JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Sphingosine-1-phosphate lyase downregulation promotes colon carcinogenesis through STAT3-activated microRNAs.
J. Clin. Invest.
PUBLISHED: 09-25-2014
Show Abstract
Hide Abstract
Growing evidence supports a link between inflammation and cancer; however, mediators of the transition between inflammation and carcinogenesis remain incompletely understood. Sphingosine-1-phosphate (S1P) lyase (SPL) irreversibly degrades the bioactive sphingolipid S1P and is highly expressed in enterocytes but downregulated in colon cancer. Here, we investigated the role of SPL in colitis-associated cancer (CAC). We generated mice with intestinal epithelium-specific Sgpl1 deletion and chemically induced colitis and tumor formation in these animals. Compared with control animals, mice lacking intestinal SPL exhibited greater disease activity, colon shortening, cytokine levels, S1P accumulation, tumors, STAT3 activation, STAT3-activated microRNAs (miRNAs), and suppression of miR-targeted anti-oncogene products. This phenotype was attenuated by STAT3 inhibition. In fibroblasts, silencing SPL promoted tumorigenic transformation through a pathway involving extracellular transport of S1P through S1P transporter spinster homolog 2 (SPNS2), S1P receptor activation, JAK2/STAT3-dependent miR-181b-1 induction, and silencing of miR-181b-1 target cylindromatosis (CYLD). Colon biopsies from patients with inflammatory bowel disease revealed enhanced S1P and STAT3 signaling. In mice with chemical-induced CAC, oral administration of plant-type sphingolipids called sphingadienes increased colonic SPL levels and reduced S1P levels, STAT3 signaling, cytokine levels, and tumorigenesis, indicating that SPL prevents transformation and carcinogenesis. Together, our results suggest that dietary sphingolipids can augment or prevent colon cancer, depending upon whether they are metabolized to S1P or promote S1P metabolism through the actions of SPL.
Related JoVE Video
Tracking hippo in the cancer jungle.
Chem. Biol.
PUBLISHED: 07-19-2014
Show Abstract
Hide Abstract
Signaling through the Hippo pathway controls major aspects of cell growth and proliferation. Focusing on the metabolic consequences of Hippo signaling, Mulvihill and colleagues in this issue of Chemistry & Biology employ a large scale, integrative approach and uncover downstream reorganization of cellular metabolism when the effector TAZ is upregulated, identifying new connections to lipid metabolism.
Related JoVE Video
S1pping fire: Sphingosine-1-phosphate signaling as an emerging target in inflammatory bowel disease and colitis-associated cancer.
Clin Exp Gastroenterol
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Inflammatory bowel disease (IBD) is a complex disease that involves unpredictable and destructive inflammation in the gastrointestinal tract resulting in gastrointestinal symptoms, infection, and tissue destruction, and which can be associated with an increased risk of colon cancer. The underlying cause of IBD involves disruption of the innate and adaptive immune mechanisms that maintain homeostasis between the gut mucosa and its environment. Elucidating how the homeostatic mechanisms controlling gut mucosal immunity and inflammation are disrupted in IBD represents the first steps to identifying novel therapeutic targets. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that is enriched in the blood and lymph, and functions in innate and adaptive immunity. S1P signaling regulates inflammation via its impact on the trafficking, differentiation, and effector functions of bone marrow-derived immune cells. S1P also activates nuclear factor kappa B and signal transducer and activator of transcription 3 inflammatory pathways. S1P is generated by the ubiquitously expressed lipid kinase, sphingosine kinase (SphK)1 and its tissue-restricted homolog, SphK2. S1P is irreversibly degraded by S1P lyase, which is highly expressed in enterocytes. Recent studies targeting S1P metabolism and signaling have shown promise in preclinical models of IBD and have shed light on the mechanisms by which S1P signaling impacts IBD. The evidence suggests that targeting S1P signaling and metabolism may represent a novel strategy in treating IBD and it may reduce colon cancer risk by interrupting the progression from inflammation to carcinogenesis.
Related JoVE Video
Sphingosine phosphate lyase regulates myogenic differentiation via S1P receptor-mediated effects on myogenic microRNA expression.
FASEB J.
