JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Renal Dysfunction is Associated with a Reduced Contribution of Nitric Oxide and Enhanced Vasoconstriction Following a Congenital Renal Mass Reduction in Sheep.
Circulation
PUBLISHED: 11-06-2014
Show Abstract
Hide Abstract
-Children born with reduced congenital renal mass have increased risk of hypertension and chronic kidney disease in adulthood, though mechanisms are poorly understood. Similar sequelae occur following fetal uninephrectomy (uni-x) in sheep leading to a 30% nephron deficit. We hypothesized that renal dysfunction is underpinned by a reduced contribution of nitric oxide (NO) and vascular dysfunction in uni-x sheep.
Related JoVE Video
Sex- and age-related differences in the chronic pressure-natriuresis relationship: role of the angiotensin type 2 receptor.
Am. J. Physiol. Renal Physiol.
PUBLISHED: 08-27-2014
Show Abstract
Hide Abstract
Sex hormones regulate the renin-angiotensin system. For example, estrogen enhances expression of the angiotensin type 2 receptor. We hypothesized that activation of the angiotensin type 2 receptor shifts the chronic pressure-natriuresis relationship leftward in females compared with males and that this effect is lost with age. Mean arterial pressure was measured by radiotelemetry in adult (4 mo old) and aged (14 mo old) wild-type and angiotensin type 2 receptor knockout male and female mice. Chronic pressure-natriuresis curves were constructed while mice were maintained on a normal-salt (0.26%) diet and following 6 days of high salt (5.0%) diet. Mean arterial pressure was lower in adult wild-type females than males (88 ± 1 and 97 ± 1 mmHg, respectively), a difference that was maintained with age, but was absent in adult knockout mice. In wild-type females, the chronic pressure-natriuresis relationship was shifted leftward compared with knockout females, an effect that was lost with age. In males, the chronic pressure-natriuresis relationship was not influenced by angiotensin type 2 receptor deficiency. Compared with age-matched females, the chronic pressure-natriuresis relationships in male mice were shifted rightward. Renal expression of the angiotensin type 2 receptor was fourfold greater in adult wild-type females than males. With age, the angiotensin type 2 receptor-to-angiotensin type 1 receptor balance was reduced in females. Conversely, in males, angiotensin receptor expression did not vary significantly with age. In conclusion, the angiotensin type 2 receptor modulates the chronic pressure-natriuresis relationship in an age- and sex-dependent manner.
Related JoVE Video
Reduced sensitivity of the renal vasculature to angiotensin II in young rats: the role of the angiotensin type 2 receptor.
Pediatr. Res.
PUBLISHED: 08-13-2014
Show Abstract
Hide Abstract
The angiotensin type-2 receptor (AT2R) opposes the vasoconstrictor actions of angiotensin II (AngII) mediated through the angiotensin type-1 receptor (AT1R). Renal AT2R levels are high during fetal life, but decrease significantly during postnatal maturation. To provide insight into the functional role of the AT2R in the kidney during postnatal development, we investigated the effects of AT2R antagonism on cardiovascular responses to AngII in young and adult male rats.
Related JoVE Video
Transgenerational programming of fetal nephron deficits and sex-specific adult hypertension in rats.
Reprod. Fertil. Dev.
PUBLISHED: 08-12-2014
Show Abstract
Hide Abstract
A developmental insult that restricts growth in the first generation has the potential to program disease in subsequent generations. The aim of this study was to ascertain transgenerational growth and cardio-renal effects, via the maternal line, in a rat model of utero-placental insufficiency. Bilateral uterine vessel ligation or sham surgery (offspring termed first generation; F1 Restricted and Control, respectively) was performed in WKY rats. F1 Restricted and Control females were mated with normal males to produce second generation (F2) offspring (Restricted and Control) studied from fetal (embryonic Day 20) to adult (12 months) life. F2 Restricted male and female fetuses had reduced (P<0.05) nephron number (down 15-22%) but this deficit was not sustained postnatally and levels were similar to Controls at Day 35. F2 Restricted males, but not females, developed elevated (+16mmHg, P<0.05) systolic blood pressure at 6 months of age, which was sustained to 9 months. This was not explained by alterations to intra-renal or plasma components of the renin-angiotensin system. In a rat model of utero-placental insufficiency, we report alterations to F2 kidney development and sex-specific adult hypertension. This study demonstrates that low birthweight can have far-reaching effects that extend into the next generation.
