrit3, which we named nob6, confirms the findings previously reported in patients carrying LRIT3 mutations and is similar to other cCSNB mouse models. This novel mouse model will be useful for investigating the pathogenic mechanism(s) associated with LRIT3 mutations and clarifying the role of LRIT3 in the ON-bipolar cell signaling cascade.
Related JoVE Video
Toward postnatal reversal of ocular congenital malformations.
J. Clin. Invest.
PUBLISHED: 12-20-2013
Show Abstract
Hide Abstract
Aniridia is a panocular disorder that severely affects vision in early life. Most cases are caused by dominantly inherited mutations or deletions of the PAX6 gene, which encodes a transcription factor that is essential for the development of the eye and the central nervous system. In this issue of the JCI, Gregory-Evans and colleagues demonstrate that early postnatal topical administration of an ataluren-based formulation reverses congenital malformations in the postnatal mouse eye, providing evidence that manipulation of PAX6 after birth may lead to corrective tissue remodeling. These findings offer hope that ataluren administration could be a therapeutic paradigm applicable to some major congenital eye defects.
Related JoVE Video
Further Insights Into GPR179: Expression, Localization, and Associated Pathogenic Mechanisms Leading to Complete Congenital Stationary Night Blindness.
Invest. Ophthalmol. Vis. Sci.
PUBLISHED: 11-14-2013
Show Abstract
Hide Abstract
Mutations in GPR179, which encodes the G protein-coupled receptor 179, lead to autosomal recessive complete (c) congenital stationary night blindness (CSNB), which is characterized by an ON-bipolar retinal cell dysfunction. This study further defined the exact site of Gpr179 expression and its protein localization in human retina and elucidated the pathogenic mechanism of the reported missense and splice site mutations.
Related JoVE Video
Long-term in vivo impedance changes of subretinal microelectrodes implanted in dystrophic P23H rats.
Int J Artif Organs
PUBLISHED: 10-03-2013
Show Abstract
Hide Abstract
Retinal prostheses are being developed to restore vision in blind patients with photoreceptor degeneration. Electrodes arrays were subretinally implanted in transgenic P23H rats with their photoreceptors degenerated. Electrical stability of the implants was evaluated by long-term monitoring of their impedance changes. Electrode impedances were found to increase by two log units over a three weeks period whereas no impedance increase was noted when the implants were located in the vitreous. In case of hemorrhage or major fibrous reactions, the impedance continued to increase steadily. After explantation, it recovered its initial value indicating no deterioration of the implant. Although the glial cell layer at the surface of the subretinal space was slightly larger, no major glial reaction was seen in direct contact to the implant. These results indicate that no functional testing should be considered before at least three weeks post implantation.
Related JoVE Video
The familial dementia gene revisited: a missense mutation revealed by whole-exome sequencing identifies ITM2B as a candidate gene underlying a novel autosomal dominant retinal dystrophy in a large family.
Hum. Mol. Genet.
PUBLISHED: 09-10-2013
Show Abstract
Hide Abstract
Inherited retinal diseases are a group of clinically and genetically heterogeneous disorders for which a significant number of cases remain genetically unresolved. Increasing knowledge on underlying pathogenic mechanisms with precise phenotype-genotype correlation is, however, critical for establishing novel therapeutic interventions for these yet incurable neurodegenerative conditions. We report phenotypic and genetic characterization of a large family presenting an unusual autosomal dominant retinal dystrophy. Phenotypic characterization revealed a retinopathy dominated by inner retinal dysfunction and ganglion cell abnormalities. Whole-exome sequencing identified a missense variant (c.782A>C, p.Glu261Ala) in ITM2B coding for Integral Membrane Protein 2B, which co-segregates with the disease in this large family and lies within the 24.6 Mb interval identified by microsatellite haplotyping. The physiological role of ITM2B remains unclear and has never been investigated in the retina. RNA in situ hybridization reveals Itm2b mRNA in inner nuclear and ganglion cell layers within the retina, with immunostaining demonstrating the presence of the corresponding protein in the same layers. Furthermore, ITM2B in the retina co-localizes with its known interacting partner in cerebral tissue, the amyloid ? precursor protein, critical in Alzheimer disease physiopathology. Interestingly, two distinct ITM2B mutations, both resulting in a longer protein product, had already been reported in two large autosomal dominant families with Alzheimer-like dementia but never in subjects with isolated retinal diseases. These findings should better define pathogenic mechanism(s) associated with ITM2B mutations underlying dementia or retinal disease and add a new candidate to the list of genes involved in inherited retinal dystrophies.
Related JoVE Video
Transcriptomic analysis of human retinal surgical specimens using jouRNAI.
