JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Association of polymorphisms in genes of the homologous recombination DNA repair pathway and thyroid cancer risk.
Thyroid
PUBLISHED: 09-24-2009
Show Abstract
Hide Abstract
Ionizing radiation exposure has been pointed out as a risk factor for thyroid cancer. The double-strand breaks induced by this carcinogen are usually repaired by homologous recombination repair pathway, a pathway that includes several polymorphic genes. Since there is a scarcity of data about the involvement of these gene polymorphisms in thyroid cancer susceptibility, we carried out a case-control study in a Caucasian Portuguese population.
Related JoVE Video
Breast cancer risk and common single nucleotide polymorphisms in homologous recombination DNA repair pathway genes XRCC2, XRCC3, NBS1 and RAD51.
Cancer Epidemiol
PUBLISHED: 08-04-2009
Show Abstract
Hide Abstract
The possible role for DNA repair deficiencies in cancer development, namely in breast cancer has been the subject of increasing interest since it has been reported that breast cancer patients might be deficient in the repair of DNA damage. Exposure to ionizing radiation has been pointed out as a risk factor for breast cancer, and the type of DNA lesions induced by this carcinogen can be repaired by homologous recombination DNA repair (HRR) pathway. To evaluate the potential modifying role of some single nucleotide polymorphisms (SNP) in HRR involved genes on the individual susceptibility to breast cancer we carried out a hospital based case-control study in a Caucasian Portuguese population (289 histological confirmed breast cancer patients and 548 control individuals). We genotyped 4 SNPs in 4 different HRR pathway genes, XRCC2 (Ex3+442G>A, R188H, rs3218536), XRCC3 (Ex8-5C>T, T241M, rs861539), NBS1 (Ex5-32C>G, E185Q, rs1805794) and RAD51 5UTR (Ex1-59G>T, rs1801321), tagging 41 SNPs in these genes. The frequency of the different polymorphisms in the Portuguese control population is similar to the ones reported for other Caucasian populations, and the deviation of the Hardy-Weinberg equilibrium was only observed for the XRCC2 (Ex3+442G>A, R188H, rs3218536) polymorphism in the control population. The results obtained, after logistic regression analysis, did not reveal a major role of these polymorphisms on breast cancer susceptibility. However, when the population was stratified according to breast feeding (women that breast fed and women that never breast fed) it is observed, in women that never breast fed, that the heterozygous individuals for the XRCC2 (Ex3+442G>A, R188H, rs3218536) polymorphism have a decreased risk for breast cancer [adjusted OR=0.45; 95% CI=0.22-0.92] (P=0.03). Additionally, after stratification according to menopausal status, our results suggest that post-menopausal women carrying at least one variant allele for the XRCC3 (Ex8-5C>T, T241M, rs861539) polymorphism have a lower risk for breast cancer [adjusted OR=0.67; 95% CI, 0.47-0.94] (P=0.03). Most of the studies suggest that breastfeeding may be responsible for 2/3 of the estimate reduction of breast cancer. The longer the duration of breastfeeding the lower the potential risk associated with breast cancer. Therefore, in our study the potential protective role of the variant allele of XRCC2 (Ex3+442G>A, R188H, rs3218536), in never breast fed women, might be related with a more efficient DNA repair activity.
Related JoVE Video
The role of GSTA2 polymorphisms and haplotypes in breast cancer susceptibility: a case-control study in the Portuguese population.
Oncol. Rep.
PUBLISHED: 07-30-2009
Show Abstract
Hide Abstract
Glutathione-S-transferases (GSTs) are a super-family of phase II metabolizing enzymes that catalyse the detoxification of a large range of endogenous and exogenous toxic compounds, playing an important role in protecting cells against damage, through glutathione conjugation with electrophilic substances. Polymorphic variation in these enzymes that affect its activity seems to be related to individual susceptibility to various human diseases, including cancer. Of the GST super-family, the alpha class GSTs have commonly been described as one of the most versatile class, since it is responsible for detoxification of compounds such as bilirubin, bile acids and penicillin, thyroid and steroid hormones, allowing its solubilization and storage in the liver. Among the alpha class, GSTA1 and GSTA2 isoforms are the most widely expressed in human tissues. Additionally, these enzymes can catalyse conjugation of the nitrogen mustard group of alkylating anticancer drugs, some heterocyclic amines and alpha,beta-unsaturated aldehydes. Since some risk factors for increased breast cancer risk could be related to high production of reactive oxygen species during the metabolism of estrogens by catechol estrogens, or to the exposure to genotoxic compounds, and some of these toxic compounds are usually metabolized by GSTA2, we carried out a hospital based case-control study in a Caucasian Portuguese population (291 breast cancer patients without familiar history of breast cancer and 547 controls matched for age, sex and ethnicity) in order to evaluate the potential modifying role of three non-synonymous polymorphisms in the GSTA2 gene (P110S Ex 5+56C>T;, rs2234951; S112T Ex5+63G>C, rs2180314 and E210A Ex7+83A>C, rs6577) on the individual susceptibility to breast cancer. Our data show that the studied polymorphisms are in strong linkage disequilibrium, but no association was observed between individual GSTA2 polymorphisms and haplotypes and individual susceptibility to breast cancer.
Related JoVE Video
Association of common variants in mismatch repair genes and breast cancer susceptibility: a multigene study.
BMC Cancer
PUBLISHED: 03-20-2009
Show Abstract
Hide Abstract
MMR is responsible for the repair of base-base mismatches and insertion/deletion loops. Besides this, MMR is also associated with an anti-recombination function, suppressing homologous recombination. Losses of heterozygosity and/or microsatellite instability have been detected in a large number of skin samples from breast cancer patients, suggesting a potential role of MMR in breast cancer susceptibility.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.