JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
A novel firefly luciferase biosensor enhances the detection of apoptosis induced by ESAT-6 family proteins of Mycobacterium tuberculosis.
Biochem. Biophys. Res. Commun.
PUBLISHED: 08-22-2014
Show Abstract
Hide Abstract
The activation of caspase-3 is a key surrogate marker for detecting apoptosis. To quantitate caspase-3 activity, we constructed a biosensor comprising a recombinant firefly luciferase containing a caspase-3 cleavage site. When apoptosis was induced, caspase-3 cleavage of the biosensor activated firefly luciferase by a factor greater than 25. The assay conveniently detected apoptosis in real time, indicating that it will facilitate drug discovery. We screened ESAT-6 family proteins of Mycobacterium tuberculosis and found that esxA, esxT and esxL induced apoptosis. Further, activation of nuclear factor-?B (NF-?B) and the NF-?B-regulated genes encoding tumor necrosis factor-? (TNF-?) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) participated in esxT-induced apoptosis. We conclude that this assay is useful for high-throughput screening to identify and characterize proteins and drugs that regulate apoptosis.
Related JoVE Video
Fast reconstruction of fluorescence molecular tomography via a permissible region extraction strategy.
J Opt Soc Am A Opt Image Sci Vis
PUBLISHED: 08-15-2014
Show Abstract
Hide Abstract
In order to obtain precise reconstruction results in fluorescence molecular tomography (FMT), large-scale matrix equations would be solved in the inverse problem generally. Thus, much time and memory needs to be consumed. In this paper, a permissible region extraction strategy is proposed to solve this problem. First, a preliminary result is rapidly reconstructed using the weight matrix compressed by principal component analysis or uniform sampling. And then the reconstructed target area in this preliminary result is considered as the a priori permissible region to guide the final reconstruction. Phantom experiments with double fluorescent targets are performed to test the performance of the strategy. The results illustrate that the proposed strategy can significantly accelerate the image reconstruction in FMT almost without quality degradation.
Related JoVE Video
Reconstruction of Fluorophore Concentration Variation in Dynamic Fluorescence Molecular Tomography.
IEEE Trans Biomed Eng
PUBLISHED: 07-30-2014
Show Abstract
Hide Abstract
Dynamic fluorescence molecular tomography (DFMT) is a potential approach for drug delivery, tumor detection, diagnosis and staging. The purpose of DFMT is to quantify the changes of fluorescent agents in the bodies, which offer important information about the underlying physiological processes. However, the conventional method requires that the fluorophore concentrations to be reconstructed are stationary during the data collection period. As thus, it cannot offer the dynamic information of fluorophore concentration variation within the data collection period. In this paper, a method is proposed to reconstruct the fluorophore concentration variation instead of the fluorophore concentration through a linear approximation. The fluorophore concentration variation rate is introduced by the linear approximation as a new unknown term to be reconstructed and is used to obtain the time courses of fluorophore concentration. Simulation and phantom studies are performed to validate the proposed method. The results show that the method is able to reconstruct the fluorophore concentration variation rates and the time courses of fluorophore concentration with relative errors less than 0.0218.
Related JoVE Video
The mechanisms behind the therapeutic activity of BET bromodomain inhibition.
Mol. Cell
PUBLISHED: 06-07-2014
Show Abstract
Hide Abstract
The bromodomain and extraterminal (BET) protein Brd4 recruits transcriptional regulatory complexes to acetylated chromatin. While Brd4 is considered to be a general transcriptional regulator, pharmacological inhibition of BET proteins shows therapeutic activity in a variety of different pathologies, particularly in models of cancer and inflammation. Such effects have been attributed to a specific set of downstream target genes whose expression is disproportionately sensitive to pharmacological targeting of BET proteins. Emerging evidence links the transcriptional consequences of BET inhibition to the association of Brd4 with enhancer elements, which tend to be involved in lineage-specific gene regulation. Furthermore, Brd4 engages in direct regulatory interactions with several DNA-binding transcription factors to influence their disease-relevant functions. Here we review the current understanding of molecular mechanisms that underlie the promising therapeutic effects of BET bromodomain inhibition.
