JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Neural Stem Cell-Mediated Intratumoral Delivery of Gold Nanorods Improves Photothermal Therapy.
ACS Nano
PUBLISHED: 11-07-2014
Show Abstract
Hide Abstract
Plasmonic photothermal therapy utilizes biologically inert gold nanorods (AuNRs) as tumor-localized antennas that convert light into heat capable of eliminating cancerous tissue. This approach has lower morbidity than surgical resection and can potentially synergize with other treatment modalities including chemotherapy and immunotherapy. Despite these advantages, it is still challenging to obtain heating of the entire tumor mass while avoiding unnecessary collateral damage to surrounding healthy tissue. It is therefore critical to identify innovative methods to distribute an effective concentration of AuNRs throughout tumors without depositing them in surrounding healthy tissue. Here we demonstrate that AuNR-loaded, tumor-tropic neural stem cells (NSCs) can be used to improve the intratumoral distribution of AuNRs. A simple UV-vis technique for measuring AuNR loading within NSCs was established. It was then confirmed that NSC viability is unimpaired following AuNR loading and that NSCs retain AuNRs long enough to migrate throughout tumors. We then demonstrate that intratumoral injections of AuNR-loaded NSCs are more efficacious than free AuNR injections, as evidenced by reduced recurrence rates of triple-negative breast cancer (MDA-MB-231) xenografts following NIR exposure. Finally, we demonstrate that the distribution of AuNRs throughout the tumors is improved when transported by NSCs, likely resulting in the improved efficacy of AuNR-loaded NSCs as compared to free AuNRs. These findings highlight the advantage of combining cellular therapies and nanotechnology to generate more effective cancer treatments.
Related JoVE Video
Neural stem cells improve intracranial nanoparticle retention and tumor-selective distribution.
Future Oncol
PUBLISHED: 02-25-2014
Show Abstract
Hide Abstract
The purpose of this work is to determine if tumor-tropic neural stem cells (NSCs) can improve the tumor-selective distribution and retention of nanoparticles (NPs) within invasive brain tumors.
Related JoVE Video
Conjugation of pH-responsive nanoparticles to neural stem cells improves intratumoral therapy.
J Control Release
PUBLISHED: 01-17-2014
Show Abstract
Hide Abstract
Intratumoral drug delivery is an inherently appealing approach for concentrating toxic chemotherapies at the site of action. This mode of administration is currently used in a number of clinical treatments such as neoadjuvant, adjuvant, and even standalone therapies when radiation and surgery are not possible. However, even when injected locally, it is difficult to achieve efficient distribution of chemotherapeutics throughout the tumor. This is primarily attributed to the high interstitial pressure which results in gradients that drive fluid away from the tumor center. The stiff extracellular matrix also limits drug penetration throughout the tumor. We have previously shown that neural stem cells can penetrate tumor interstitium, actively migrating even to hypoxic tumor cores. When used to deliver therapeutics, these migratory neural stem cells result in dramatically enhanced tumor coverage relative to conventional delivery approaches. We recently showed that neural stem cells maintain their tumor tropic properties when surface-conjugated to nanoparticles. Here we demonstrate that this hybrid delivery system can be used to improve the efficacy of docetaxel-loaded nanoparticles when administered intratumorally. This was achieved by conjugating drug-loaded nanoparticles to the surface of neural stem cells using a bond that allows the stem cells to efficiently distribute nanoparticles throughout the tumor before releasing the drug for uptake by tumor cells. The modular nature of this system suggests that it could be used to improve the efficacy of many chemotherapy drugs after intratumoral administration.
Related JoVE Video
Neural stem cell-mediated delivery of irinotecan-activating carboxylesterases to glioma: implications for clinical use.