PUBLISHED: 10-24-2013
Show Abstract
Hide Abstract
S1P lyase (SPL) catalyzes the irreversible degradation of sphingosine-1-phosphate (S1P), a bioactive lipid whose signaling activities regulate muscle differentiation, homeostasis, and satellite cell (SC) activation. By regulating S1P levels, SPL also controls SC recruitment and muscle regeneration, representing a potential therapeutic target for muscular dystrophy. We found that SPL is induced during myoblast differentiation. To investigate SPLs role in myogenesis at the cellular level, we generated and characterized a murine myoblast SPL-knockdown (SPL-KD) cell line lacking SPL. SPL-KD cells accumulated intracellular and extracellular S1P and failed to form myotubes under conditions that normally stimulate myogenic differentiation. Under differentiation conditions, SPL-KD cells also demonstrated delayed induction of 3 myogenic microRNAs (miRNAs), miR-1, miR-206, and miR-486. SPL-KD cells successfully differentiated when treated with an S1P1 agonist, S1P2 antagonist, and combination treatments, which also increased myogenic miRNA levels. SPL-KD cells transfected with mimics for miR-1 or miR-206 also overcame the differentiation block. Thus, we show for the first time that the S1P/SPL/S1P-receptor axis regulates the expression of a number of miRNAs, thereby contributing to myogenic differentiation.-de la Garza-Rodea, A. S., Baldwin, D. M., Oskouian, B., Place, R. F., Bandhuvula, P., Kumar, A., Saba, J. D. Sphingosine phosphate lyase regulates myogenic differentiation via S1P receptor-mediated effects on myogenic microRNA expression.
Related JoVE Video
A suppressor/enhancer screen in Drosophila reveals a role for wnt-mediated lipid metabolism in primordial germ cell migration.
PLoS ONE
PUBLISHED: 08-12-2011
Show Abstract
Hide Abstract
Wnt proteins comprise a large family of secreted ligands implicated in a wide variety of biological roles. WntD has previously been shown to inhibit the nuclear accumulation of Dorsal/NF-?B protein during embryonic dorsal/ventral patterning and the adult innate immune response, independent of the well-studied Armadillo/?-catenin pathway. In this paper, we present a novel phenotype for WntD mutant embryos, suggesting that this gene is involved in migration of primordial germ cells (PGC) to the embryonic gonad. Additionally, we describe a genetic suppressor/enhancer screen aimed at identifying genes required for WntD signal transduction, based on the previous observation that maternal overexpression of WntD results in lethally dorsalized embryos. Using an algorithm to narrow down our hits from the screen, we found two novel WntD signaling components: Fz4, a member of the Frizzled family, and the Drosophila Ceramide Kinase homolog, Dcerk. We show here that Dcerk and Dmulk (Drosophila Multi-substrate lipid kinase) redundantly mediate PGC migration. Our data are consistent with a model in which the activity of lipid phosphate phosphatases shapes a concentration gradient of ceramide-1-phosphate (C1P), the product of Dcerk, allowing proper PGC migration.
Related JoVE Video
A monoclonal antibody to O-acetyl-GD2 ganglioside and not to GD2 shows potent anti-tumor activity without peripheral nervous system cross-reactivity.
PLoS ONE
PUBLISHED: 04-08-2011
Show Abstract
Hide Abstract
Monoclonal antibodies (mAb) against GD2 ganglioside have been shown to be effective for the treatment of neuroblastoma. Beneficial actions are, however, associated with generalized pain due to the binding of anti- GD2 mAbs to peripheral nerve fibers followed by complement activation. Neuroblastoma cells that express GD2 also express its O-acetyl derivative, O-acetyl- GD2 ganglioside (OAcGD2). Hence, we investigated the distribution of OAcGD2 in human tissues using mAb 8B6 to study the cross-reactivity of mAb 8B6 with human tissues.
Related JoVE Video
Sphingolipid signaling and hematopoietic malignancies: to the rheostat and beyond.
Anticancer Agents Med Chem
PUBLISHED: 03-28-2011
Show Abstract
Hide Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid with diverse functions including the promotion of cell survival, proliferation and migration, as well as the regulation of angiogenesis, inflammation, immunity, vascular permeability and nuclear mechanisms that control gene transcription. S1P is derived from metabolism of ceramide, which itself has diverse and generally growth-inhibitory effects through its impact on downstream targets involved in regulation of apoptosis, senescence and cell cycle progression. Regulation of ceramide, S1P and the biochemical steps that modulate the balance and interconversion of these two lipids are major determinants of cell fate, a concept referred to as the "sphingolipid rheostat." There is abundant evidence that the sphingolipid rheostat plays a role in the origination, progression and drug resistance patterns of hematopoietic malignancies. The pathway has also been exploited to circumvent the problem of chemotherapy resistance in leukemia and lymphoma. Given the broad effects of sphingolipids, targeting multiple steps in the metabolic pathway may provide possible therapeutic avenues. However, new observations have revealed that sphingolipid signaling effects are more complex than previously recognized, requiring a revision of the sphingolipid rheostat model. Here, we summarize recent insights regarding the sphingolipid metabolic pathway and its role in hematopoietic malignancies.
Related JoVE Video
S1P lyase: a novel therapeutic target for ischemia-reperfusion injury of the heart.
Am. J. Physiol. Heart Circ. Physiol.
