JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Genetic variation and possible mechanisms driving the evolution of worldwide fig mosaic virus isolates.
Phytopathology
PUBLISHED: 02-28-2014
Show Abstract
Hide Abstract
Fig mosaic virus (FMV) is a multipartite negative-sense RNA virus infecting fig trees worldwide. FMV is transmitted by vegetative propagation and grafting of plant materials, and by the eriophyid mite Aceria ficus. In this work, the genetic variation and evolutionary mechanisms shaping FMV populations were characterized. Nucleotide sequences from four genomic regions (each within the genomic RNAs 1, 2, 3, and 4) from FMV isolates from different countries were determined and analyzed. FMV genetic variation was low, as is seen for many other plant viruses. Phylogenetic analysis showed some geographically distant FMV isolates which clustered together, suggesting long-distance migration. The extent of migration was limited, although varied, between countries, such that FMV populations of different countries were genetically differentiated. Analysis using several recombination algorithms suggests that genomes of some FMV isolates originated by reassortment of genomic RNAs from different genetically similar isolates. Comparison between nonsynonymous and synonymous substitutions showed selection acting on some amino acids; however, most evolved neutrally. This and neutrality tests together with the limited gene flow suggest that genetic drift plays an important role in shaping FMV populations.
Related JoVE Video
Multilocus sequence analysis reveals the genetic diversity of European fruit tree phytoplasmas and supports the existence of inter-species recombination.
Microbiology (Reading, Engl.)
PUBLISHED: 09-16-2010
Show Abstract
Hide Abstract
The genetic diversity of three temperate fruit tree phytoplasmas Candidatus Phytoplasma prunorum, Ca. P. mali and Ca. P. pyri has been established by multilocus sequence analysis. Among the four genetic loci used, the genes imp and aceF distinguished 30 and 24 genotypes, respectively, and showed the highest variability. Percentage of substitution for imp ranged from 50 to 68?% according to species. Percentage of substitution varied between 9 and 12?% for aceF, whereas it was between 5 and 6?% for pnp and secY. In the case of Ca P. prunorum the three most prevalent aceF genotypes were detected in both plants and insect vectors, confirming that the prevalent isolates are propagated by insects. The four isolates known to be hypo-virulent had the same aceF sequence, indicating a possible monophyletic origin. Haplotype network reconstructed by eBURST revealed that among the 34 haplotypes of Ca. P. prunorum, the four hypo-virulent isolates also grouped together in the same clade. Genotyping of some Spanish and Azerbaijanese Ca. P. pyri isolates showed that they shared some alleles with Ca. P. prunorum, supporting for the first time to our knowledge, the existence of inter-species recombination between these two species.
Related JoVE Video
Further characterization of a new recombinant group of Plum pox virus isolates, PPV-T, found in orchards in the Ankara province of Turkey.
Virus Res.
PUBLISHED: 01-14-2009
Show Abstract
Hide Abstract
Sixteen Plum pox virus (PPV) isolates collected in the Ankara region of Turkey were analyzed using available serological and molecular typing assays. Surprisingly, despite the fact that all isolates except one, which was a mix infection, were typed as belonging to the PPV-M strain in four independent molecular assays, nine of them (60%) reacted with both PPV-M specific and PPV-D specific monoclonal antibodies. Partial 5 and 3 genomic sequence analysis on four isolates demonstrated that irrespective of their reactivity towards the PPV-D specific monoclonal antibody, they were all closely related to a recombinant PPV isolate from Turkey, Ab-Tk. All three isolates for which the relevant genomic sequence was obtained showed the same recombination event as Ab-Tk in the HC-Pro gene, around position 1566 of the genome. Complete genomic sequencing of Ab-Tk did not provide evidence for additional recombination events in its evolutionary history. Taken together, these results indicate that a group of closely related PPV isolates characterized by a unique recombination in the HC-Pro gene is prevalent under field conditions in the Ankara region of Turkey. Similar to the situation with the PPV-Rec strain, we propose that these isolates represent a novel strain of PPV, for which the name PPV-T (Turkey) is proposed. Given that PPV-T isolates cannot be identified by currently available typing techniques, it is possible that their presence has been overlooked in other situations. Further efforts should allow a precise description of their prevalence and of their geographical distribution in Turkey and, possibly, in other countries.
Related JoVE Video
Endophytic bacterial community living in roots of healthy and Candidatus Phytoplasma mali-infected apple (Malus domestica, Borkh.) trees.
Antonie Van Leeuwenhoek
Show Abstract
Hide Abstract
Candidatus Phytoplasma mali, the causal agent of apple proliferation (AP) disease, is a quarantine pathogen controlled by chemical treatments against insect vectors and eradication of diseased plants. In accordance with the European Community guidelines, novel strategies should be developed for sustainable management of plant diseases by using resistance inducers (e.g. endophytes). A basic point for the success of this approach is the study of endophytic bacteria associated with plants. In the present work, endophytic bacteria living in healthy and Ca. Phytoplasma mali-infected apple trees were described by cultivation-dependent and independent methods. 16S rDNA sequence analysis showed the presence of the groups Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Chlamydiae, and Firmicutes. In detail, library analyses underscored 24 and 17 operational taxonomic units (OTUs) in healthy and infected roots, respectively, with a dominance of Betaproteobacteria. Moreover, differences in OTUs number and in CFU/g suggested that phytoplasmas could modify the composition of endophytic bacterial communities associated with infected plants. Intriguingly, the combination of culturing methods and cloning analysis allowed the identification of endophytic bacteria (e.g. Bacillus, Pseudomonas, and Burkholderia) that have been reported as biocontrol agents. Future research will investigate the capability of these bacteria to control Ca. Phytoplasma mali in order to develop sustainable approaches for managing AP.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.