Related JoVE Video
Role of inflammation and the angiotensin type 2 receptor in the regulation of arterial pressure during pregnancy in mice.
Hypertension
PUBLISHED: 06-16-2014
Show Abstract
Hide Abstract
During normal pregnancy the renin-angiotensin system is activated, yet pregnant women are resistant to the pressor effects of angiotensin II. Our aim was to determine the role of the angiotensin type 2 receptor (AT2R) in the regulation of arterial pressure, natriuresis, and immune cell infiltration during pregnancy. Mean arterial pressure was measured via telemetry, and flow cytometry was used to enumerate immune cell infiltration in 14-week-old wild-type and AT2R knockout mice during gestation. In wild-type mice, mean arterial pressure decreased during gestation, reaching a nadir at gestational day 9 (-6±2 mm?Hg) and returned to near preconception levels during late gestation. In AT2R-deficient mice, the midgestational decrease in mean arterial pressure was absent. Furthermore, mean arterial pressure was significantly increased during late gestation compared with wild-type mice (?10 mm?Hg). As expected, circulating immune cell activation was suppressed during pregnancy. However, this response was absent in AT2R-deficient mice. While renal immune cell infiltration was similar between the genotypes, there was a significant T cell phenotypic switch toward a proinflammatory T-helper 1 phenotype in AT2R-deficient mice. These data indicate that the AT2R plays an important role in arterial pressure regulation and may modulate T cell activation and renal cytokine production during pregnancy. Therefore, deficits in AT2R expression may contribute to pregnancy-induced hypertension and thus represents a potential therapeutic target.
Related JoVE Video
Angiotensin type 2 receptor stimulation increases renal function in female, but not male, spontaneously hypertensive rats.
Hypertension
PUBLISHED: 05-19-2014
Show Abstract
Hide Abstract
Accumulating evidence suggests that the protective pathways of the renin-angiotensin system are enhanced in women, including the angiotensin type 2 receptor (AT2R), which mediates vasodilatory and natriuretic effects. To provide insight into the sex-specific ability of pharmacological AT2R stimulation to modulate renal function in hypertension, we examined the influence of the AT2R agonist, compound 21 (100-300 ng/kg per minute), on renal function in 18- to 19-week-old anesthetized male and female spontaneously hypertensive rats. AT2R stimulation significantly increased renal blood flow in female hypertensive rats (PTreatment<0.001), without influencing arterial pressure. For example, at 300 ng/kg per minute of compound 21, renal blood flow increased by 14.3±1.8% from baseline. Furthermore, at 300 ng/kg per minute of compound 21, a significant increase in urinary sodium excretion was observed in female hypertensive rats (+180±59% from baseline; P<0.05 versus vehicle-treated rats). This was seen in the absence of any major change in glomerular filtration rate, indicating that the natriuretic effects of AT2R stimulation were likely the result of altered renal tubular function. Conversely, we did not observe any significant effect of AT2R stimulation on renal hemodynamic or excretory function in male hypertensive rats. Finally, gene expression studies confirmed greater renal AT2R expression in female than in male hypertensive rats. Taken together, acute AT2R stimulation enhanced renal vasodilatation and sodium excretion without concomitant alterations in glomerular filtration rate in female hypertensive rats. Chronic studies of AT2R agonist therapy on renal function and arterial pressure in hypertensive states are now required to establish the suitability of AT2R as a therapeutic target for cardiovascular disease, particularly in women.
Related JoVE Video
Compensatory responses to nephron deficiency: adaptive or maladaptive?