PUBLISHED: 02-18-2011
Show Abstract
Hide Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that promotes cardiomyocyte survival and contributes to ischemic preconditioning. S1P lyase (SPL) is a stress-activated enzyme responsible for irreversible S1P catabolism. We hypothesized that SPL contributes to oxidative stress by depleting S1P pools available for cardioprotective signaling. Accordingly, we evaluated SPL inhibition as a strategy for reducing cardiac ischemia-reperfusion (I/R) injury. We measured SPL expression and enzyme activity in murine hearts. Basal SPL activity was low in wild-type cardiac tissue but was activated in response to 50 min of ischemia (n = 5, P < 0.01). Hearts of heterozygous SPL knockout mice exhibited reduced SPL activity, elevated S1P levels, smaller infarct size, and increased functional recovery after I/R compared with littermate controls (n = 5, P < 0.01). The small molecule tetrahydroxybutylimidazole (THI) is a Federal Drug Administration-approved food additive that inhibits SPL. When given overnight at 25 mg/l in drinking water, THI raised S1P levels and reduced SPL activity (n = 5, P < 0.01). THI reduced infarct size and enhanced hemodynamic recovery in response to 50 min of ischemia and to 40 min of reperfusion in ex vivo hearts (n = 7, P < .01). These data correlated with an increase in MAP kinase-interacting serine/threonine kinase 1, eukaryotic translation initiation factor 4E, and ribosomal protein S6 phosphorylation levels after I/R, suggesting that SPL inhibition enhances protein translation. Pretreatment with an S1P? and S1P? receptor antagonist partially reversed the effects of THI. These results reveal, for the first time, that SPL is an ischemia-induced enzyme that can be targeted as a novel strategy for preventing cardiac I/R injury.
Related JoVE Video
The sphingolipid degradation product trans-2-hexadecenal induces cytoskeletal reorganization and apoptosis in a JNK-dependent manner.
Cell. Signal.
PUBLISHED: 02-07-2011
Show Abstract
Hide Abstract
The bioactive signaling molecule D-erythro-sphingosine-1-phosphate (S1P) is irreversibly degraded by the enzyme S1P lyase (SPL). The reaction of SPL with C18-S1P generates ethanolamine phosphate and a long-chain fatty aldehyde, trans-2-hexadecenal. Modulation of SPL expression in cells and organisms produces significant phenotypes, most of which have been attributed to corresponding changes in S1P-dependent signaling. However, the physiological functions of SPL products are not well understood. In the present study, we explored the biological activities of trans-2-hexadecenal in human and murine cells. We demonstrate that trans-2-hexadecenal causes cytoskeletal reorganization leading to cell rounding, detachment and eventual cell death by apoptosis in multiple cell types, including HEK293T, NIH3T3 and HeLa cells. Trans-2-hexadecenal stimulated a signaling pathway involving MLK3 and the respective phosphorylation of MKK4/7 and JNK, whereas ERK, AKT and p38 were unaffected. Trans-2-hexadecenal-induced apoptosis was accompanied by activation of downstream targets of JNK including c-Jun phosphorylation, cytochrome c release, Bax activation, Bid cleavage and increased translocation of Bim into mitochondria. The antioxidant N-acetylcysteine prevented JNK activation by trans-2-hexadecenal. Further, inhibition of JNK abrogated the cytoskeletal changes and apoptosis caused by trans-2-hexadecenal, whereas Rac1 and RhoA were not involved. In conclusion, our studies provide a new paradigm of sphingolipid signaling by demonstrating for the first time that S1P metabolism generates a bioactive product that induces cellular effects through oxidant stress-dependent MAP kinase cell signaling.
Related JoVE Video
Sphingosine-1-phosphate lyase deficiency produces a pro-inflammatory response while impairing neutrophil trafficking.
J. Biol. Chem.
PUBLISHED: 12-20-2010
Show Abstract
Hide Abstract
Sphingosine-1-phosphate (S1P) lyase catalyzes the degradation of S1P, a potent signaling lysosphingolipid. Mice with an inactive S1P lyase gene are impaired in the capacity to degrade S1P, resulting in highly elevated S1P levels. These S1P lyase-deficient mice have low numbers of lymphocytes and high numbers of neutrophils in their blood. We found that the S1P lyase-deficient mice exhibited features of an inflammatory response including elevated levels of pro-inflammatory cytokines and an increased expression of genes in liver associated with an acute-phase response. However, the recruitment of their neutrophils into inflamed tissues was impaired and their neutrophils were defective in migration to chemotactic stimulus. The IL-23/IL-17/granulocyte-colony stimulating factor (G-CSF) cytokine-controlled loop regulating neutrophil homeostasis, which is dependent on neutrophil trafficking to tissues, was disturbed in S1P lyase-deficient mice. Deletion of the S1P4 receptor partially decreased the neutrophilia and inflammation in S1P lyase-deficient mice, implicating S1P receptor signaling in the phenotype. Thus, a genetic block in S1P degradation elicits a pro-inflammatory response but impairs neutrophil migration from blood into tissues.