J Vis Exp
PUBLISHED: 08-28-2013
Show Abstract
Hide Abstract
Retinal detachment (RD) describes a separation of the neurosensory retina from the retinal pigmented epithelium (RPE). The RPE is essential for normal function of the light sensitive neurons, the photoreceptors. Detachment of the retina from the RPE creates a physical gap that is filled with extracellular fluid. RD initiates cellular and molecular adverse events that affect both the neurosensory retina and the RPE since the physiological exchange of ions and metabolites is severely perturbed. The consequence for vision is related to the duration of the detachment since a rapid reapposition of the two tissues results in the restoration of vision (1). The treatment of RD is exclusively surgical. Removal of vitreous gel (vitrectomy) is followed by the removal non essential part of the retina around the detached area to favor retinal detachment. The removed retinal specimens are res nullius (nothing) and consequently normally discarded. To recover RNA from these surgical specimens, we developed the procedure jouRNAl that allows RNA conservation during the transfer from the surgical block to the laboratory. We also standardized a protocol to purify RNA by cesium chloride ultracentrifugation to assure that the purified RNAs are suitable for global gene expression analysis. The quality of the RNA was validated both by RT-PCR and microarray analysis. Analysis of the data shows a simultaneous involvement of inflammation and photoreceptor degeneration during RD.
Related JoVE Video
Retinal and choroidal changes observed with En face enhanced-depth imaging OCT in central serous chorioretinopathy.
Br J Ophthalmol
PUBLISHED: 07-03-2013
Show Abstract
Hide Abstract
To describe retinal and choroidal changes in acute and quiescent central serous chorioretinopathy (CSC) observed with En face spectral domain optical coherence tomography (SD OCT) combined with enhanced-depth imaging (EDI).
Related JoVE Video
Functional and high resolution retinal imaging assessment in a case of ocular siderosis.
Doc Ophthalmol
PUBLISHED: 06-06-2013
Show Abstract
Hide Abstract
To report new findings in a case of ocular siderosis explored by high resolution angiography and adaptive optics (AO).
Related JoVE Video
Gene therapy for blindness.
Annu. Rev. Neurosci.
PUBLISHED: 05-31-2013
Show Abstract
Hide Abstract
Sight-restoring therapy for the visually impaired and blind is a major unmet medical need. Ocular gene therapy is a rational choice for restoring vision or preventing the loss of vision because most blinding diseases originate in cellular components of the eye, a compartment that is optimally suited for the delivery of genes, and many of these diseases have a genetic origin or genetic component. In recent years we have witnessed major advances in the field of ocular gene therapy, and proof-of-concept studies are under way to evaluate the safety and efficacy of human gene therapies. Here we discuss the concepts and recent advances in gene therapy in the retina. Our review discusses traditional approaches such as gene replacement and neuroprotection and also new avenues such as optogenetic therapies. We conjecture that advances in gene therapy in the retina will pave the way for gene therapies in other parts of the brain.
Related JoVE Video
Disease-causing mutations in BEST1 gene are associated with altered sorting of bestrophin-1 protein.
Int J Mol Sci
PUBLISHED: 05-14-2013
Show Abstract
Hide Abstract
Mutations in BEST1 gene, encoding the bestrophin-1 (Best1) protein are associated with macular dystrophies. Best1 is predominantly expressed in the retinal pigment epithelium (RPE), and is inserted in its basolateral membrane. We investigated the cellular localization in polarized MDCKII cells of disease-associated Best1 mutant proteins to study specific sorting motifs of Best1. Real-time PCR and western blots for endogenous expression of BEST1 in MDCK cells were performed. Best1 mutant constructs were generated using site-directed mutagenesis and transfected in MDCK cells. For protein sorting, confocal microscopy studies, biotinylation assays and statistical methods for quantification of mislocalization were used. Analysis of endogenous expression of BEST1 in MDCK cells revealed the presence of BEST1 transcript but no protein. Confocal microscopy and quantitative analyses indicate that transfected normal human Best1 displays a basolateral localization in MDCK cells, while cell sorting of several Best1 mutants (Y85H, Q96R, L100R, Y227N, Y227E) was altered. In contrast to constitutively active Y227E, constitutively inactive Y227F Best1 mutant localized basolaterally similar to the normal Best1 protein. Our data suggest that at least three basolateral sorting motifs might be implicated in proper Best1 basolateral localization. In addition, non-phosphorylated tyrosine 227 could play a role for basolateral delivery.
Related JoVE Video
Retinal inner nuclear layer microcystic changes in optic nerve atrophy: a novel spectral-domain OCT finding.
Retina (Philadelphia, Pa.)
PUBLISHED: 05-07-2013
Show Abstract
Hide Abstract
Optic atrophy constitutes the final stage in the evolution of optic neuropathy. The aim of this study was to describe the presence of macular microcystic changes or pseudocysts in patients with advanced optic atrophy.
Related JoVE Video
Adaptive optics imaging of geographic atrophy.
Invest. Ophthalmol. Vis. Sci.
PUBLISHED: 04-27-2013
Show Abstract
Hide Abstract
To report the findings of en face adaptive optics (AO) near infrared (NIR) reflectance fundus flood imaging in eyes with geographic atrophy (GA).
Related JoVE Video
Using spectral-domain optical coherence tomography imaging to identify the presence of retinal silicone oil emulsification after silicone oil tamponade.
Retina (Philadelphia, Pa.)
PUBLISHED: 04-18-2013
Show Abstract
Hide Abstract
To describe small hyperreflective areas using spectral-domain optical coherence tomography (SD-OCT) imaging in eyes that have had silicone oil tamponade.
Related JoVE Video
Mutations in IMPG1 cause vitelliform macular dystrophies.