Nephrology (Carlton)
PUBLISHED: 02-19-2014
Show Abstract
Hide Abstract
Compensatory renal growth is a characteristic adaptation to reduced renal mass that appears to recapitulate the normal pattern of maturation of the kidney during the postnatal period. Hypertrophy of tubules (predominantly the proximal tubule) and glomeruli is accompanied by increased single nephron glomerular filtration rate and tubular reabsorption of sodium. We propose that the very factors, which contribute to the increase in growth and function of the renal tubular system, are, in the long term, the precursors to the development of hypertension in those with a nephron deficit. The increase in single nephron glomerular filtration rate is dependent on multiple factors, including reduced renal vascular resistance associated with an increased influence of nitric oxide, and a rightward shift in the tubuloglomerular feedback curve, both of which contribute to the normal maturation of renal function. The increased influence of nitric oxide appears to contribute to the reduction in tubuloglomerular feedback sensitivity and facilitate the initial increase in glomerular filtration rate. The increased single-nephron filtered load associated with nephron deficiency may promote hypertrophy of the proximal tubule and so increased reabsorption of sodium, and thus a rightward shift in the pressure natriuresis relationship. Normalization of sodium balance can then only occur at the expense of chronically increased arterial pressure. Therefore, alterations/adaptations in tubules and glomeruli in response to nephron deficiency may increase the risk of hypertension and renal disease in the long-term.
Related JoVE Video
Loss of a kidney during fetal life: long-term consequences and lessons learned.
Am. J. Physiol. Renal Physiol.
PUBLISHED: 02-05-2014
Show Abstract
Hide Abstract
Epidemiological studies reveal that children born with a solitary functioning kidney (SFK) have a greater predisposition to develop renal insufficiency and hypertension in early adulthood. A congenital SFK is present in patients with unilateral renal agenesis or unilateral multicystic kidney dysplasia, leading to both structural and functional adaptations in the remaining kidney, which act to mitigate the reductions in glomerular filtration rate and sodium excretion that would otherwise ensue. To understand the mechanisms underlying the early development of renal insufficiency in children born with a SFK, we established a model of fetal uninephrectomy (uni-x) in sheep, a species that similar to humans complete nephrogenesis before birth. This model results in a 30% reduction in nephron number rather than 50%, due to compensatory nephrogenesis in the remaining kidney. Similar to children with a congenital SFK, uni-x sheep demonstrate a progressive increase in arterial pressure and a loss of renal function with aging. This review summarizes the compensatory changes in renal hemodynamics and tubular sodium handling that drive impairments in renal function and highlights the existence of sex differences in the functional adaptations following the loss of a kidney during fetal life.
Related JoVE Video
Impaired ability to modulate glomerular filtration rate in aged female sheep following fetal uninephrectomy.
Physiol Rep
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Fetal uninephrectomy (uni-x) results in hypertension at a later age in female than male sheep. We hypothesized that dysregulation of tubular sodium handling contributes to the reduced ability to regulate extracellular fluid (ECF) homeostasis in older females born with a congenital nephron deficit. Following renal excretory balance studies, the response to inhibition of the Na(+)K(+)2Cl(-) cotransporter with furosemide (0.5 mg/kg bolus + 1 mg/kg per hour, i.v) or vehicle treatment was examined in conscious 5-year-old female uni-x (n = 7) and sham (n = 7) sheep. Balance studies in meal-fed sheep demonstrated that while average 24 h sodium excretion over 6 days was not different between the groups, the daily variation in sodium excretion was significantly greater in uni-x compared to sham sheep (31 ± 4% vs. 12 ± 2%; P < 0.001). Basal plasma renin activity (PRA) and renal cortical cyclooxygenase-2 (COX-2) gene expression were lower in uni-x sheep (both, P < 0.01). The increases in glomerular filtration rate (GFR) and renal blood flow observed in sham sheep in response to furosemide were significantly attenuated in uni-x sheep (both P GROUP×TREAT < 0.05). However, fractional sodium excretion increased by a greater extent in the uni-x (4.4 ± 1.0%) as compared to the sham sheep (2.0 ± 0.4%; P GROUP×TIME < 0.05) in response to furosemide. In conclusion, fetal uni-x was associated with altered renal sodium handling and hypertension in aged females. The impaired ability to modulate PRA and GFR in the adults with a congenital nephron deficit may reduce the capacity of the kidney to respond to gains or losses in ECF to maintain a stable internal environment.
Related JoVE Video
Update on the angiotensin AT(2) receptor.
Curr. Hypertens. Rep.