Stem Cells Transl Med
PUBLISHED: 10-28-2013
Show Abstract
Hide Abstract
CPT-11 (irinotecan) has been investigated as a treatment for malignant brain tumors. However, limitations of CPT-11 therapy include low levels of the drug entering brain tumor sites and systemic toxicities associated with higher doses. Neural stem cells (NSCs) offer a novel way to overcome these obstacles because of their inherent tumor tropism and ability to cross the blood-brain barrier, which enables them to selectively target brain tumor sites. Carboxylesterases (CEs) are enzymes that can convert the prodrug CPT-11 (irinotecan) to its active metabolite SN-38, a potent topoisomerase I inhibitor. We have adenovirally transduced an established clonal human NSC line (HB1.F3.CD) to express a rabbit carboxylesterase (rCE) or a modified human CE (hCE1m6), which are more effective at converting CPT-11 to SN-38 than endogenous human CE. We hypothesized that NSC-mediated CE/CPT-11 therapy would allow tumor-localized production of SN-38 and significantly increase the therapeutic efficacy of irinotecan. Here, we report that transduced NSCs transiently expressed high levels of active CE enzymes, retained their tumor-tropic properties, and mediated an increase in the cytotoxicity of CPT-11 toward glioma cells. CE-expressing NSCs (NSC.CEs), whether administered intracranially or intravenously, delivered CE to orthotopic human glioma xenografts in mice. NSC-delivered CE catalyzed conversion of CPT-11 to SN-38 locally at tumor sites. These studies demonstrate the feasibility of NSC-mediated delivery of CE to glioma and lay the foundation for translational studies of this therapeutic paradigm to improve clinical outcome and quality of life in patients with malignant brain tumors.
Related JoVE Video
Magnetic resonance imaging tracking of ferumoxytol-labeled human neural stem cells: studies leading to clinical use.
Stem Cells Transl Med
PUBLISHED: 09-06-2013
Show Abstract
Hide Abstract
Numerous stem cell-based therapies are currently under clinical investigation, including the use of neural stem cells (NSCs) as delivery vehicles to target therapeutic agents to invasive brain tumors. The ability to monitor the time course, migration, and distribution of stem cells following transplantation into patients would provide critical information for optimizing treatment regimens. No effective cell-tracking methodology has yet garnered clinical acceptance. A highly promising noninvasive method for monitoring NSCs and potentially other cell types in vivo involves preloading them with ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) to enable cell tracking using magnetic resonance imaging (MRI). We report here the preclinical studies that led to U.S. Food and Drug Administration approval for first-in-human investigational use of ferumoxytol to label NSCs prior to transplantation into brain tumor patients, followed by surveillance serial MRI. A combination of heparin, protamine sulfate, and ferumoxytol (HPF) was used to label the NSCs. HPF labeling did not affect cell viability, growth kinetics, or tumor tropism in vitro, and it enabled MRI visualization of NSC distribution within orthotopic glioma xenografts. MRI revealed dynamic in vivo NSC distribution at multiple time points following intracerebral or intravenous injection into glioma-bearing mice that correlated with histological analysis. Preclinical safety/toxicity studies of intracerebrally administered HPF-labeled NSCs in mice were also performed, and they showed no significant clinical or behavioral changes, no neuronal or systemic toxicities, and no abnormal accumulation of iron in the liver or spleen. These studies support the clinical use of ferumoxytol labeling of cells for post-transplant MRI visualization and tracking.
Related JoVE Video
Selective antitumor effect of neural stem cells expressing cytosine deaminase and interferon-beta against ductal breast cancer cells in cellular and xenograft models.
Stem Cell Res
PUBLISHED: 08-10-2013
Show Abstract
Hide Abstract
Due to their inherent tumor-tropic properties, genetically engineered stem cells may be advantageous for gene therapy treatment of various human cancers, including brain, liver, ovarian, and prostate malignancies. In this study, we employed human neural stem cells (HB1.F3; hNSCs) transduced with genes expressing Escherichia coli cytosine deaminase (HB1.F3.CD) and human interferon-beta (HB1.F3.CD.IFN-?) as a treatment strategy for ductal breast cancer. CD can convert the prodrug 5-fluorocytosine (5-FC) to its active chemotherapeutic form, 5-fluorouracil (5-FU), which induces a tumor-killing effect through DNA synthesis inhibition. IFN-? also strongly inhibits tumor growth by the apoptotic process. RT-PCR confirmed that HB1.F3.CD cells expressed CD and HB1.F3.CD.IFN-? cells expressed both CD and IFN-?. A modified transwell migration assay showed that HB1.F3.CD and HB1.F3.CD.IFN-? cells selectively migrated toward MCF-7 and MDA-MB-231 human breast cancer cells. In hNSC-breast cancer co-cultures the viability of breast cancer cells which were significantly reduced by HB1.F3.CD or HB1.F3.CD.IFN-? cells in the presence of 5-FC. The tumor inhibitory effect was greater with the HB1.F3.CD.IFN-? cells, indicating an additional effect of IFN-? to 5-FU. In addition, the tumor-tropic properties of these hNSCs were found to be attributed to chemoattractant molecules secreted by breast cancer cells, including stem cell factor (SCF), c-kit, vascular endothelial growth factor (VEGF), and VEGF receptor 2. An in vivo assay performed using MDA-MB-231/luc breast cancer mammary fat pad xenografts in immunodeficient mice resulted in 50% reduced tumor growth and increased long-term survival in HB1.F3.CD and HB1.F3.CD.IFN-? plus 5-FC treated mice relative to controls. Our results suggest that hNSCs genetically modified to express CD and/or IFN-? genes can be used as a novel targeted cancer gene therapy.