Am. J. Hum. Genet.
PUBLISHED: 04-06-2013
Show Abstract
Hide Abstract
Vitelliform macular dystrophies (VMD) are inherited retinal dystrophies characterized by yellow, round deposits visible upon fundus examination and encountered in individuals with juvenile Best macular dystrophy (BMD) or adult-onset vitelliform macular dystrophy (AVMD). Although many BMD and some AVMD cases harbor mutations in BEST1 or PRPH2, the underlying genetic cause remains unknown for many affected individuals. In a large family with autosomal-dominant VMD, gene mapping and whole-exome sequencing led to the identification of a c.713T>G (p.Leu238Arg) IMPG1 mutation, which was subsequently found in two other families with autosomal-dominant VMD and the same phenotype. IMPG1 encodes the SPACR protein, a component of the rod and cone photoreceptor extracellular matrix domains. Structural modeling indicates that the p.Leu238Arg substitution destabilizes the conserved SEA1 domain of SPACR. Screening of 144 probands who had various forms of macular dystrophy revealed three other IMPG1 mutations. Two individuals from one family affected by autosomal-recessive VMD were homozygous for the splice-site mutation c.807+1G>T, and two from another family were compound heterozygous for the mutations c.461T>C (p.Leu154Pro) and c.1519C>T (p.Arg507(?)). Most cases had a normal or moderately decreased electrooculogram Arden ratio. We conclude that IMPG1 mutations cause both autosomal-dominant and -recessive forms of VMD, thus indicating that impairment of the interphotoreceptor matrix might be a general cause of VMD.
Related JoVE Video
The Detection of Motion by Blind Subjects With the Epiretinal 60-Electrode (Argus II) Retinal Prosthesis.
JAMA Ophthalmol
PUBLISHED: 04-02-2013
Show Abstract
Hide Abstract
To investigate the ability of 28 blind subjects implanted with a 60-electrode Argus II (Second Sight Medical Products Inc) retinal prosthesis system to detect the direction of a moving object.
Related JoVE Video
[Therapeutic innovation in AMD and other retinal diseases].
Rev Prat
PUBLISHED: 03-06-2013
Show Abstract
Hide Abstract
Age-related macular degeneration (AMD) is a leading cause of severe visual impairment in individuals over 50 years in developed countries. Latest advances in imaging techniques have led to improved and accurate diagnosis of AMD. We witness a major breakthrough in the treatment of the neovascular form of AMD with the antiangiogenic (anti-VEGF) drugs. However, no therapy is yet available for the atrophic dry form of AMD. Innovative strategies gene therapy, cell therapy, nanotechnology neuroprotection- and multidisciplinary approaches are emerging to prevent the decline in vision in aging populations and its health implications.
Related JoVE Video
Seven new loci associated with age-related macular degeneration.
Lars G Fritsche, Wei Chen, Matthew Schu, Brian L Yaspan, Yi Yu, Gudmar Thorleifsson, Donald J Zack, Satoshi Arakawa, Valentina Cipriani, Stephan Ripke, Robert P Igo, Gabriëlle H S Buitendijk, Xueling Sim, Daniel E Weeks, Robyn H Guymer, Joanna E Merriam, Peter J Francis, Gregory Hannum, Anita Agarwal, Ana Maria Armbrecht, Isabelle Audo, Tin Aung, Gaetano R Barile, Mustapha Benchaboune, Alan C Bird, Paul N Bishop, Kari E Branham, Matthew Brooks, Alexander J Brucker, William H Cade, Melinda S Cain, Peter A Campochiaro, Chi-Chao Chan, Ching-Yu Cheng, Emily Y Chew, Kimberly A Chin, Itay Chowers, David G Clayton, Radu Cojocaru, Yvette P Conley, Belinda K Cornes, Mark J Daly, Baljean Dhillon, Albert O Edwards, Evangelos Evangelou, Jesen Fagerness, Henry A Ferreyra, James S Friedman, Asbjorg Geirsdottir, Ronnie J George, Christian Gieger, Neel Gupta, Stephanie A Hagstrom, Simon P Harding, Christos Haritoglou, John R Heckenlively, Frank G Holz, Guy Hughes, John P A Ioannidis, Tatsuro Ishibashi, Peronne Joseph, Gyungah Jun, Yoichiro Kamatani, Nicholas Katsanis, Claudia N Keilhauer, Jane C Khan, Ivana K Kim, Yutaka Kiyohara, Barbara E K Klein, Ronald Klein, Jaclyn L Kovach, Igor Kozak, Clara J Lee, Kristine E Lee, Peter Lichtner, Andrew J Lotery, Thomas Meitinger, Paul Mitchell, Saddek Mohand-Saïd, Anthony T Moore, Denise J Morgan, Margaux A Morrison, Chelsea E Myers, Adam C Naj, Yusuke Nakamura, Yukinori Okada, Anton Orlin, M Carolina Ortube, Mohammad I Othman, Chris Pappas, Kyu Hyung Park, Gayle J T Pauer, Neal S Peachey, Olivier Poch, Rinki Ratna Priya, Robyn Reynolds, Andrea J Richardson, Raymond Ripp, Guenther Rudolph, Euijung Ryu, José-Alain Sahel, Debra A Schaumberg, Hendrik P N Scholl, Stephen G Schwartz, William K Scott, Humma Shahid, Haraldur Sigurdsson, Giuliana Silvestri, Theru A Sivakumaran, R Theodore Smith, Lucia Sobrin, Eric H Souied, Dwight E Stambolian, Hreinn Stefansson, Gwen M Sturgill-Short, Atsushi Takahashi, Nirubol Tosakulwong, Barbara J Truitt, Evangelia E Tsironi, André G Uitterlinden, Cornelia M van Duijn, Lingam Vijaya, Johannes R Vingerling, Eranga N Vithana, Andrew R Webster, H-Erich Wichmann, Thomas W Winkler, Tien Y Wong, Alan F Wright, Diana Zelenika, Ming Zhang, Ling Zhao, Kang Zhang, Michael L Klein, Gregory S Hageman, G Mark Lathrop, Kari Stefansson, Rando Allikmets, Paul N Baird, Michael B Gorin, Jie Jin Wang, Caroline C W Klaver, Johanna M Seddon, Margaret A Pericak-Vance, Sudha K Iyengar, John R W Yates, Anand Swaroop, Bernhard H F Weber, Michiaki Kubo, Margaret M DeAngelis, Thierry Léveillard, Unnur Thorsteinsdottir, Jonathan L Haines, Lindsay A Farrer, Iris M Heid, Gonçalo R Abecasis, .