Related JoVE Video
Protection of LPS-induced murine acute lung injury by sphingosine-1-phosphate lyase suppression.
Am. J. Respir. Cell Mol. Biol.
PUBLISHED: 12-10-2010
Show Abstract
Hide Abstract
A defining feature of acute lung injury (ALI) is the increased lung vascular permeability and alveolar flooding, which leads to associated morbidity and mortality. Specific therapies to alleviate the unremitting vascular leak in ALI are not currently clinically available; however, our prior studies indicate a protective role for sphingosine-1-phosphate (S1P) in animal models of ALI with reductions in lung edema. As S1P levels are tightly regulated by synthesis and degradation, we tested the hypothesis that inhibition of S1P lyase (S1PL), the enzyme that irreversibly degrades S1P via cleavage, could ameliorate ALI. Intratracheal instillation of LPS to mice enhanced S1PL expression, decreased S1P levels in lung tissue, and induced lung inflammation and injury. LPS challenge of wild-type mice receiving 2-acetyl-4(5)-[1(R),2(S),3(R),4-tetrahydroxybutyl]-imidazole to inhibit S1PL or S1PL(+/-) mice resulted in increased S1P levels in lung tissue and bronchoalveolar lavage fluids and reduced lung injury and inflammation. Moreover, down-regulation of S1PL expression by short interfering RNA (siRNA) in primary human lung microvascular endothelial cells increased S1P levels, and attenuated LPS-mediated phosphorylation of p38 mitogen-activated protein kinase and I-?B, IL-6 secretion, and endothelial barrier disruption via Rac1 activation. These results identify a novel role for intracellularly generated S1P in protection against ALI and suggest S1PL as a potential therapeutic target.
Related JoVE Video
Cancer treatment strategies targeting sphingolipid metabolism.
Adv. Exp. Med. Biol.
PUBLISHED: 10-06-2010
Show Abstract
Hide Abstract
Ceramide and sphingosine-1-phosphate are related sphingolipid metabolites that can be generated through a de novo biosynthetic route or derived from the recycling of membrane sphingomyelin. Both these lipids regulate cellular responses to stress, with generally opposing effects. Sphingosine-1-phosphate functions as a growth and survival factor, acting as a ligand for a family of G protein-coupled receptors, whereas ceramide activates intrinsic and extrinsic apoptotic pathways through receptor-independent mechanisms. A growing body of evidence has implicated ceramide, sphingosine-1-phosphate and the genes involved in their synthesis, catabolism and signaling in various aspects of oncogenesis, cancer progression and drug- and radiation resistance. This may be explained in part by the finding that both lipids impinge upon the PI3K/ AKT pathway, which represses apoptosis and autophagy. In addition, sphingolipids influence cell cycle progression, telomerase function, cell migration and stem cell biology. Considering the central role of ceramide in mediating physiological as well as pharmacologically stimulated apoptosis, ceramide can be considered a tumor-suppressor lipid. In contrast, sphingosine-1-phosphate can be considered a tumor-promoting lipid, and the enzyme responsible for its synthesis functions as an oncogene. Not surprisingly, genetic mutations that result in reduced ceramide generation, increased sphingosine-1-phosphate synthesis or which reduce steady state ceramide levels and increase sphingosine-1-phosphate levels have been identified as mechanisms of tumor progression and drug resistance in cancer cells. Pharmacological tools for modulating sphingolipid pathways are being developed and represent novel therapeutic strategies for the treatment of cancer.
Related JoVE Video
An update on sphingosine-1-phosphate and other sphingolipid mediators.
Nat. Chem. Biol.
PUBLISHED: 06-19-2010
Show Abstract
Hide Abstract
Sphingolipids comprise a complex family of naturally occurring molecules that are enriched in lipid rafts and contribute to their unique biochemical properties. Membrane sphingolipids also serve as a reservoir for bioactive metabolites including sphingosine, ceramide, sphingosine-1-phosphate and ceramide-1-phosphate. Among these, sphingosine-1-phosphate has emerged as a central regulator of mammalian biology. Sphingosine-1-phosphate is essential for mammalian brain and cardiac development and for maturation of the systemic circulatory system and lymphatics. In addition, sphingosine-1-phosphate contributes to trafficking and effector functions of lymphocytes and other hematopoietic cells and protects against various forms of tissue injury. However, sphingosine-1-phosphate is also an oncogenic lipid that promotes tumor growth and progression. Recent preclinical and clinical investigations using pharmacological agents that target sphingosine-1-phosphate, its receptors and the enzymes required for its biosynthesis and degradation demonstrate the promise and potential risks of modulating sphingosine-1-phosphate signaling in treatment strategies for autoimmunity, cancer, cardiovascular disease and other pathological conditions.