Related JoVE Video
The timing of neural stem cell-based virotherapy is critical for optimal therapeutic efficacy when applied with radiation and chemotherapy for the treatment of glioblastoma.
Stem Cells Transl Med
PUBLISHED: 08-07-2013
Show Abstract
Hide Abstract
Glioblastoma multiforme (GBM) remains fatal despite intensive surgical, radiotherapeutic, and chemotherapeutic interventions. Neural stem cells (NSCs) have been used as cellular vehicles for the transportation of oncolytic virus (OV) to therapeutically resistant and infiltrative tumor burdens throughout the brain. The HB1.F3-CD human NSC line has demonstrated efficacy as a cell carrier for the delivery of a glioma tropic OV CRAd-Survivin-pk7 (CRAd-S-pk7) in vitro and in animal models of glioma. At this juncture, no study has investigated the effectiveness of OV-loaded NSCs when applied in conjunction with the standard of care for GBM treatment, and therefore this study was designed to fill this void. Here, we show that CRAd-S-pk7-loaded HB1.F3-CD cells retain their tumor-tropic properties and capacity to function as in situ viral manufacturers in the presence of ionizing radiation (XRT) and temozolomide (TMZ). Furthermore, for the first time, we establish a logical experimental model that aims to recapitulate the complex clinical scenario for the treatment of GBM and tests the compatibility of NSCs loaded with OV. We report that applying OV-loaded NSCs together with XRT and TMZ can increase the median survival of glioma bearing mice by approximately 46%. Most importantly, the timing and order of therapeutic implementation impact therapeutic outcome. When OV-loaded NSCs are delivered prior to rather than after XRT and TMZ treatment, the median survival of mice bearing patient-derived GBM43 glioma xenografts is extended by 30%. Together, data from this report support the testing of CRAd-S-pk7-loaded HB1.F3-CD cells in the clinical setting and argue in favor of a multimodality approach for the treatment of patients with GBM.
Related JoVE Video
A preclinical evaluation of neural stem cell-based cell carrier for targeted antiglioma oncolytic virotherapy.
J. Natl. Cancer Inst.
PUBLISHED: 07-04-2013
Show Abstract
Hide Abstract
Oncolytic adenoviral virotherapy (OV) is a highly promising approach for the treatment of glioblastoma multiforme (GBM). In practice, however, the approach is limited by poor viral distribution and spread throughout the tumor mass.
Related JoVE Video
Intranasal delivery of mesenchymal stem cells significantly extends survival of irradiated mice with experimental brain tumors.
Mol. Ther.
PUBLISHED: 06-11-2013
Show Abstract
Hide Abstract
Treatment options of glioblastoma multiforme are limited due to the blood-brain barrier (BBB). In this study, we investigated the utility of intranasal (IN) delivery as a means of transporting stem cell-based antiglioma therapeutics. We hypothesized that mesenchymal stem cells (MSCs) delivered via nasal application could impart therapeutic efficacy when expressing TNF-related apoptosis-inducing ligand (TRAIL) in a model of human glioma. (111)In-oxine, histology and magnetic resonance imaging (MRI) were utilized to track MSCs within the brain and associated tumor. We demonstrate that MSCs can penetrate the brain from nasal cavity and infiltrate intracranial glioma xenografts in a mouse model. Furthermore, irradiation of tumor-bearing mice tripled the penetration of (111In)-oxine-labeled MSCs in the brain with a fivefold increase in cerebellum. Significant increase in CXCL12 expression was observed in irradiated xenograft tissue, implicating a CXCL12-dependent mechanism of MSCs migration towards irradiated glioma xenografts. Finally, MSCs expressing TRAIL improved the median survival of irradiated mice bearing intracranial U87 glioma xenografts in comparison with nonirradiated and irradiated control mice. Cumulatively, our data suggest that IN delivery of stem cell-based therapeutics is a feasible and highly efficacious treatment modality, allowing for repeated application of modified stem cells to target malignant glioma.