PUBLISHED: 06-26-2013
Show Abstract
Hide Abstract
It is quite well established that activation of the AT(2) receptor (AT(2)R) provides a counter-regulatory role to AT(1)R overactivity, particularly during pathological conditions. Indeed, a potential therapeutic role for the AT(2)R is currently being promulgated with the introduction of novel AT(2)R ligands such as compound 21 (C21). In this brief review, we will focus on recent evidence to suggest that AT(2)R exhibits promising organ protection in the context of the heart, kidney and brain, with inflammation and gender influencing outcome. However, this field is not without controversy since the flagship ligand C21 has also come under scrutiny, although it is safe to say there is much evidence to support a potentially important role of AT(2)R in a number of cardiovascular diseases. This report updates recent data in this field.
Related JoVE Video
The "his and hers" of the renin-angiotensin system.
Curr. Hypertens. Rep.
PUBLISHED: 06-26-2013
Show Abstract
Hide Abstract
Sex differences exist in the regulation of arterial pressure and renal function by the renin-angiotensin system (RAS). This may in part stem from a differential balance in the pressor and depressor arms of the RAS. In males, the ACE/AngII/AT(1)R pathways are enhanced, whereas, in females, the balance is shifted towards the ACE2/Ang(1-7)/MasR and AT(2)R pathways. Evidence clearly demonstrates that premenopausal women, as compared to aged-matched men, are protected from renal and cardiovascular disease, and this differential balance of the RAS between the sexes likely contributes. With aging, this cardiovascular protection in women is lost and this may be related to loss of estrogen postmenopause but the possible contribution of other sex hormones needs to be further examined. Restoration of these RAS depressor pathways in older women, or up-regulation of these in males, represents a therapeutic target that is worth pursuing.
Related JoVE Video
Unmasking the potential of the angiotensin AT2 receptor as a therapeutic target in hypertension in men and women: what we know and what we still need to find out.
Clin. Exp. Pharmacol. Physiol.
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
Major sex differences exist in the development and progression of hypertension and cardiovascular disease. Prior to menopause, women have lower arterial pressure and, furthermore, are protected from hypertension and cardiovascular disease relative to age-matched men. However, after menopause this cardiovascular protection in women is lost. These sex differences have been linked to sexual dimorphism in the physiological mechanisms that regulate arterial pressure, including the renin-angiotensin system (RAS), which can also impact on the male and female response to different therapeutic approaches. This suggests that antihypertensive regimens need to be tailored according to sex. Newly discovered components of the RAS have emerged in recent years, allowing us to look beyond the classical RAS for novel therapeutic targets for hypertension. In this context, it is now well established that the angiotensin AT2 receptor (AT2 R) elicits depressor and natriuretic effects and that these effects are greater in females due to enhanced AT2 R levels modulated by oestrogen. In light of knowledge that AT2 R expression is regulated by oestrogen and that the prevalence of hypertension and cardiovascular risk is greater in women after menopause, AT2 R agonist therapy may represent an innovative therapeutic approach to treat hypertension. Consequently, understanding how ageing and changes in the sex hormone balance influence the RAS is vital if we are to evaluate the potential of the AT2 R as a therapeutic target in women and also in men.
Related JoVE Video
Improvement in renal hemodynamics following combined angiotensin II infusion and AT1R blockade in aged female sheep following fetal unilateral nephrectomy.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Renin-angiotensin system (RAS) is a powerful modulator of renal hemodynamic and fluid homeostasis. Up-regulation in components of intra-renal RAS occurs with ageing. Recently we reported that 2 year old uninephrectomised (uni-x) female sheep have low renin hypertension and reduced renal function. By 5 years of age, these uni-x sheep had augmented decrease in renal blood flow (RBF) compared to sham. We hypothesised that this decrease in RBF in 5 year old uni-x sheep was due to an up-regulation in components of the intra-renal RAS. In this study, renal responses to angiotensin II (AngII) infusion and AngII type 1 receptor (AT1R) blockade were examined in the same 5 year old sheep. We also administered AngII in the presence of losartan to increase AngII bioavailability to the AT2R in order to understand AT2R contribution to renal function in this model. Uni-x animals had significantly lower renal cortical content of renin, AngII (?40%) and Ang 1-7 (?60%) and reduced cortical expression of AT1R gene than sham animals. In response to both AngII infusion and AT1R blockade via losartan, renal hemodynamic responses and tubular sodium excretion were significantly attenuated in uni-x animals compared to sham. However, AngII infusion in the presence of losartan caused ?33% increase in RBF in uni-x sheep compared to ?14% in sham (P<0.05). This was associated with a significant decrease in renal vascular resistance in the uni-x animals (22% vs 15%, P<0.05) without any changes in systemic blood pressure. The present study shows that majority of the intra-renal RAS components are suppressed in this model of low renin hypertension. However, increasing the availability of AngII to AT2R by AT1R blockade improved renal blood flow in uni-x sheep. This suggests that manipulation of the AT2R maybe a potential therapeutic target for treatment of renal dysfunction associated with a congenital nephron deficit.