Related JoVE Video
S1P metabolism in cancer and other pathological conditions.
Biochimie
PUBLISHED: 02-12-2010
Show Abstract
Hide Abstract
Nearly two decades ago, the sphingolipid metabolite sphingosine 1-phosphate was discovered to function as a lipid mediator and regulator of cell proliferation. Since that time, sphingosine 1-phosphate has been shown to mediate a diverse array of fundamental biological processes including cell proliferation, migration, invasion, angiogenesis, vascular maturation and lymphocyte trafficking. Sphingosine 1-phosphate acts primarily via signaling through five ubiquitously expressed G protein-coupled receptors. Intracellular sphingosine 1-phosphate molecules are transported extracellularly and gain access to cognate receptors for autocrine and paracrine signaling and for signaling at distant sites reached through blood and lymphatic circulation systems. Intracellular pools of sphingosine 1-phosphate available for signaling are tightly regulated primarily by three enzymes: sphinosine kinase, S1P lyase and S1P phosphatase. Alterations in sphingosine 1-phosphate as well as the enzymes involved in its synthesis and catabolism have been observed in many types of malignancy. These enzymes are being evaluated for their role in mediating cancer formation and progression, as well as their potential to serve as targets of anti-cancer therapeutics. In this review, the impact of sphingosine 1-phosphate, its cognate receptors, and the enzymes of sphingosine 1-phosphate metabolism on cell survival, apoptosis, autophagy, cellular transformation, invasion, angiogenesis and hypoxia in relation to cancer biology and treatment are discussed.
Related JoVE Video
Synopsis of partial-body radiation diagnostic biomarkers and medical management of radiation injury workshop.
Radiat. Res.
PUBLISHED: 01-26-2010
Show Abstract
Hide Abstract
Radiation exposures from accidents, nuclear detonations or terrorist incidents are unlikely to be homogeneous; however, current biodosimetric approaches are developed and validated primarily in whole-body irradiation models. A workshop was held at the Armed Forces Radiobiology Research Institute in May 2008 to draw attention to the need for partial-body biodosimetry, to discuss current knowledge, and to identify the gaps to be filled. A panel of international experts and the workshop attendees discussed the requirements and concepts for a path forward. This report addresses eight key areas identified by the Workshop Program Committee for future focus: (1) improved cytogenetics, (2) clinical signs and symptoms, (3) cutaneous bioindicators, (4) organ-specific biomarkers, (5) biophysical markers of dose, (6) integrated diagnostic approaches, (7) confounding factors, and (8) requirements for post-event medical follow-up. For each area, the status, advantages and limitations of existing approaches and suggestions for new directions are presented.
Related JoVE Video
Sphingosine 1-phosphate lyase deficiency disrupts lipid homeostasis in liver.
J. Biol. Chem.
PUBLISHED: 01-24-2010
Show Abstract
Hide Abstract
The cleavage of sphingoid base phosphates by sphingosine-1-phosphate (S1P) lyase to produce phosphoethanolamine and a fatty aldehyde is the final degradative step in the sphingolipid metabolic pathway. We have studied mice with an inactive S1P lyase gene and have found that, in addition to the expected increase of sphingoid base phosphates, other sphingolipids (including sphingosine, ceramide, and sphingomyelin) were substantially elevated in the serum and/or liver of these mice. This latter increase is consistent with a reutilization of the sphingosine backbone for sphingolipid synthesis due to its inability to exit the sphingolipid metabolic pathway. Furthermore, the S1P lyase deficiency resulted in changes in the levels of serum and liver lipids not directly within the sphingolipid pathway, including phospholipids, triacyglycerol, diacylglycerol, and cholesterol. Even though lipids in serum and lipid storage were elevated in liver, adiposity was reduced in the S1P lyase-deficient mice. Microarray analysis of lipid metabolism genes in liver showed that the S1P lyase deficiency caused widespread changes in their expression pattern, with a significant increase in the expression of PPARgamma, a master transcriptional regulator of lipid metabolism. However, the mRNA expression of the genes encoding the sphingosine kinases and S1P phosphatases, which directly control the levels of S1P, were not significantly changed in liver of the S1P lyase-deficient mice. These results demonstrate that S1P lyase is a key regulator of the levels of multiple sphingolipid substrates and reveal functional links between the sphingolipid metabolic pathway and other lipid metabolic pathways that may be mediated by shared lipid substrates and changes in gene expression programs. The disturbance of lipid homeostasis by altered sphingolipid levels may be relevant to metabolic diseases.
Related JoVE Video
Natural sphingadienes inhibit Akt-dependent signaling and prevent intestinal tumorigenesis.
Cancer Res.