Related JoVE Video
Neural stem cell-mediated enzyme/prodrug therapy for glioma: preclinical studies.
Sci Transl Med
PUBLISHED: 05-10-2013
Show Abstract
Hide Abstract
High-grade gliomas are extremely difficult to treat because they are invasive and therefore not curable by surgical resection; the toxicity of current chemo- and radiation therapies limits the doses that can be used. Neural stem cells (NSCs) have inherent tumor-tropic properties that enable their use as delivery vehicles to target enzyme/prodrug therapy selectively to tumors. We used a cytosine deaminase (CD)-expressing clonal human NSC line, HB1.F3.CD, to home to gliomas in mice and locally convert the prodrug 5-fluorocytosine to the active chemotherapeutic 5-fluorouracil. In vitro studies confirmed that the NSCs have normal karyotype, tumor tropism, and CD expression, and are genetically and functionally stable. In vivo biodistribution studies demonstrated NSC retention of tumor tropism, even in mice pretreated with radiation or dexamethasone to mimic clinically relevant adjuvant therapies. We evaluated safety and toxicity after intracerebral administration of the NSCs in non-tumor-bearing and orthotopic glioma-bearing immunocompetent and immunodeficient mice. We detected no difference in toxicity associated with conversion of 5-fluorocytosine to 5-fluorouracil, no NSCs outside the brain, and no histological evidence of pathology or tumorigenesis attributable to the NSCs. The average tumor volume in mice that received HB1.F3.CD NSCs and 5-fluorocytosine was about one-third that of the average volume in control mice. On the basis of these results, we conclude that combination therapy with HB1.F3.CD NSCs and 5-fluorocytosine is safe, nontoxic, and effective in mice. These data have led to approval of a first-in-human study of an allogeneic NSC-mediated enzyme/prodrug-targeted cancer therapy in patients with recurrent high-grade glioma.
Related JoVE Video
Nanoparticle-programmed self-destructive neural stem cells for glioblastoma targeting and therapy.
Small
PUBLISHED: 04-11-2013
Show Abstract
Hide Abstract
A 3-step glioblastoma-tropic delivery and therapy method using nanoparticle programmed self-destructive neural stem cells (NSCs) is demonstrated in vivo: 1) FDA-approved NSCs for clinical trials are loaded with pH-sensitive MSN-Dox; 2) the nanoparticle conjugates provide a delayed drug-releasing mechanism and allow for NSC migration towards a distant tumor site; 3) NSCs eventually undergo cell death and release impregnated MSN-Dox, which subsequently induces toxicity towards surrounding glioma cells.
Related JoVE Video
Neural stem cell-based cell carriers enhance therapeutic efficacy of an oncolytic adenovirus in an orthotopic mouse model of human glioblastoma.
Mol. Ther.
PUBLISHED: 05-31-2011
Show Abstract
Hide Abstract
The potential utility of oncolytic adenoviruses as anticancer agents is significantly hampered by the inability of the currently available viral vectors to effectively target micrometastatic tumor burden. Neural stem cells (NSCs) have the ability to function as cell carriers for targeted delivery of an oncolytic adenovirus because of their inherent tumor-tropic migratory ability. We have previously reported that in vivo delivery of CRAd-S-pk7, a glioma-restricted oncolytic adenovirus, can enhance the survival of animals with experimental glioma. In this study, we show that intratumoral delivery of NSCs loaded with the CRAD-S-pk7 in an orthotopic xenograft model of human glioma is able to not only inhibit tumor growth but more importantly to increase median survival by ~50% versus animals treated with CRAd-S-pk7 alone (P = 0.0007). We also report that oncolytic virus infection upregulates different chemoattractant receptors and significantly enhances migratory capacity of NSCs both in vitro and in vivo. Our data further suggest that NSC-based carriers have the potential to improve the clinical efficacy of antiglioma virotherapy by not only protecting therapeutic virus from the host immune system, but also amplifying the therapeutic payload selectively at tumor sites.