Related JoVE Video
Sex-specific influence of angiotensin type 2 receptor stimulation on renal function: a novel therapeutic target for hypertension.
Hypertension
PUBLISHED: 12-12-2011
Show Abstract
Hide Abstract
The renin-angiotensin system is a powerful regulator of arterial pressure and body fluid volume. Increasing evidence suggests that the angiotensin type 2 receptor (AT(2)R), which mediates the vasodilatory and natriuretic actions of angiotensin peptides, is enhanced in females and may, therefore, represent an innovative therapeutic target. We investigated the therapeutic potential of direct AT(2)R stimulation on renal function in 11- to 12-week-old anesthetized male and female Sprague-Dawley rats. Renal blood flow was examined in response to a graded infusion of the highly selective, nonpeptide AT(2)R agonist, compound 21 (100, 200, and 300 ng/kg per minute), in the presence and absence of AT(2)R blockade (PD123319; 1 mg/kg per hour). Direct AT(2)R stimulation significantly increased renal blood flow in both males and females, without influencing arterial pressure. This was dose dependent in females only and occurred to a greater extent in females at the highest dose of compound 21 administered (males: 13.1±2.4% versus females: 23.0±3.2% change in renal blood flow at 300 ng/kg per minute versus baseline; P<0.01). In addition, AT(2)R stimulation significantly increased sodium and water excretion to a similar extent in males and females (P(Group)=0.05 and 0.005). However, there was no significant change in glomerular filtration rate in either sex, suggesting that altered tubular function may be responsible for AT(2)R-induced natriuresis rather than hemodynamic effects. Taken together, this study provides evidence that direct AT(2)R stimulation produces vasodilatory and natriuretic effects in the male and female kidney. The AT(2)R may, therefore, represent a valuable therapeutic target for the treatment of renal and cardiovascular diseases in both men and women.
Related JoVE Video
Sex differences in the pressor and tubuloglomerular feedback response to angiotensin II.
Hypertension
PUBLISHED: 11-28-2011
Show Abstract
Hide Abstract
Awareness of sex differences in the pathology of cardiovascular disease is increasing. Previously, we have shown a role for the angiotensin type 2 receptor (AT(2)R) in the sex differences in the arterial pressure response to Ang II. Tubuloglomerular feedback (TGF) contributes in setting pressure-natriuresis properties, and its responsiveness is closely coupled to renal Ang II levels. We hypothesize that, in females, the attenuated pressor response to Ang II is mediated via an enhanced AT(2)R mechanism that, in part, offsets Ang II-induced sensitization of the TGF mechanism. Mean arterial pressure was measured via telemetry in male and female wild-type (WT) and AT(2)R knockout (AT(2)R-KO) mice receiving Ang II (600 ng/kg per minute SC). Basal 24-hour mean arterial pressure did not differ among the 4 groups. After 10 days of Ang II infusion, mean arterial pressure increased in the male WT (28±6 mm Hg), male AT(2)R-KO (26±2 mm Hg), and female AT(2)R-KO (26±4 mm Hg) mice, however, the response was attenuated in female WT mice (12±4 mm Hg; P between sex and genotype=0.016). TGF characteristics were determined before and during acute subpressor Ang II infusion (100 ng/kg per minute IV). Basal TGF responses did not differ between groups. The expected increase in maximal change in stop-flow pressure and enhancement of TGF sensitivity in response to Ang II was observed in the male WT, male AT(2)R-KO, and female AT(2)R-KO but not in the female WT mice (P between sex and genotype <0.05; both). In conclusion, these data indicate that an enhanced AT(2)R-mediated pathway counterbalances the hypertensive effects of Ang II and attenuates the Ang II-dependent resetting of TGF activity in females. Thus, the enhancement of the AT(2)R may, in part, underlie the protection that premenopausal women demonstrate against cardiovascular disease.