Related JoVE Video
Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm.
J Biomed Opt
PUBLISHED: 03-17-2014
Show Abstract
Hide Abstract
Owing to the high degree of scattering of light through tissues, the ill-posedness of fluorescence molecular tomography (FMT) inverse problem causes relatively low spatial resolution in the reconstruction results. Unlike L2 regularization, L1 regularization can preserve the details and reduce the noise effectively. Reconstruction is obtained through a restarted L1 regularization-based nonlinear conjugate gradient (re-L1-NCG) algorithm, which has been proven to be able to increase the computational speed with low memory consumption. The algorithm consists of inner and outer iterations. In the inner iteration, L1-NCG is used to obtain the L1-regularized results. In the outer iteration, the restarted strategy is used to increase the convergence speed of L1-NCG. To demonstrate the performance of re-L1-NCG in terms of spatial resolution, simulation and physical phantom studies with fluorescent targets located with different edge-to-edge distances were carried out. The reconstruction results show that the re-L1-NCG algorithm has the ability to resolve targets with an edge-to-edge distance of 0.1 cm at a depth of 1.5 cm, which is a significant improvement for FMT.
Related JoVE Video
Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation.
Genes Dev.
PUBLISHED: 11-27-2013
Show Abstract
Hide Abstract
Cancer cells frequently depend on chromatin regulatory activities to maintain a malignant phenotype. Here, we show that leukemia cells require the mammalian SWI/SNF chromatin remodeling complex for their survival and aberrant self-renewal potential. While Brg1, an ATPase subunit of SWI/SNF, is known to suppress tumor formation in several cell types, we found that leukemia cells instead rely on Brg1 to support their oncogenic transcriptional program, which includes Myc as one of its key targets. To account for this context-specific function, we identify a cluster of lineage-specific enhancers located 1.7 Mb downstream from Myc that are occupied by SWI/SNF as well as the BET protein Brd4. Brg1 is required at these distal elements to maintain transcription factor occupancy and for long-range chromatin looping interactions with the Myc promoter. Notably, these distal Myc enhancers coincide with a region that is focally amplified in ?3% of acute myeloid leukemias. Together, these findings define a leukemia maintenance function for SWI/SNF that is linked to enhancer-mediated gene regulation, providing general insights into how cancer cells exploit transcriptional coactivators to maintain oncogenic gene expression programs.
Related JoVE Video
Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient.
Opt Lett
PUBLISHED: 10-10-2013
Show Abstract
Hide Abstract
For the ill-posed fluorescent molecular tomography (FMT) inverse problem, the L1 regularization can protect the high-frequency information like edges while effectively reduce the image noise. However, the state-of-the-art L1 regularization-based algorithms for FMT reconstruction are expensive in memory, especially for large-scale problems. An efficient L1 regularization-based reconstruction algorithm based on nonlinear conjugate gradient with restarted strategy is proposed to increase the computational speed with low memory consumption. The reconstruction results from phantom experiments demonstrate that the proposed algorithm can obtain high spatial resolution and high signal-to-noise ratio, as well as high localization accuracy for fluorescence targets.
Related JoVE Video
The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability.
Cell
PUBLISHED: 03-26-2013
Show Abstract
Hide Abstract
Sequencing efforts led to the identification of somatic mutations that could affect the self-renewal and differentiation of cancer-initiating cells. One such recurrent mutation targets the binding pocket of the ubiquitin ligase Fbxw7. Missense FBXW7 mutations are prevalent in various tumors, including T cell acute lymphoblastic leukemia (T-ALL). To study the effects of such lesions, we generated animals carrying regulatable Fbxw7 mutant alleles. Here, we show that these mutations specifically bolster cancer-initiating cell activity in collaboration with Notch1 oncogenes but spare normal hematopoietic stem cell function. We were also able to show that FBXW7 mutations specifically affect the ubiquitylation and half-life of c-Myc protein, a key T-ALL oncogene. Using animals carrying c-Myc fusion alleles, we connected Fbxw7 function to c-Myc abundance and correlated c-Myc expression to leukemia-initiating activity. Finally, we demonstrated that small-molecule-mediated suppression of MYC activity leads to T-ALL remission, suggesting an effective therapeutic strategy.