Nat. Genet.
PUBLISHED: 03-03-2013
Show Abstract
Hide Abstract
Age-related macular degeneration (AMD) is a common cause of blindness in older individuals. To accelerate the understanding of AMD biology and help design new therapies, we executed a collaborative genome-wide association study, including >17,100 advanced AMD cases and >60,000 controls of European and Asian ancestry. We identified 19 loci associated at P < 5 × 10(-8). These loci show enrichment for genes involved in the regulation of complement activity, lipid metabolism, extracellular matrix remodeling and angiogenesis. Our results include seven loci with associations reaching P < 5 × 10(-8) for the first time, near the genes COL8A1-FILIP1L, IER3-DDR1, SLC16A8, TGFBR1, RAD51B, ADAMTS9 and B3GALTL. A genetic risk score combining SNP genotypes from all loci showed similar ability to distinguish cases and controls in all samples examined. Our findings provide new directions for biological, genetic and therapeutic studies of AMD.
Related JoVE Video
CCR2(+) monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice.
EMBO Mol Med
PUBLISHED: 02-28-2013
Show Abstract
Hide Abstract
Atrophic age-related macular degeneration (AMD) is associated with the subretinal accumulation of mononuclear phagocytes (MPs). Their role in promoting or inhibiting retinal degeneration is unknown. We here show that atrophic AMD is associated with increased intraocular CCL2 levels and subretinal CCR2(+) inflammatory monocyte infiltration in patients. Using age- and light-induced subretinal inflammation and photoreceptor degeneration in Cx3cr1 knockout mice, we show that subretinal Cx3cr1 deficient MPs overexpress CCL2 and that both the genetic deletion of CCL2 or CCR2 and the pharmacological inhibition of CCR2 prevent inflammatory monocyte recruitment, MP accumulation and photoreceptor degeneration in vivo. Our study shows that contrary to CCR2 and CCL2, CX3CR1 is constitutively expressed in the retina where it represses the expression of CCL2 and the recruitment of neurotoxic inflammatory CCR2(+) monocytes. CCL2/CCR2 inhibition might represent a powerful tool for controlling inflammation and neurodegeneration in AMD.
Related JoVE Video
Neuroglobin involvement in visual pathways through the optic nerve.
Biochim. Biophys. Acta
PUBLISHED: 02-26-2013
Show Abstract
Hide Abstract
Neuroglobin is a member of the globin superfamily proposed to be only expressed in neurons and involved in neuronal protection from hypoxia or oxidative stress. A significant fraction of the protein localizes within the mitochondria and is directly associated with mitochondrial metabolism and integrity. The retina is the site of the highest concentration for neuroglobin and has been reported to be up to 100-fold higher than in the brain. Since neuroglobin was especially abundant in retinal ganglion cell layer, we investigated its abundance in optic nerves. Remarkably in optic nerves, neuroglobin is observed, as expected, in retinal ganglion cell axon profiles but also astrocyte processes, in physiological conditions, possess high levels of the protein. Neuroglobin mRNA and protein levels are ~10-fold higher in optic nerves than in retinas, indicating an important accumulation of neuroglobin in these support cells. Additionally, neuroglobin levels increase in Müller cells during reactive gliosis in response to eye injury. This suggests the pivotal role of neuroglobin in retinal glia involved in neuronal support and/or healing. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Related JoVE Video
The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss.
Br J Ophthalmol
PUBLISHED: 02-20-2013
Show Abstract
Hide Abstract
Retinal prosthesis systems (RPS) are a novel treatment for profound vision loss in outer retinal dystrophies. Ideal prostheses would offer stable, long-term retinal stimulation and reproducible spatial resolution in a portable form appropriate for daily life.