PUBLISHED: 11-24-2009
Show Abstract
Hide Abstract
Sphingolipid metabolites regulate cell proliferation, migration, and stress responses. Alterations in sphingolipid metabolism have been proposed to contribute to carcinogenesis, cancer progression, and drug resistance. We identified a family of natural sphingolipids called sphingadienes and investigated their effects in colon cancer. We find that sphingadienes induce colon cancer cell death in vitro and prevent intestinal tumorigenesis in vivo. Sphingadienes exert their influence by blocking Akt translocation from the cytosol to the membrane, thereby inhibiting protein translation and promoting apoptosis and autophagy. Sphingadienes are orally available, are slowly metabolized through the sphingolipid degradative pathway, and show limited short-term toxicity. Thus, sphingadienes represent a new class of therapeutic and/or chemopreventive agents that blocks Akt signaling in neoplastic and preneoplastic cells.
Related JoVE Video
Lyase to live by: sphingosine phosphate lyase as a therapeutic target.
Expert Opin. Ther. Targets
PUBLISHED: 06-19-2009
Show Abstract
Hide Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid that regulates cell proliferation, survival and migration and plays an essential role in angiogenesis and lymphocyte trafficking. S1P levels in the circulation and tissues are tightly regulated for proper cell functioning, and dysregulation of this system may contribute to the pathophysiology of certain human diseases. Sphingosine phosphate lyase (SPL) irreversibly degrades S1P and thereby acts as a gatekeeper that regulates S1P signaling by modulating intracellular S1P levels and the chemical S1P gradient that exists between lymphoid organs and circulating blood and lymph. However, SPL also generates biochemical products that may be relevant in human disease. SPL has been directly implicated in various physiological and pathological processes, including cell stress responses, cancer, immunity, hematopoietic function, muscle homeostasis, inflammation and development.
Related JoVE Video
Normalization of diabetic wound healing.
Surgery
PUBLISHED: 04-06-2009
Show Abstract
Hide Abstract
Impaired wound healing in diabetics is due to pathologic angiogenesis, which is a result of aberrant sphingosine-1-phosphate signaling. Pharmacologic modulation of sphingosine-1-phosphate-dependent signaling normalizes healing in diabetic wounds.
Related JoVE Video
Sphingosine 1-phosphate lyase enzyme assay using a BODIPY-labeled substrate.
Biochem. Biophys. Res. Commun.
PUBLISHED: 01-15-2009
Show Abstract
Hide Abstract
Sphingosine 1-phosphate lyase (SPL) is responsible for the irreversible catabolism of sphingosine 1-phosphate, which signals through five membrane receptors to mediate cell stress responses, angiogenesis, and lymphocyte trafficking. The standard assay for SPL activity utilizes a radioactive dihydrosphingosine 1-phosphate substrate and is expensive and cumbersome. In this study, we describe an SPL assay that employs an omega-labeled BODIPY-sphingosine 1-phosphate substrate, allowing fluorescent product detection by HPLC and incorporating advantages of the BODIPY fluorophore. The major aldehyde product is confirmed by reaction with 2,4-dinitrophenylhydrazine. The SPL-catalyzed reaction is linear over a 30 min time period and yields a K(m) of 35 microM for BODIPY-sphingosine 1-phosphate.
Related JoVE Video
A novel role of a lipid species, sphingosine-1-phosphate, in epithelial innate immunity.
Mol. Cell. Biol.
Show Abstract
Hide Abstract
A variety of external perturbations can induce endoplasmic reticulum (ER) stress, followed by stimulation of epithelial cells to produce an innate immune element, the cathelicidin antimicrobial peptide (CAMP). ER stress also increases production of the proapoptotic lipid ceramide and its antiapoptotic metabolite, sphingosine-1-phosphate (S1P). We demonstrate here that S1P mediates ER stress-induced CAMP generation. Cellular ceramide and S1P levels rose in parallel with CAMP levels following addition of either exogenous cell-permeating ceramide (C2Cer), which increases S1P production, or thapsigargin (an ER stressor), applied to cultured human skin keratinocytes or topically to mouse skin. Knockdown of S1P lyase, which catabolizes S1P, enhanced ER stress-induced CAMP production in cultured cells and mouse skin. These and additional inhibitor studies show that S1P is responsible for ER stress-induced upregulation of CAMP expression. Increased CAMP expression is likely mediated via S1P-dependent NF-?B-C/EBP? activation. Finally, lysates of both ER-stressed and S1P-stimulated cells blocked growth of virulent Staphylococcus aureus in vitro, and topical C2Cer and LL-37 inhibited invasion of Staphylococcus aureus into murine skin. These studies suggest that S1P generation resulting in increased CAMP production comprises a novel regulatory mechanism of epithelial innate immune responses to external perturbations, pointing to a new therapeutic approach to enhance antimicrobial defense.
Related JoVE Video
Immunohistochemical analysis of sphingosine phosphate lyase expression during murine development.