Related JoVE Video
Greedy reconstruction algorithm for fluorescence molecular tomography by means of truncated singular value decomposition conversion.
J Opt Soc Am A Opt Image Sci Vis
PUBLISHED: 03-05-2013
Show Abstract
Hide Abstract
Fluorescence molecular tomography (FMT) is a promising imaging modality that enables three-dimensional visualization of fluorescent targets in vivo in small animals. L2-norm regularization methods are usually used for severely ill-posed FMT problems. However, the smoothing effects caused by these methods result in continuous distribution that lacks high-frequency edge-type features and hence limits the resolution of FMT. In this paper, the sparsity in FMT reconstruction results is exploited via compressed sensing (CS). First, in order to ensure the feasibility of CS for the FMT inverse problem, truncated singular value decomposition (TSVD) conversion is implemented for the measurement matrix of the FMT problem. Then, as one kind of greedy algorithm, an ameliorated stagewise orthogonal matching pursuit with gradually shrunk thresholds and a specific halting condition is developed for the FMT inverse problem. To evaluate the proposed algorithm, we compared it with a TSVD method based on L2-norm regularization in numerical simulation and phantom experiments. The results show that the proposed algorithm can obtain higher spatial resolution and higher signal-to-noise ratio compared with the TSVD method.
Related JoVE Video
Histone H2B ubiquitin ligase RNF20 is required for MLL-rearranged leukemia.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 02-14-2013
Show Abstract
Hide Abstract
Mixed-lineage leukemia (MLL) fusions are potent oncogenes that initiate aggressive forms of acute leukemia. As aberrant transcriptional regulators, MLL-fusion proteins alter gene expression in hematopoietic cells through interactions with the histone H3 lysine 79 (H3K79) methyltransferase DOT1L. Notably, interference with MLL-fusion cofactors like DOT1L is an emerging therapeutic strategy in this disease. Here, we identify the histone H2B E3 ubiquitin ligase ring finger protein 20 (RNF20) as an additional chromatin regulator that is necessary for MLL-fusion-mediated leukemogenesis. Suppressing the expression of Rnf20 in diverse models of MLL-rearranged leukemia leads to inhibition of cell proliferation, under tissue culture conditions as well as in vivo. Rnf20 knockdown leads to reduced expression of MLL-fusion target genes, effects resembling Dot1l inhibition. Using ChIP-seq, we found that H2B ubiquitination is enriched in the body of MLL-fusion target genes, correlating with sites of H3K79 methylation and transcription elongation. Furthermore, Rnf20 is required to maintain local levels of H3K79 methylation by Dot1l at Hoxa9 and Meis1. These findings support a model whereby cotranscriptional recruitment of Rnf20 at MLL-fusion target genes leads to amplification of Dot1l-mediated H3K79 methylation, thereby rendering leukemia cells dependent on Rnf20 to maintain their oncogenic transcriptional program.
Related JoVE Video
Simultaneous determination of two-component isotherm parameters and lumped mass transfer coefficients in RPLC with the 0-1 model-inverse method.
J Sep Sci
PUBLISHED: 01-22-2013
Show Abstract
Hide Abstract
The 0-1 model-inverse method of nonequilibrium nonlinear chromatography was developed to simultaneously determine the isotherm parameters and the lumped mass transfer coefficients of the two-component systems in RPLC. By comparing the simulated elution curves with experimental curves with regard to profiles and areas, the suitable isotherm parameters and the lumped mass transfer coefficients were obtained with the 0-1 model-inverse method. With a solute cell unit width of 1×10(-3) cm, the average errors of the peak areas were 0.178% for one component and -0.40% for two components, and the numerical diffusions of the 0-1 model for the contribution to band broadening may be negligible. In addition, the results showed that the lumped mass transfer coefficients decrease as the solute concentration increases. The 0-1 model-inverse method has not only the advantages of high calculation speed (less than 10 min for one-component systems or approximately 3 h for two-component systems using an ordinary computer) and high accuracy in simultaneously obtaining thermodynamic parameters and kinetic parameters of two-component systems, but this method also possesses the potential to optimally design and control the time-variant preparative chromatographic system due to the thermodynamic state recursion and the Lagrangian-Eulerian presentation of the 0-1 model.