Related JoVE Video
A semi-automated computer tool for the analysis of retinal vessel diameter dynamics.
Comput. Biol. Med.
PUBLISHED: 02-18-2013
Show Abstract
Hide Abstract
Retinal vessels are directly accessible to clinical observation. This has numerous potential interests for medical investigations. Using the Retinal Vessel Analyzer, a dedicated eye fundus camera enabling dynamic, video-rate recording of micrometric changes of the diameter of retinal vessels, we developed a semi-automated computer tool that extracts the heart beat rate and pulse amplitude values from the records. The extracted data enabled us to show that there is a decreasing relationship between heart beat rate and pulse amplitude of arteries and veins. Such an approach will facilitate the modeling of hemodynamic interactions in small vessels.
Related JoVE Video
Evaluation of the taurine concentrations in dog plasma and aqueous humour: a pilot study.
Adv. Exp. Med. Biol.
PUBLISHED: 02-09-2013
Show Abstract
Hide Abstract
In the 70s, the amino acid taurine was found essential for photoreceptor survival. Recently, we found that taurine depletion can also trigger retinal ganglion cell degeneration both in vitro and in vivo. Therefore, evaluation of taurine levels could be a crucial biomarker for different pathologies of retinal ganglion cells such as glaucoma. Because different breeds of dog can develop glaucoma, we performed taurine measurements on plasma and aqueous humour samples from pet dogs. Here, we exposed results from a pilot study on normal selected breed of pet dogs, without any ocular pathology. Samples were collected by veterinarians who belong to the Réseau Européen dOphtalmologie Vétérinaire et de Vision Animale. Following measurements by high-performance liquid chromatography (HPLC), the averaged taurine concentration was 162.3 ?M in the plasma and 51.8 ?M in the aqueous humour. No correlation was observed between these two taurine concentrations, which exhibited a ratio close to 3. Further studies will determine if these taurine concentrations are changed in glaucomatous dogs.
Related JoVE Video
Taurine is a crucial factor to preserve retinal ganglion cell survival.
Adv. Exp. Med. Biol.
PUBLISHED: 02-09-2013
Show Abstract
Hide Abstract
Retinal ganglion cells (RGCs) are spiking neurons, which send visual information to the brain, through the optic nerve. RGC degeneration occurs in retinal diseases, either as a primary process or secondary to photoreceptor loss. Mechanisms involved in this neuronal degeneration are still unclear and no drugs directly targeting RGC neuroprotection are yet available. Here, we show that taurine is one factor involved in preserving the RGC survival. Indeed, a taurine depletion induced by the antiepileptic drug, vigabatrin, was incriminated in its retinal toxicity leading to the RGC loss. Similarly, we showed that RGC degeneration can be induced by pharmacologically blocking the taurine-transporter with the chronic administration of a selective inhibitor, which results in a decrease in the taurine levels both in the plasma and in the retinal tissue. Finally, we found that taurine can directly prevent RGC degeneration, occurring either in serum-deprived pure RGC cultures or in animal models presenting an RGC loss (glaucomatous rats and the P23H rats, a model for retinitis pigmentosa). These data suggest that the retinal taurine level is a crucial marker to prevent RGC damage in major retinal diseases.
Related JoVE Video
Findings in detection of Herpesviridae by polymerase chain reaction and intraocular antibody production in a case series of anterior uveitis.
Ocul. Immunol. Inflamm.
PUBLISHED: 01-18-2013
Show Abstract
Hide Abstract
To target the use of two biologic tests in the diagnostic of viral Herpesviridae anterior uveitis (AC) by the consideration of clinical behavior and delay of intraocular sampling.
Related JoVE Video
Neonatal hyperglycemia inhibits angiogenesis and induces inflammation and neuronal degeneration in the retina.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Recent evidence suggests that transient hyperglycemia in extremely low birth weight infants is strongly associated with the occurrence of retinopathy of prematurity (ROP). We propose a new model of Neonatal Hyperglycemia-induced Retinopathy (NHIR) that mimics many aspects of retinopathy of prematurity. Hyperglycemia was induced in newborn rat pups by injection of streptozocine (STZ) at post natal day one (P1). At various time points, animals were assessed for vascular abnormalities, neuronal cell death and accumulation and activation of microglial cells. We here report that streptozotocin induced a rapid and sustained increase of glycemia from P2/3 to P6 without affecting rat pups gain weight or necessitating insulin treatment. Retinal vascular area was significantly reduced in P6 hyperglycemic animals compared to control animals. Hyperglycemia was associated with (i) CCL2 chemokine induction at P6, (ii) a significant recruitment of inflammatory macrophages and an increase in total number of Iba+ macrophages/microglia cells in the inner nuclear layer (INL), and (iii) excessive apoptosis in the INL. NHIR thereby reproduces several aspects of ischemic retinopathies, including ROP and diabetic retinopathies, and might be a useful model to decipher hyperglycemia-induced cellular and molecular mechanisms in the small rodent.