Related JoVE Video
The arterial depressor response to chronic low-dose angiotensin II infusion in female rats is estrogen dependent.
Am. J. Physiol. Regul. Integr. Comp. Physiol.
PUBLISHED: 10-26-2011
Show Abstract
Hide Abstract
The complex role of the renin-angiotensin-system (RAS) in arterial pressure regulation has been well documented. Recently, we demonstrated that chronic low-dose angiotensin II (ANG II) infusion decreases arterial pressure in female rats via an AT(2)R-mediated mechanism. Estrogen can differentially regulate components of the RAS and is known to influence arterial pressure regulation. We hypothesized that AT(2)R-mediated depressor effects evident in females were estrogen dependent and thus would be abolished by ovariectomy and restored by estrogen replacement. Female Sprague-Dawley rats underwent ovariectomy or sham surgery and were treated with 17?-estradiol or placebo. Mean arterial pressure (MAP) was measured via telemetry in response to a 2-wk infusion of ANG II (50 ng·kg(-1)·min(-1) sc) or saline. MAP significantly decreased in females treated with ANG II (-10 ± 2 mmHg), a response that was abolished by ovariectomy (+4 ± 2 mmHg) and restored with estrogen replacement (-6 ± 2 mmHg). Cardiac and renal gene expression of components of the RAS was differentially regulated by estrogen, such that overall, estrogen shifted the balance of the RAS toward the vasodilatory axis. In conclusion, estrogen-dependent mechanisms offset the vasopressor actions of ANG II by enhancing RAS vasodilator pathways in females. This highlights the potential for these vasodilator pathways as therapeutic targets, particularly in women.
Related JoVE Video
Urine-concentrating defects exacerbate with age in male offspring with a low-nephron endowment.
Am. J. Physiol. Renal Physiol.
PUBLISHED: 09-14-2011
Show Abstract
Hide Abstract
Fetal uninephrectomy (uni-x) in male sheep at 100 days of gestation (term = 150 days) reduces overall nephron endowment without affecting birth weight. Offspring have a lower glomerular filtration rate (GFR) and elevated mean arterial pressure (MAP) at 6 mo of age. This study investigated whether this reduction in renal function was associated with impaired urine-concentrating ability at 6 mo of age and exacerbated with ageing (4 yr) and examined response to 1) nonpressor dose of exogenous arginine vasopressin (AVP; 0.2 ?g·kg(-1)·h(-1) iv) and 2) 30 h of water deprivation. Basal MAP was higher in uni-x animals at both ages, and became further elevated with age compared with the sham group (elevation in MAP with age; sham: ~4 mmHg, uni-x: 9 mmHg, P(group × age) < 0.01). GFR declined with ageing in both groups with the decrease being greater with age in the uni-x group (further 26%, P(group × age) < 0.001). In response to AVP infusion, urine osmolality increased in both treatment groups; this response was significantly lower in the uni-x animals and became further reduced with ageing. Uni-x animals had reduced renal expression of vasopressin-2 receptor and aquaporin-2 at both ages (P < 0.01). The increase in plasma AVP levels in response to dehydration was similar between the treatment groups, suggesting the urine-concentrating defect was associated with these renal gene changes rather than defects in AVP secretion. Renal insufficiency due to a low-nephron endowment increases the risk of hypertension and chronic renal disease and may incur greater vulnerability to physiological challenges such as water deprivation as observed in the uni-x animals.
Related JoVE Video
Fetal uninephrectomy in male sheep alters the systemic and renal responses to angiotensin II infusion and AT1R blockade.
Am. J. Physiol. Renal Physiol.