Related JoVE Video
An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance.
Genes Dev.
PUBLISHED: 08-11-2011
Show Abstract
Hide Abstract
Although human cancers have complex genotypes and are genomically unstable, they often remain dependent on the continued presence of single-driver mutations-a phenomenon dubbed "oncogene addiction." Such dependencies have been demonstrated in mouse models, where conditional expression systems have revealed that oncogenes able to initiate cancer are often required for tumor maintenance and progression, thus validating the pathways they control as therapeutic targets. Here, we implement an integrative approach that combines genetically defined mouse models, transcriptional profiling, and a novel inducible RNAi platform to characterize cellular programs that underlie addiction to MLL-AF9-a fusion oncoprotein involved in aggressive forms of acute myeloid leukemia (AML). We show that MLL-AF9 contributes to leukemia maintenance by enforcing a Myb-coordinated program of aberrant self-renewal involving genes linked to leukemia stem cell potential and poor prognosis in human AML. Accordingly, partial and transient Myb suppression precisely phenocopies MLL-AF9 withdrawal and eradicates aggressive AML in vivo without preventing normal myelopoiesis, indicating that strategies to inhibit Myb-dependent aberrant self-renewal programs hold promise as effective and cancer-specific therapeutics. Together, our results identify Myb as a critical mediator of oncogene addiction in AML, delineate relevant Myb target genes that are amenable to pharmacologic inhibition, and establish a general approach for dissecting oncogene addiction in vivo.
Related JoVE Video
BET bromodomain inhibition as a therapeutic strategy to target c-Myc.
Cell
PUBLISHED: 07-19-2011
Show Abstract
Hide Abstract
MYC contributes to the pathogenesis of a majority of human cancers, yet strategies to modulate the function of the c-Myc oncoprotein do not exist. Toward this objective, we have targeted MYC transcription by interfering with chromatin-dependent signal transduction to RNA polymerase, specifically by inhibiting the acetyl-lysine recognition domains (bromodomains) of putative coactivator proteins implicated in transcriptional initiation and elongation. Using a selective small-molecule bromodomain inhibitor, JQ1, we identify BET bromodomain proteins as regulatory factors for c-Myc. BET inhibition by JQ1 downregulates MYC transcription, followed by genome-wide downregulation of Myc-dependent target genes. In experimental models of multiple myeloma, a Myc-dependent hematologic malignancy, JQ1 produces a potent antiproliferative effect associated with cell-cycle arrest and cellular senescence. Efficacy of JQ1 in three murine models of multiple myeloma establishes the therapeutic rationale for BET bromodomain inhibition in this disease and other malignancies characterized by pathologic activation of c-Myc.
Related JoVE Video
RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia.