Gene Expr. Patterns
Show Abstract
Hide Abstract
Sphingosine-1-phosphate lyase (SPL) catalyzes the degradation of sphingosine-1-phosphate (S1P), a bioactive lipid that controls cell proliferation, migration and survival. Mice lacking SPL expression exhibit developmental abnormalities, runting and death during the perinatal period, suggesting that SPL plays a role in mammalian development and adaptation to extrauterine life. We investigated the pattern of SPL expression in the mouse embryo and placenta from day 8 to day 18. Our findings reveal that SPL is expressed in the developing brain and neural tube, Rathkes pouch, first brachial arch, third brachial arch, optic stalk, midgut loops, and lung buds. Diffuse signal was high at E12, whereas a recognizable adult SPL pattern was evident by E15 and more intensely at E18, with strong expression in skin, nasal epithelium, intestinal epithelium, cartilage, thymus and pituitary gland. These findings suggest SPL may be involved in development of the mammalian central nervous system (CNS), anterior pituitary, trigeminal nerve, palate and facial bones, thymus and other organs. Our findings are consistent with the SPL expression pattern of the adult mouse and with congenital abnormalities observed in SPL mutant mice.
Related JoVE Video
Sphingosine-1-phosphate lyase expression in embryonic and adult murine tissues.
J. Lipid Res.
Show Abstract
Hide Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid involved in immunity, inflammation, angiogenesis, and cancer. S1P lyase (SPL) is the essential enzyme responsible for S1P degradation. SPL augments apoptosis and is down-regulated in cancer. SPL generates a S1P chemical gradient that promotes lymphocyte trafficking and as such is being targeted to treat autoimmune diseases. Despite growing interest in SPL as a disease marker, antioncogene, and pharmacological target, no comprehensive characterization of SPL expression in mammalian tissues has been reported. We investigated SPL expression in developing and adult mouse tissues by generating and characterizing a ?-galactosidase-SPL reporter mouse combined with immunohistochemistry, immunoblotting, and enzyme assays. SPL was expressed in thymic and splenic stromal cells, splenocytes, Peyers Patches, colonic lymphoid aggregates, circulating T and B lymphocytes, granulocytes, and monocytes, with lowest expression in thymocytes. SPL was highly expressed within the CNS, including arachnoid lining cells, spinal cord, choroid plexus, trigeminal nerve ganglion, and specific neurons of the olfactory bulb, cerebral cortex, midbrain, hindbrain, and cerebellum. Expression was detected in brown adipose tissue, female gonads, adrenal cortex, bladder epithelium, Harderian and preputial glands, and hair follicles. This unique expression pattern suggests SPL has many undiscovered physiological functions apart from its role in immunity.
Related JoVE Video
S1P lyase in skeletal muscle regeneration and satellite cell activation: exposing the hidden lyase.
Biochim. Biophys. Acta
Show Abstract
Hide Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid whose actions are essential for many physiological processes including angiogenesis, lymphocyte trafficking and development. In addition, S1P serves as a muscle trophic factor that enables efficient muscle regeneration. This is due in part to S1Ps ability to activate quiescent muscle stem cells called satellite cells (SCs) that are needed for muscle repair. However, the molecular mechanism by which S1P activates SCs has not been well understood. Further, strategies for harnessing S1P signaling to recruit SCs for therapeutic benefit have been lacking. S1P is irreversibly catabolized by S1P lyase (SPL), a highly conserved enzyme that catalyzes the cleavage of S1P at carbon bond C(2-3), resulting in formation of hexadecenal and ethanolamine-phosphate. SPL enhances apoptosis through substrate- and product-dependent events, thereby regulating cellular responses to chemotherapy, radiation and ischemia. SPL is undetectable in resting murine skeletal muscle. However, we recently found that SPL is dynamically upregulated in skeletal muscle after injury. SPL upregulation occurred in the context of a tightly orchestrated genetic program that resulted in a transient S1P signal in response to muscle injury. S1P activated quiescent SCs via a sphingosine-1-phosphate receptor 2 (S1P2)/signal transducer and activator of transcription 3 (STAT3)-dependent pathway, thereby facilitating skeletal muscle regeneration. Mdx mice, which serve as a model for muscular dystrophy (MD), exhibited skeletal muscle SPL upregulation and S1P deficiency. Pharmacological SPL inhibition raised skeletal muscle S1P levels, enhanced SC recruitment and improved mdx skeletal muscle regeneration. These findings reveal how S1P can activate SCs and indicate that SPL suppression may provide a therapeutic strategy for myopathies. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Related JoVE Video
The sphingolipid degradation product trans-2-hexadecenal forms adducts with DNA.
Biochem. Biophys. Res. Commun.