PUBLISHED: 05-04-2011
Show Abstract
Hide Abstract
Fetal uninephrectomy (uni-x) at 100 days of gestation results in compensatory nephrogenesis in the remaining kidney, resulting in a 30% reduction in total nephron number in male sheep. Recently, we showed that uni-x males at 6 mo of age have elevated arterial pressure, reduced renal blood flow (RBF), glomerular filtration rate (GFR), and low plasma renin levels (Singh R, Denton K, Bertram J, Jefferies A, Head G, Lombardo P, Schneider-Kolsky M, Moritz K. J Hypertens 27: 386-396, 2009; Singh R, Denton K, Jefferies A, Bertram J, Moritz K. Clin Sci (Lond) 118: 669-680, 2010). We hypothesized this was due to upregulation of the intrarenal renin-angiotensin system (RAS). In this study, renal responses to ANG II infusion and ANG II type 1 receptor (AT1R) blockade were examined in the same 6-mo-old male sheep. Uni-x animals had reduced levels of renal tissue and plasma renin and ANG II. Renal gene expression of renin, and gene and protein levels of AT1R and AT2R, were significantly lower in uni-x animals. In response to graded ANG II infusion, sham animals had the expected decrease in conscious RBF and GFR. Interestingly, the response was biphasic in uni-x sheep, with GFR initially decreasing, but then increasing at higher ANG II doses (34 ± 7%; P(group × treatment) < 0.001), due to a paradoxical decrease in renal vascular resistance (P(group × treatment) < 0.001). In response to AT1R blockade, while GFR and RBF responded similarly between groups, there was a marked increase in sodium excretion in uni-x compared with sham sheep (209 ± 35 vs. 25 ± 12%; P < 0.001). In conclusion, in 6-mo-old male sheep born with a single kidney, these studies demonstrate that this is a low-renin form of hypertension, in which responses to ANG II are perturbed and the intrarenal RAS is downregulated.
Related JoVE Video
Induction of hyperglycemia in adult intrauterine growth-restricted rats: effects on renal function.
Am. J. Physiol. Renal Physiol.
PUBLISHED: 04-20-2011
Show Abstract
Hide Abstract
Intrauterine growth restriction (IUGR) leads to a reduction in nephron endowment at birth and is linked to renal dysfunction in adulthood. The aim of the present study was to determine whether kidneys of IUGR rat offspring are more vulnerable to a secondary insult of hyperglycemia. IUGR was induced in Wistar-Kyoto rats by maternal protein restriction. At 24 wk of age, diabetes was induced in male IUGR and non-IUGR offspring by streptozotocin injection; insulin was injected daily to maintain blood glucose levels at either a mild (7-10 mmol/l; n=8/group) or a moderate (10-15 mmol/l; n=8/group) level. At 32 wk of age, renal function was assessed using ultrasound and [(3)H]inulin and [(14)C]para-aminohippurate clearance techniques. Conscious mean arterial blood pressure and heart rate were unchanged in IUGR offspring. Relative kidney length was increased significantly in IUGR offspring, and renal function was altered significantly; of importance, there was a significant increase in filtration fraction, indicative of glomerular hyperfiltration. Induction of hyperglycemia led to marked impairment of renal function. However, the response to hyperglycemia was not different between IUGR and non-IUGR offspring. Maintaining blood glucose levels at a mild hyperglycemic level led to marked improvement in all measures of renal function in IUGR and non-IUGR offspring. In conclusion, while the IUGR offspring showed evidence of hyperfiltration, the response to hyperglycemia was similar in IUGR and non-IUGR kidneys in adulthood. Importantly, maintaining blood glucose levels at a mild hyperglycemic level markedly attenuated the renal dysfunction associated with diabetes, even in IUGR offspring.
Related JoVE Video
Renal programming: cause for concern?
Am. J. Physiol. Regul. Integr. Comp. Physiol.
PUBLISHED: 12-29-2010
Show Abstract
Hide Abstract
Development of the kidney can be altered in utero in response to a suboptimal environment. The intrarenal factors that have been most well characterized as being sensitive to programming events are kidney mass/nephron endowment, the renin-angiotensin system, tubular sodium handling, and the renal sympathetic nerves. Newborns that have been subjected to an adverse intrauterine environment may thus begin life at a distinct disadvantage, in terms of renal function, at a time when the kidney must take over the primary role for extracellular fluid homeostasis from the placenta. A poor beginning, causing renal programming, has been linked to increased risk of hypertension and renal disease in adulthood. However, although a cause for concern, increasingly, evidence demonstrates that renal programming is not a fait accompli in terms of future cardiovascular and renal disease. A greater understanding of postnatal renal maturation and the impact of secondary factors (genes, sex, diet, stress, and disease) on this process is required to predict which babies are at risk of increased cardiovascular and renal disease as adults and to be able to devise preventative measures.
Related JoVE Video
Gender differences in pressure-natriuresis and renal autoregulation: role of the Angiotensin type 2 receptor.
