JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
A brain-computer interface based cognitive training system for healthy elderly: a randomized control pilot study for usability and preliminary efficacy.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Cognitive decline in aging is a pressing issue associated with significant healthcare costs and deterioration in quality of life. Previously, we reported the successful use of a novel brain-computer interface (BCI) training system in improving symptoms of attention deficit hyperactivity disorder. Here, we examine the feasibility of the BCI system with a new game that incorporates memory training in improving memory and attention in a pilot sample of healthy elderly. This study investigates the safety, usability and acceptability of our BCI system to elderly, and obtains an efficacy estimate to warrant a phase III trial. Thirty-one healthy elderly were randomized into intervention (n?=?15) and waitlist control arms (n?=?16). Intervention consisted of an 8-week training comprising 24 half-hour sessions. A usability and acceptability questionnaire was administered at the end of training. Safety was investigated by querying users about adverse events after every session. Efficacy of the system was measured by the change of total score from the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) before and after training. Feedback on the usability and acceptability questionnaire was positive. No adverse events were reported for all participants across all sessions. Though the median difference in the RBANS change scores between arms was not statistically significant, an effect size of 0.6SD was obtained, which reflects potential clinical utility according to Simons randomized phase II trial design. Pooled data from both arms also showed that the median change in total scores pre and post-training was statistically significant (Mdn?=?4.0; p<0.001). Specifically, there were significant improvements in immediate memory (p?=?0.038), visuospatial/constructional (p?=?0.014), attention (p?=?0.039), and delayed memory (p<0.001) scores. Our BCI-based system shows promise in improving memory and attention in healthy elderly, and appears to be safe, user-friendly and acceptable to senior users. Given the efficacy signal, a phase III trial is warranted.
Related JoVE Video
Metabolomics: a global biochemical approach to the study of central nervous system diseases.
Neuropsychopharmacology
PUBLISHED: 03-10-2009
Show Abstract
Hide Abstract
Metabolomics, the omics science of biochemistry, is a global approach to understanding regulation of metabolic pathways and metabolic networks of a biological system. Metabolomics complements data derived from genomics, transcriptomics, and proteomics to assist in providing a systems approach to the study of human health and disease. In this review we focus on applications of metabolomics for the study of diseases of the nervous system. We share concepts in metabolomics, tools used in metabolic profiling and early findings from the study of neuropsychiatric diseases, and drugs used to treat these diseases. Metabolomics emerges as another powerful tool in central nervous system research.
Related JoVE Video
A brain-computer interface based attention training program for treating attention deficit hyperactivity disorder.
PLoS ONE
Show Abstract
Hide Abstract
Attention deficit hyperactivity disorder (ADHD) symptoms can be difficult to treat. We previously reported that a 20-session brain-computer interface (BCI) attention training programme improved ADHD symptoms. Here, we investigated a new more intensive BCI-based attention training game system on 20 unmedicated ADHD children (16 males, 4 females) with significant inattentive symptoms (combined and inattentive ADHD subtypes). This new system monitored attention through a head band with dry EEG sensors, which was used to drive a feed forward game. The system was calibrated for each user by measuring the EEG parameters during a Stroop task. Treatment consisted of an 8-week training comprising 24 sessions followed by 3 once-monthly booster training sessions. Following intervention, both parent-rated inattentive and hyperactive-impulsive symptoms on the ADHD Rating Scale showed significant improvement. At week 8, the mean improvement was -4.6 (5.9) and -4.7 (5.6) respectively for inattentive symptoms and hyperactive-impulsive symptoms (both p<0.01). Cohens d effect size for inattentive symptoms was large at 0.78 at week 8 and 0.84 at week 24 (post-boosters). Further analysis showed that the change in the EEG based BCI ADHD severity measure correlated with the change ADHD Rating Scale scores. The BCI-based attention training game system is a potential new treatment for ADHD.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.