Show Abstract
Hide Abstract
Sphingosine 1-phosphate, a bioactive signaling molecule with diverse cellular functions, is irreversibly degraded by the endoplasmic reticulum enzyme sphingosine 1-phosphate lyase, generating trans-2-hexadecenal and phosphoethanolamine. We recently demonstrated that trans-2-hexadecenal causes cytoskeletal reorganization, detachment, and apoptosis in multiple cell types via a JNK-dependent pathway. These findings and the known chemistry of related ?,?-unsaturated aldehydes raise the possibility that trans-2-hexadecenal may interact with additional cellular components. In this study, we show that it reacts readily with deoxyguanosine and DNA to produce the diastereomeric cyclic 1,N(2)-deoxyguanosine adducts 3-(2-deoxy-?-d-erythro-pentofuranosyl)-5,6,7,8-tetrahydro-8R-hydroxy-6R-tridecylpyrimido[1,2-a]purine-10(3H)one and 3-(2-deoxy-?-d-erythro-pentofuranosyl)-5,6,7,8-tetrahydro-8S-hydroxy-6S-tridecylpyrimido[1,2-a]purine-10(3H)one. Thus, our findings suggest that trans-2-hexadecenal produced endogenously by sphingosine 1-phosphate lyase can react directly with DNA forming aldehyde-derived DNA adducts with potentially mutagenic consequences.
Related JoVE Video
Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway.
PLoS ONE
Show Abstract
Hide Abstract
Sphingosine-1-phosphate (S1P) activates a widely expressed family of G protein-coupled receptors, serves as a muscle trophic factor and activates muscle stem cells called satellite cells (SCs) through unknown mechanisms. Here we show that muscle injury induces dynamic changes in S1P signaling and metabolism in vivo. These changes include early and profound induction of the gene encoding the S1P biosynthetic enzyme SphK1, followed by induction of the catabolic enzyme sphingosine phosphate lyase (SPL) 3 days later. These changes correlate with a transient increase in circulating S1P levels after muscle injury. We show a specific requirement for SphK1 to support efficient muscle regeneration and SC proliferation and differentiation. Mdx mice, which serve as a model for muscular dystrophy (MD), were found to be S1P-deficient and exhibited muscle SPL upregulation, suggesting that S1P catabolism is enhanced in dystrophic muscle. Pharmacological SPL inhibition increased muscle S1P levels, improved mdx muscle regeneration and enhanced SC proliferation via S1P receptor 2 (S1PR2)-dependent inhibition of Rac1, thereby activating Signal Transducer and Activator of Transcription 3 (STAT3), a central player in inflammatory signaling. STAT3 activation resulted in p21 and p27 downregulation in a S1PR2-dependent fashion in myoblasts. Our findings suggest that S1P promotes SC progression through the cell cycle by repression of cell cycle inhibitors via S1PR2/STAT3-dependent signaling and that SPL inhibition may provide a therapeutic strategy for MD.
Related JoVE Video
Chemopreventive sphingadienes downregulate Wnt signaling via a PP2A/Akt/GSK3? pathway in colon cancer.
Carcinogenesis
Show Abstract
Hide Abstract
Sphingadienes (SDs) derived from soy and other natural sphingolipids are cytotoxic to colon cancer cells via an Akt-dependent mechanism and reduce adenoma formation in Apc(Min/+) mice. Wnt signaling is fundamental to colon carcinogenesis and is the basis for spontaneous tumorigenesis in Apc(Min/+) mice and patients with familial adenomatous polyposis. In the present study, we investigated the impact of SDs on Wnt signaling. Oral SD administration reduced levels of active ?-catenin and Wnt targets c-Myc and cyclin D1 in Apc(Min/+) mouse intestinal tissues. Colon cancer cells treated with SDs exhibited reduced Wnt transcriptional activity, as well as reduced nuclear ?-catenin localization and subsequent reduction in active-?-catenin levels. Further, we observed a decrease in phosphorylated (inactive) GSK3? in SD-treated mice and colon cancer cells. Expression of constitutively active myristoylated-Akt or inactivation of GSK3? using LiCl attenuated SD-mediated inhibition of Wnt transcriptional activity and active-?-catenin levels. SDs exhibited additive effects with inhibitors of the phosphatidylinositol-3-kinase/Akt/mTOR pathway to induce cytotoxicity. Further, a combination regime of SDs and low-dose rapamycin decreased visible polyps in Apc(Min/+) mice and reduced the levels of Wnt target gene expression and mTOR target activation. SD-mediated inhibition of Akt and Wnt pathways and cytotoxicity in colon cancer cells was dependent upon the activity of protein phosphatase 2A, as shown by reversal of these effects by pretreatment with okadaic acid or calyculin A. Our cumulative findings indicate that SDs inhibit Wnt signaling through a protein phosphatase 2A/Akt/GSK3?-dependent mechanism that may contribute to their chemopreventive effects in intestinal tumorigenesis.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.