Related JoVE Video
Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Among the identified risk factors of age-related macular degeneration, sunlight is known to induce cumulative damage to the retina. A photosensitive derivative of the visual pigment, N-retinylidene-N-retinylethanolamine (A2E), may be involved in this phototoxicity. The high energy visible light between 380 nm and 500 nm (blue light) is incriminated. Our aim was to define the most toxic wavelengths in the blue-green range on an in vitro model of the disease. Primary cultures of porcine retinal pigment epithelium cells were incubated for 6 hours with different A2E concentrations and exposed for 18 hours to 10 nm illumination bands centered from 380 to 520 nm in 10 nm increments. Light irradiances were normalized with respect to the natural sunlight reaching the retina. Six hours after light exposure, cell viability, necrosis and apoptosis were assessed using the Apotox-Glo Triplex™ assay. Retinal pigment epithelium cells incubated with A2E displayed fluorescent bodies within the cytoplasm. Their absorption and emission spectra were similar to those of A2E. Exposure to 10 nm illumination bands induced a loss in cell viability with a dose dependence upon A2E concentrations. Irrespective of A2E concentration, the loss of cell viability was maximal for wavelengths from 415 to 455 nm. Cell viability decrease was correlated to an increase in cell apoptosis indicated by caspase-3/7 activities in the same spectral range. No light-elicited necrosis was measured as compared to control cells maintained in darkness. Our results defined the precise spectrum of light retinal toxicity in physiological irradiance conditions on an in vitro model of age-related macular degeneration. Surprisingly, a narrow bandwidth in blue light generated the greatest phototoxic risk to retinal pigment epithelium cells. This phototoxic spectrum may be advantageously valued in designing selective photoprotection ophthalmic filters, without disrupting essential visual and non-visual functions of the eye.
Related JoVE Video
Genetic association study of mitochondrial polymorphisms in neovascular age-related macular degeneration.
Mol. Vis.
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Age-related macular degeneration (AMD) is a multifactorial disease involving genetic and environmental factors. Most of the genetic factors identified so far involve the nuclear genome. Recently, two studies in North America and Australia reported an association between advanced AMD and the mitochondrial T2 haplogroup. Our purpose was to assess this association in a large French population.
Related JoVE Video
A single intravenous AAV9 injection mediates bilateral gene transfer to the adult mouse retina.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Widespread gene delivery to the retina is an important challenge for the treatment of retinal diseases, such as retinal dystrophies. We and others have recently shown that the intravenous injection of a self-complementary (sc) AAV9 vector can direct efficient cell transduction in the central nervous system, in both neonatal and adult animals. We show here that the intravenous injection of scAAV9 encoding green fluorescent protein (GFP) resulted in gene transfer to all layers of the retina in adult mice, despite the presence of a mature blood-eye barrier. Cell morphology studies and double-labeling with retinal cell-specific markers showed that GFP was expressed in retinal pigment epithelium cells, photoreceptors, bipolar cells, Müller cells and retinal ganglion cells. The cells on the inner side of the retina, including retinal ganglion cells in particular, were transduced with the highest efficiency. Quantification of the cell population co-expressing GFP and Brn-3a showed that 45% of the retinal ganglion cells were efficiently transduced after intravenous scAAV9-GFP injection in adult mice. This study provides the first demonstration that a single intravenous scAAV9 injection can deliver transgenes to the retinas of both eyes in adult mice, suggesting that this vector serotype is able to cross mature blood-eye barriers. This intravascular gene transfer approach, by eliminating the potential invasiveness of ocular surgery, could constitute an alternative when fragility of the retina precludes subretinal or intravitreal injections of viral vectors, opening up new possibilities for gene therapy for retinal diseases.
Related JoVE Video
Downregulation of apoptosis-inducing factor in Harlequin mice induces progressive and severe optic atrophy which is durably prevented by AAV2-AIF1 gene therapy.
Brain
PUBLISHED: 11-26-2011
Show Abstract
Hide Abstract
The Harlequin mutant mouse, characterized by loss of function of apoptosis-inducing factor, represents a reliable genetic model that resembles pathologies caused by human mitochondrial complex I deficiency. Therefore, we extensively characterized the retinal morphology and function of Harlequin mice during the course of neuronal cell death leading to blindness, with the aim of preventing optic atrophy. Retinas and optic nerves from these mice showed an isolated respiratory chain complex I defect correlated with retinal ganglion cell loss, optic atrophy, glial and microglial cell activation. All of these changes led to irreversible vision loss. In control mice, retinas AIF1 messenger RNA was 2.3-fold more abundant than AIF2, both messenger RNAs being sorted to the mitochondrial surface. In Harlequin mouse retinas, there was a 96% decrease of both AIF1 and AIF2 messenger RNA steady-state levels. We attained substantial and long-lasting protection of retinal ganglion cell and optic nerve integrity, the preservation of complex I function in optic nerves, as well as the prevention of glial and microglial responses after intravitreal administration of an AAV2 vector containing the full-length open reading frame and the 3 untranslated region of the AIF1 gene. Therefore, we demonstrate that gene therapy for mitochondrial diseases due to mutations in nuclear DNA can be achieved, so long as the therapeutic gene permits the accurate cellular localization of the corresponding messenger RNA.
Related JoVE Video
?-conome: an automated tissue counting platform of cone photoreceptors for rodent models of retinitis pigmentosa.
