JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
You cannot tell a book by looking at the cover: Cryptic complexity in bacterial evolution.
Biomicrofluidics
PUBLISHED: 09-01-2014
Show Abstract
Hide Abstract
Do genetically closely related organisms under identical, but strong selection pressure converge to a common resistant genotype or will they diverge to different genomic solutions? This question gets at the heart of how rough is the fitness landscape in the local vicinity of two closely related strains under stress. We chose a Growth Advantage in Stationary Phase (GASP) E scherichia coli strain to address this question because the GASP strain has very similar fitness to the wild-type (WT) strain in the absence of metabolic stress but in the presence of metabolic stress continues to divide and does not enter into stationary phase. We find that under strong antibiotic selection pressure by the fluoroquinolone antibiotic ciprofloxacin in a complex ecology that the GASP strain rapidly evolves in under 20 h missense mutation in gyrA only 2 amino acids removed from the WT strain indicating a convergent solution, yet does not evolve the other 3 mutations of the WT strain. Further the GASP strain evolves a prophage e14 excision which completely inhibits biofilm formation in the mutant strain, revealing the hidden complexity of E. coli evolution to antibiotics as a function of selection pressure. We conclude that there is a cryptic roughness to fitness landscapes in the absence of stress.
Related JoVE Video
The sRNA RyhB regulates the synthesis of the Escherichia coli methionine sulfoxide reductase MsrB but not MsrA.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Controlling iron homeostasis is crucial for all aerobically grown living cells that are exposed to oxidative damage by reactive oxygen species (ROS), as free iron increases the production of ROS. Methionine sulfoxide reductases (Msr) are key enzymes in repairing ROS-mediated damage to proteins, as they reduce oxidized methionine (MetSO) residues to methionine. E. coli synthesizes two Msr, A and B, which exhibit substrate diastereospecificity. The bacterial iron-responsive small RNA (sRNA) RyhB controls iron metabolism by modulating intracellular iron usage. We show in this paper that RyhB is a direct regulator of the msrB gene that encodes the MsrB enzyme. RyhB down-regulates msrB transcripts along with Hfq and RNaseE proteins since mutations in the ryhB, fur, hfq, or RNaseE-encoded genes resulted in iron-insensitive expression of msrB. Our results show that RyhB binds to two sequences within the short 5UTR of msrB mRNA as identified by reverse transcriptase and RNase and lead (II) protection assays. Toeprinting analysis shows that RyhB pairing to msrB mRNA prevents efficient ribosome binding and thereby inhibits translation initiation. In vivo site directed-mutagenesis experiments in the msrB 5UTR region indicate that both RyhB-pairing sites are required to decrease msrB expression. Thus, this study suggests a novel mechanism of translational regulation where a same sRNA can basepair to two different locations within the same mRNA species. In contrast, expression of msrA is not influenced by changes in iron levels.
Related JoVE Video
BapE DNA endonuclease induces an apoptotic-like response to DNA damage in Caulobacter.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
In the presence of extensive DNA damage, eukaryotes activate endonucleases to fragment their chromosomes and induce apoptotic cell death. Apoptotic-like responses have recently been described in bacteria, but primarily in specialized mutant backgrounds, and the factors responsible for DNA damage-induced chromosome fragmentation and death have not been identified. Here we find that wild-type Caulobacter cells induce apoptotic-like cell death in response to extensive DNA damage. The bacterial apoptosis endonuclease (BapE) protein is induced by damage but not involved in DNA repair itself, and mediates this cell fate decision. BapE fragments chromosomes by cleaving supercoiled DNA in a sequence-nonspecific manner, thereby perturbing chromosome integrity both in vivo and in vitro. This damage-induced chromosome fragmentation pathway resembles that of eukaryotic apoptosis. We propose that damage-induced programmed cell death can be a primary stress response for some bacterial species, providing isogenic bacterial communities with advantages similar to those that apoptosis provides to multicellular organisms.
Related JoVE Video
RPA facilitates telomerase activity at chromosome ends in budding and fission yeasts.
EMBO J.
Show Abstract
Hide Abstract
In Saccharomyces cerevisiae, the telomerase complex binds to chromosome ends and is activated in late S-phase through a process coupled to the progression of the replication fork. Here, we show that the single-stranded DNA-binding protein RPA (replication protein A) binds to the two daughter telomeres during telomere replication but only its binding to the leading-strand telomere depends on the Mre11/Rad50/Xrs2 (MRX) complex. We further demonstrate that RPA specifically co-precipitates with yKu, Cdc13 and telomerase. The interaction of RPA with telomerase appears to be mediated by both yKu and the telomerase subunit Est1. Moreover, a mutation in Rfa1 that affects both the interaction with yKu and telomerase reduces the dramatic increase in telomere length of a rif1?, rif2? double mutant. Finally, we show that the RPA/telomerase association and function are conserved in Schizosaccharomyces pombe. Our results indicate that in both yeasts, RPA directly facilitates telomerase activity at chromosome ends.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.