Related JoVE Video
Translating stem cell studies to the clinic for CNS repair: current state of the art and the need for a Rosetta stone.
Neuron
PUBLISHED: 05-05-2011
Show Abstract
Hide Abstract
Since their discovery twenty years ago and prospective isolation a decade later, neural stem cells (NSCs), their progenitors, and differentiated cell derivatives along with other stem-cell based strategies have advanced steadily toward clinical trials, spurred by the immense need to find reparative therapeutics for central nervous system (CNS) diseases and injury. Current phase I/II trials using stem cells in the CNS are the vanguard for the widely anticipated next generation of regenerative therapies and as such are pioneering the stem cell therapy process. While translation has typically been the purview of industry, academic researchers are increasingly driven to bring their findings toward treatments and face challenges in knowledge gap and resource access that are accentuated by the unique financial, manufacturing, scientific, and regulatory aspects of cell therapy. Solutions are envisioned that both address the significant unmet medical need and lead to increased funding for basic and translational research.
Related JoVE Video
Genetically engineered human neural stem cells with rabbit carboxyl esterase can target brain metastasis from breast cancer.
Cancer Lett.
PUBLISHED: 04-14-2011
Show Abstract
Hide Abstract
Neural stem cells (NSCs) led to the development of a novel strategy for delivering therapeutic genes to tumors. NSCs expressing rabbit carboxyl esterase (F3.CE), which activates CPT-11, significantly inhibited the growth of MDA-MB-435 cells in the presence of CPT-11. F3.CE cells migrated selectively into the brain metastases located in the opposite hemisphere. The treatment also significantly decreased tumor volume in immune-deficient mice bearing MDA-MB-435 tumors when F3.CE cells were transplanted into the contralateral hemisphere. The survival rate was significantly prolonged with the treatment with F3.CE and CPT-11. This strategy may be considered as an effective treatment regimen for brain metastases.
Related JoVE Video
Strategies for enhancing antibody delivery to the brain.
Biochim. Biophys. Acta
PUBLISHED: 01-14-2011
Show Abstract
Hide Abstract
Antibodies and antibody conjugates have emerged as important tools for cancer therapy. However, a major therapeutic challenge for the use of antibodies is their inability to cross the blood-brain barrier (BBB) to reach tumors localized in the central nervous system (CNS). Multiple methods have been developed to enhance antibody delivery to the CNS, including direct injection, mechanical or biochemical disruption of the BBB, conjugation to a molecular Trojan horse, cationization, encapsulation in nanoparticles and liposomes, and more recently, stem cell-mediated antibody delivery. In this review, we discuss each of these approaches, highlighting their successes and the obstacles that remain to be overcome.
Related JoVE Video
Concise review: stem cells as an emerging platform for antibody therapy of cancer.
Stem Cells
PUBLISHED: 11-20-2010
Show Abstract
Hide Abstract
Monoclonal antibodies are important tools for cancer therapy, however, three factors limit their effectiveness: toxicity, poor tumor penetration, and inability to cross the blood-brain barrier. This review discusses the emerging field of stem cell-mediated antibody delivery and how this approach may improve antibody therapy of cancer by overcoming these obstacles.
Related JoVE Video
Neural stem cells as a novel platform for tumor-specific delivery of therapeutic antibodies.
PLoS ONE
PUBLISHED: 07-10-2009
Show Abstract
Hide Abstract
Recombinant monoclonal antibodies have emerged as important tools for cancer therapy. Despite the promise shown by antibody-based therapies, the large molecular size of antibodies limits their ability to efficiently penetrate solid tumors and precludes efficient crossing of the blood-brain-barrier into the central nervous system (CNS). Consequently, poorly vascularized solid tumors and CNS metastases cannot be effectively treated by intravenously-injected antibodies. The inherent tumor-tropic properties of human neural stem cells (NSCs) can potentially be harnessed to overcome these obstacles and significantly improve cancer immunotherapy. Intravenously-delivered NSCs preferentially migrate to primary and metastatic tumor sites within and outside the CNS. Therefore, we hypothesized that NSCs could serve as an ideal cellular delivery platform for targeting antibodies to malignant tumors.