BMC Ophthalmol
PUBLISHED: 09-01-2011
Show Abstract
Hide Abstract
Retinitis pigmentosa is characterized by the sequential loss of rod and cone photoreceptors. The preservation of cones would prevent blindness due to their essential role in human vision. Rod-derived Cone Viability Factor is a thioredoxin-like protein that is secreted by rods and is involved in cone survival. To validate the activity of Rod-derived Cone Viability Factors (RdCVFs) as therapeutic agents for treating retinitis Pigmentosa, we have developed e-conome, an automated cell counting platform for retinal flat mounts of rodent models of cone degeneration. This automated quantification method allows for faster data analysis thereby accelerating translational research.
Related JoVE Video
Transcriptomic analysis of human retinal detachment reveals both inflammatory response and photoreceptor death.
PLoS ONE
PUBLISHED: 08-31-2011
Show Abstract
Hide Abstract
Retinal detachment often leads to a severe and permanent loss of vision and its therapeutic management remains to this day exclusively surgical. We have used surgical specimens to perform a differential analysis of the transcriptome of human retinal tissues following detachment in order to identify new potential pharmacological targets that could be used in combination with surgery to further improve final outcome.
Related JoVE Video
CRB1 mutations in inherited retinal dystrophies.
Hum. Mutat.
PUBLISHED: 08-11-2011
Show Abstract
Hide Abstract
Mutations in the CRB1 gene are associated with variable phenotypes of severe retinal dystrophies, ranging from leber congenital amaurosis (LCA) to rod-cone dystrophy, also called retinitis pigmentosa (RP). Moreover, retinal dystrophies resulting from CRB1 mutations may be accompanied by specific fundus features: preservation of the para-arteriolar retinal pigment epithelium (PPRPE) and retinal telangiectasia with exudation (also referred to as Coats-like vasculopathy). In this publication, we report seven novel mutations and classify over 150 reported CRB1 sequence variants that were found in more that 240 patients. The data from previous reports were used to analyze a potential correlation between CRB1 variants and the clinical features of respective patients. This meta-analysis suggests that the differential phenotype of patients with CRB1 mutations is due to additional modifying factors rather than particular mutant allele combination.
Related JoVE Video
A regulatory domain is required for Foxn4 activity during retinogenesis.
J. Mol. Neurosci.
PUBLISHED: 06-14-2011
Show Abstract
Hide Abstract
Foxn4, a member of the N-family forkhead transcription factors, controls fate decision in mouse retina and spinal cord as well as in zebrafish heart. Analysis of Foxn4 amino acid sequence revealed the presence of a region homologous to the activation domain of its close relative Foxn1 in between C-terminal amino acids 402 and 455 of Foxn4 protein. The requirement of Foxn4 putative activation domain remains to be elucidated. Using a gain-of function approach in rat and chick retinal explants, we report that deletion of Foxn4 putative activation domain results in a complete loss of its activity during retinogenesis. Target promoter transcription assay indicates that this domain is critical for Foxn4 transcriptional regulatory properties in vitro. Accordingly, in chick retinal explants, this domain is required for proper regulation of target retinogenic factors expression by Foxn4. Thus, our study demonstrates that the domain between amino acids 402 and 455 is necessary for Foxn4 transcriptional activity both in vitro and in the retina.
Related JoVE Video
Flat choroidal nevus inaccessible to ultrasound sonography evaluated by enhanced depth imaging optical coherence tomography.
Case Rep Ophthalmol
PUBLISHED: 06-10-2011
Show Abstract
Hide Abstract
To demonstrate the usefulness of enhanced depth imaging optical coherence tomography (EDI-OCT) in investigating choroidal lesions inaccessible to ultrasound sonography.
Related JoVE Video
Outer retinal cysts in age-related macular degeneration.
Acta Ophthalmol
PUBLISHED: 06-01-2011
Show Abstract
Hide Abstract
To describe novel cystic structures (outer retinal cysts or ORC) found in the outer retina in age-related macular degeneration (AMD).
Related JoVE Video
Quality versus quantity: assessing individual research performance.
Sci Transl Med
PUBLISHED: 05-27-2011
Show Abstract
Hide Abstract
Evaluating individual research performance is a complex task that ideally examines productivity, scientific impact, and research quality--a task that metrics alone have been unable to achieve. In January 2011, the French Academy of Sciences published a report on current bibliometric (citation metric) methods for evaluating individual researchers, as well as recommendations for the integration of quality assessment. Here, I draw on key issues raised by this report and comment on the suggestions for improving existing research evaluation practices.
Related JoVE Video
Spotlight on childhood blindness.
J. Clin. Invest.
PUBLISHED: 05-23-2011
Show Abstract
Hide Abstract
Leber congenital amaurosis (LCA) is a rare disease that severely affects vision in early life. It is characterized by genetic and clinical heterogeneity due to complex and not fully understood pathogenetic mechanisms. It is also now widely known as a disease model for gene therapy. In this issue of the JCI, two independent research groups report valuable new data on LCA. Specifically, they provide important insights into the pathophysiological mechanisms of LCA and offer strong hope that the outcome of gene therapy for retinal degenerative diseases will be successful.
Related JoVE Video
Complete exon sequencing of all known Usher syndrome genes greatly improves molecular diagnosis.