Nature
PUBLISHED: 03-02-2011
Show Abstract
Hide Abstract
Epigenetic pathways can regulate gene expression by controlling and interpreting chromatin modifications. Cancer cells are characterized by altered epigenetic landscapes, and commonly exploit the chromatin regulatory machinery to enforce oncogenic gene expression programs. Although chromatin alterations are, in principle, reversible and often amenable to drug intervention, the promise of targeting such pathways therapeutically has been limited by an incomplete understanding of cancer-specific dependencies on epigenetic regulators. Here we describe a non-biased approach to probe epigenetic vulnerabilities in acute myeloid leukaemia (AML), an aggressive haematopoietic malignancy that is often associated with aberrant chromatin states. By screening a custom library of small hairpin RNAs (shRNAs) targeting known chromatin regulators in a genetically defined AML mouse model, we identify the protein bromodomain-containing 4 (Brd4) as being critically required for disease maintenance. Suppression of Brd4 using shRNAs or the small-molecule inhibitor JQ1 led to robust antileukaemic effects in vitro and in vivo, accompanied by terminal myeloid differentiation and elimination of leukaemia stem cells. Similar sensitivities were observed in a variety of human AML cell lines and primary patient samples, revealing that JQ1 has broad activity in diverse AML subtypes. The effects of Brd4 suppression are, at least in part, due to its role in sustaining Myc expression to promote aberrant self-renewal, which implicates JQ1 as a pharmacological means to suppress MYC in cancer. Our results establish small-molecule inhibition of Brd4 as a promising therapeutic strategy in AML and, potentially, other cancers, and highlight the utility of RNA interference (RNAi) screening for revealing epigenetic vulnerabilities that can be exploited for direct pharmacological intervention.
Related JoVE Video
Roles of arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress.
BMC Plant Biol.
PUBLISHED: 12-19-2010
Show Abstract
Hide Abstract
WRKY transcription factors are involved in plant responses to both biotic and abiotic stresses. Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors interact both physically and functionally in plant defense responses. However, their role in plant abiotic stress response has not been directly analyzed.
Related JoVE Video
Markers of tumor-initiating cells predict chemoresistance in breast cancer.
PLoS ONE
PUBLISHED: 07-30-2010
Show Abstract
Hide Abstract
Evidence is lacking whether the number of breast tumor-initiating cells (BT-ICs) directly correlates with the sensitivity of breast tumors to chemotherapy. Here, we evaluated the association between proportion of BT-ICs and chemoresistance of the tumors.
Related JoVE Video
Vitamin A depletion alters sensitivity of motor behavior to MK-801 in C57BL/6J mice.
Behav Brain Funct
PUBLISHED: 01-22-2010
Show Abstract
Hide Abstract
Vitamin A and its derivatives (retinoids) are crucial for the development, maintenance and morphogenesis of the central nervous system (CNS). Although motor impairment has been reported in postnatal vitamin A depletion rodents, the effect of vitamin A depletion on homeostasis maintaining capability in response to external interference is not clear.
Related JoVE Video
Small-molecule inhibition of BRD4 as a new potent approach to eliminate leukemic stem- and progenitor cells in acute myeloid leukemia AML.
Oncotarget
Show Abstract
Hide Abstract
Acute myeloid leukemia (AML) is a life-threatening stem cell disease characterized by uncontrolled proliferation and accumulation of myeloblasts. Using an advanced RNAi screen-approach in an AML mouse model we have recently identified the epigenetic reader BRD4 as a promising target in AML. In the current study, we asked whether inhibition of BRD4 by a small-molecule inhibitor, JQ1, leads to growth-inhibition and apoptosis in primary human AML stem- and progenitor cells. Primary cell samples were obtained from 37 patients with freshly diagnosed AML (n=23) or refractory AML (n=14). BRD4 was found to be expressed at the mRNA and protein level in unfractionated AML cells as well as in highly enriched CD34?/CD38? and CD34?/CD38? stem- and progenitor cells in all patients examined. In unfractionated leukemic cells, submicromolar concentrations of JQ1 induced major growth-inhibitory effects (IC?? 0.05-0.5 µM) in most samples, including cells derived from relapsed or refractory patients. In addition, JQ1 was found to induce apoptosis in CD34+/CD38? and CD34?/CD38? stem- and progenitor cells in all donors examined as evidenced by combined surface/Annexin-V staining. Moreover, we were able to show that JQ1 synergizes with ARA-C in inducing growth inhibition in AML cells. Together, the BRD4-targeting drug JQ1 exerts major anti-leukemic effects in a broad range of human AML subtypes, including relapsed and refractory patients and all relevant stem- and progenitor cell compartments, including CD34?/CD38? and CD34?/CD38? AML cells. These results characterize BRD4-inhibition as a promising new therapeutic approach in AML which should be further investigated in clinical trials.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.