Related JoVE Video
Iron labeling and pre-clinical MRI visualization of therapeutic human neural stem cells in a murine glioma model.
PLoS ONE
PUBLISHED: 02-23-2009
Show Abstract
Hide Abstract
Treatment strategies for the highly invasive brain tumor, glioblastoma multiforme, require that cells which have invaded into the surrounding brain be specifically targeted. The inherent tumor-tropism of neural stem cells (NSCs) to primary and invasive tumor foci can be exploited to deliver therapeutics to invasive brain tumor cells in humans. Use of the strategy of converting prodrug to drug via therapeutic transgenes delivered by immortalized therapeutic NSC lines have shown efficacy in animal models. Thus therapeutic NSCs are being proposed for use in human brain tumor clinical trials. In the context of NSC-based therapies, MRI can be used both to non-invasively follow dynamic spatio-temporal patterns of the NSC tumor targeting allowing for the optimization of treatment strategies and to assess efficacy of the therapy. Iron-labeling of cells allows their presence to be visualized and tracked by MRI. Thus we aimed to iron-label therapeutic NSCs without affecting their cellular physiology using a method likely to gain United States Federal Drug Administration (FDA) approval.
Related JoVE Video
Neural progenitor cell-mediated delivery of osteoprotegerin limits disease progression in a preclinical model of neuroblastoma bone metastasis.
J. Pediatr. Surg.
PUBLISHED: 01-23-2009
Show Abstract
Hide Abstract
Osteoprotegerin (OPG) inhibits osteoclast activation and reduces osteolysis in bone tumors. We hypothesized that tumor-tropic neural progenitor cells (NPCs) engineered to express OPG would reduce neuroblastoma disease burden in the bone.
Related JoVE Video
Vascular endothelial growth factor-stimulated cerebral microvascular endothelial cells mediate the recruitment of neural stem cells to the neurovascular niche.
Brain Res.
PUBLISHED: 01-15-2009
Show Abstract
Hide Abstract
Endogenous and transplanted neural stem cells (NSC) are highly migratory and display a unique tropism for areas of neuro-pathology. However, signals controlling NSC motility in health and disease are still ill-defined. NSC appear to be intimately associated with the cerebral vasculature and angiogenesis is a hallmark of many neurological disorders. This has led us to investigate the influence of quiescent and angiogenically active human endothelial cells on human NSC migration. In vivo we observed frequent perivascular accumulation of human NSC in the proximity of cerebral microvessels upon induction of angiogenesis by cerebral infusion of vascular endothelial growth factor (VEGF) into the murine brain. We analyzed the in vitro effects of conditioned media from human endothelial cells before and after angiogenic stimulation with VEGF on the migration of human NSC in vitro. Non-stimulated endothelial cells induced a moderate chemotactic migration that was significantly enhanced after angiogenic activation by VEGF. In order to identify cytokines that may function as stimulators of NSC chemotaxis, we screened endothelial cell-conditioned media for the expression of 120 different cytokines. We identified PDGF-BB, RANTES, I-TAC, NAP-2, GROalpha, Ang-2, and M-CSF as endothelial cell-released chemoattractants for human NSC in vitro. VEGF-stimulated cerebral microvascular endothelial cells secreted higher levels of Ang-2 and GROalpha, which in part were responsible for the enhanced chemoattraction of NSC. Our findings support the hypothesis that the angiogenically active microvasculature modulates the local guidance of NSC through endothelial cell-derived chemoattractants.
Related JoVE Video
Researchers and the translational reality. Interview with Karen Aboody.