Orphanet J Rare Dis
PUBLISHED: 05-11-2011
Show Abstract
Hide Abstract
Usher syndrome (USH) combines sensorineural deafness with blindness. It is inherited in an autosomal recessive mode. Early diagnosis is critical for adapted educational and patient management choices, and for genetic counseling. To date, nine causative genes have been identified for the three clinical subtypes (USH1, USH2 and USH3). Current diagnostic strategies make use of a genotyping microarray that is based on the previously reported mutations. The purpose of this study was to design a more accurate molecular diagnosis tool.
Related JoVE Video
RP1 and autosomal dominant rod-cone dystrophy: novel mutations, a review of published variants, and genotype-phenotype correlation.
Hum. Mutat.
PUBLISHED: 04-28-2011
Show Abstract
Hide Abstract
Rod-cone dystrophies (retinitis pigmentosa [RP]) are a clinically and genetically heterogeneous group of inherited retinal disorders characterized by photoreceptor degeneration. RP1 is a major gene underlying autosomal dominant (ad) RP, though prevalence figures vary depending on the origin of the cases from 0-10% of all adRP. Some mutations in RP1 also lead to autosomal recessive (ar) RP. Herein, we review all previously reported and several novel RP1 mutations in relation to the associated phenotype in RP1 patients from a French adRP cohort. Prevalence studies from this cohort show that 5.3% of the cases have RP1 mutations. This is in accordance with other studies reported from United Kingdom and United States. The majority of mutations represent truncating mutations that are located in a hot spot region of the gene. Similarly, we identified in total four novel deletions and nonsense mutations, of which two may represent recurrent mutations in this population. In addition, a novel missense mutation of uncertain pathogenicity was identified. Including our findings to date, 47 RP1 mutations are known to cause adRP. Variable penetrance of the disease was observed in our and other cohorts. Most patients with RP1 mutations show classical signs of RP with relatively preserved central vision and visual field.
Related JoVE Video
No association between the T280M polymorphism of the CX3CR1 gene and exudative AMD.
Exp. Eye Res.
PUBLISHED: 04-21-2011
Show Abstract
Hide Abstract
Major genetic factors for age-related macular degeneration (AMD) have recently been identified as susceptibility risk factors. The CX3CR1 gene has been shown to be associated with AMD in some studies. Our purpose was to analyze the role of the T280M polymorphism of the CX3CR1 gene in a large French population, in a case-control study. 1093 patients with exudative AMD and 396 controls have been recruited and genotyped for the Y402H of CFH, rs10490924 of ARMS2 and T280M of the CX3CR1 gene. The distribution of the Y402H of CFH and of the rs10490924 of ARMS2 was significantly different between cases and controls (p < 0.0001). The distribution of the T280M genotypes was not significantly different in the AMD patients compared to controls (p = 0.99). The Odds Ratio compared to TT individuals was 1.0 (95% CI 0.8-1.3) for TM individuals and 1.0 (95% CI 0.5-2.1) for MM individuals. The M allele frequency was 0.157 in cases and 0.154 in controls (p = 0.87). Our study exclude an association between the T280M of the CX3CR1 gene and exudative AMD in a French population.
Related JoVE Video
CYFIP dependent actin remodeling controls specific aspects of Drosophila eye morphogenesis.
Dev. Biol.
PUBLISHED: 04-08-2011
Show Abstract
Hide Abstract
Cell rearrangements shape organs and organisms using molecular pathways and cellular processes that are still poorly understood. Here we investigate the role of the Actin cytoskeleton in the formation of the Drosophila compound eye, which requires extensive remodeling and coordination between different cell types. We show that CYFIP/Sra-1, a member of the WAVE/SCAR complex and regulator of Actin remodeling, controls specific aspects of eye architecture: rhabdomere extension, rhabdomere terminal web organization, adherens junctions, retina depth and basement membrane integrity. We demonstrate that some phenotypes manifest independently, due to defects in different cell types. Mutations in WAVE/SCAR and in ARP2/3 complex subunits but not in WASP, another major regulator of Actin nucleation, phenocopy CYFIP defects. Thus, the CYFIP-SCAR-ARP2/3 pathway orchestrates specific tissue remodeling processes.
Related JoVE Video
Related JoVE Video
Gene therapy in ophthalmology: validation on cultured retinal cells and explants from postmortem human eyes.
Hum. Gene Ther.
PUBLISHED: 02-26-2011
Show Abstract
Hide Abstract
Gene therapy studies in primates can provide important information regarding vector tropism, specific cellular expression, biodistribution, and safety prior to clinical trials. In this study, we report the assessment of transduction efficiency of recombinant adeno-associated virus (rAAV) vectors using human postmortem retina. Transductions were performed using two in vitro models prepared from human tissue: dissociated cell cultures and retinal explants. These models were used to assess cellular tropism and selectivity of rAAV vectors encoding for fluorescent proteins under the control of different promoters. These promoters were a ubiquitous cytomegalovirus promoter and a cell type-specific promoter targeting expression in ON bipolar cells. The results demonstrate that this in vitro approach can limit the use of living primates for the validation of gene therapy in vision and ophthalmology.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.