Regen Med
Show Abstract
Hide Abstract
Karen Aboody has first-hand experience of taking a potential therapy from the laboratory into clinical trials. Here, she shares with us the challenges and rewards of going from bench to bedside, and why all biomedical researchers need to know what it takes to make the transition if they want the best chance of seeing their discoveries used to help patients. Karen Aboody received her MD at Mount Sinai School of Medicine, and completed her post-doctoral training in Molecular Neurogenetics at Massachusetts General Hospital, Harvard Medical School. After gaining experience in pathology, gene therapy and biotechnology, she joined City of Hope (COH) in 2003 to head a translational research laboratory focused on therapeutic stem cell applications for invasive and metastatic solid tumors. In 2010, she received US FDA approval for a first-in-human clinical trial for neural stem cell-mediated therapy for high-grade glioma patients. This Phase I study is ongoing at COH, supported by NCI/NIH funding. In 2010, she received an US$18 million California Institute of Regenerative Medicine Disease Team Award to develop a second-generation enzyme/prodrug stem cell-mediated brain tumor therapy for clinical trials that may also have applications for other metastatic cancers. Honors include the 2000 AANS Young Investigator Award, and 2008 ASGCT Outstanding New Investigator Award. She recently founded a clinical-stage biopharmaceutical company, TheraBiologics Inc., to support clinical development of neural stem cell-mediated cancer therapies.
Related JoVE Video
Contact and encirclement of glioma cells in vitro is an intrinsic behavior of a clonal human neural stem cell line.
PLoS ONE
Show Abstract
Hide Abstract
Pathotropic neural stem and/or progenitor cells (NSCs) can potentially deliver therapeutic agents to otherwise inaccessible cancers. In glioma, NSCs are found in close contact with tumor cells, raising the possibility that specificity of NSC contact with glioma targets originates in the tumor cells themselves. Alternatively, target preferences may originate, at least in part, in the tumor microenvironment. To better understand mechanisms underlying NSC interactions with glioma cells, we examined NSC-target cell contacts in a highly simplified 3-dimensional peptide hydrogel (Puramatrix) in which cell behaviors can be studied in the relative absence of external cues. HB1.F3 is an immortalized clonal human NSC line extensively characterized in preclinical investigations. To study contact formation between HB1.F3 NSCs and glioma cells, we first examined co-cultures of eGFP-expressing HB1.F3 (HB1.F3.eGFP) NSCs and dsRed-expressing U251 glioma (U251.dsRed) cells. Using confocal microscopy, HB1.F3.eGFP cells were observed contacting or encircling U251.dsRed glioma cells, but never the reverse. Next, examining specificity of these contacts, no significant quantitative differences in either percentages of HB1.F3 NSCs contacting targets, or in the extent of target cell encirclement, were observed when HB1.F3.eGFP cells were presented with various potential target cells (human glioma and breast cancer cell lines, patient-derived brain tumor lines, non-tumor fibroblasts, primary mouse and human astroglial cells, and primary adult and newborn human dermal fibroblasts) except that interactions between HB1.F3 cells did not progress beyond establishing contacts. Finally cytoskeletal mechanisms employed by HB1.F3.eGFP cells varied with the substrate. When migrating in Puramatrix, HB1.F3 NSCs exhibited intermittent process extension followed by soma translocation, while during encirclement their movements were more amoeboid. We conclude that formation of contacts and subsequent encirclement of target cells by HB1.F3 NSCs is an intrinsic property of these NSCs, and that preferential contact formation with tumor cells in vivo must therefore be highly dependent on microenvironmental cues.
Related JoVE Video
TWIST1 associates with NF-?B subunit RELA via carboxyl-terminal WR domain to promote cell autonomous invasion through IL8 production.
BMC Biol.
Show Abstract
Hide Abstract
Metastasis is the primary cause of death for cancer patients. TWIST1, an evolutionarily conserved basic helix-loop-helix (bHLH) transcription factor, is a strong promoter of metastatic spread and its expression is elevated in many advanced human carcinomas. However, the molecular events triggered by TWIST1 to motivate dissemination of cancer cells are largely unknown.
Related JoVE Video
Cellular host responses to gliomas.
PLoS ONE
Show Abstract
Hide Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of malignant primary brain tumors in adults. Molecular and genetic analysis has advanced our understanding of glioma biology, however mapping the cellular composition of the tumor microenvironment is crucial for understanding the pathology of this dreaded brain cancer. In this study we identified major cell populations attracted by glioma using orthotopic rodent models of human glioma xenografts. Marker-specific, anatomical and morphological analyses revealed a robust influx of host cells into the main tumor bed and tumor satellites.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.