Hypertension
PUBLISHED: 12-28-2010
Show Abstract
Hide Abstract
Sexual dimorphism in arterial pressure regulation has been observed in humans and animal models. The mechanisms underlying this gender difference are not fully known. Previous studies in rats have shown that females excrete more salt than males at a similar arterial pressure. The renin-angiotensin system is a powerful regulator of arterial pressure and body fluid volume. This study examined the role of the angiotensin type 2 receptor (AT?R) in pressure-natriuresis in male and female rats because AT?R expression has been reported to be enhanced in females. Renal function was examined at renal perfusion pressures of 120, 100, and 80 mm Hg in vehicle-treated and AT?R antagonist-treated (PD123319; 1 mg/kg/h) groups. The pressure-natriuresis relationship was gender-dependent such that it was shifted upward in female vs male rats (P < 0.001). AT?R blockade modulated the pressure-natriuresis relationship, shifting the curve downward in male (P < 0.01) and female (P < 0.01) rats to a similar extent. In females, AT?R blockade also reduced the lower end of the autoregulatory range of renal blood flow (P < 0.05) and glomerular filtration rate (P < 0.01). Subsequently, the renal blood flow response to graded angiotensin II infusion was also measured with and without AT?R blockade. We found that AT?R blockade enhanced the renal vasoconstrictor response to angiotensin II in females but not in males (P < 0.05). In conclusion, the AT?R modulates pressure-natriuresis, allowing the same level of sodium to be excreted at a lower pressure in both genders. However, a gender-specific role for the AT?R in renal autoregulation was evident in females, which may be a direct vascular AT?R effect.
Related JoVE Video
Prenatal exposure to alcohol reduces nephron number and raises blood pressure in progeny.
J. Am. Soc. Nephrol.
PUBLISHED: 09-09-2010
Show Abstract
Hide Abstract
Prenatal ethanol exposure is teratogenic, but the effects of ethanol on kidney development and the health of offspring are incompletely understood. Our objective was to investigate the effects of acute ethanol exposure during pregnancy on nephron endowment, mean arterial pressure, and renal function in offspring. We administered ethanol or saline by gavage to pregnant Sprague-Dawley rats on embryonic days 13.5 and 14.5. At 1 month of age, the nephron number was 15% lower and 10% lower in ethanol-exposed males and females, respectively, compared with controls. Mean arterial pressure, measured in conscious animals via indwelling tail-artery catheter, was 10% higher in both ethanol-exposed males and females compared with controls. GFR was 20% higher in ethanol-exposed males but 15% lower in ethanol-exposed females; moreover, males had increased proteinuria compared with controls. Furthermore, embryonic kidneys cultured in the presence of ethanol for 48 hours had 15% fewer ureteric branch points and tips than kidneys cultured in control media. Taken together, these data demonstrate that acute prenatal ethanol exposure reduces the number of nephrons, possibly as a result of inhibited ureteric branching morphogenesis, and that these changes affect adult cardiovascular and renal function.
Related JoVE Video
Chronic maternal hypertension affects placental gene expression and differentiation in rabbits.
J. Hypertens.
PUBLISHED: 04-22-2010
Show Abstract
Hide Abstract
Previously, we have shown that adult offspring from hypertensive rabbits develop hypertension.
Related JoVE Video
High-salt diet reveals the hypertensive and renal effects of reduced nephron endowment.
Am. J. Physiol. Renal Physiol.
PUBLISHED: 03-24-2010
Show Abstract
Hide Abstract
The extent to which a reduced nephron endowment contributes to hypertension and renal disease is confounded in models created by intrauterine insults that also demonstrate other phenotypes. Furthermore, recent data suggest that a reduced nephron endowment provides the "first hit" and simply increases the susceptibility to injurious stimuli. Thus we examined nephron number, glomerular volume, conscious mean arterial pressure (MAP), and renal function in a genetic model of reduced nephron endowment before and after a high-salt (5%) diet. One-yr-old glial cell line-derived neurotrophic factor wild-type (WT) mice, heterozygous (HET) mice born with two kidneys (HET2K), and HET mice born with one kidney (HET1K) were used. Nephron number was 25% lower in HET2K and 65% lower in HET1K than WT mice. Glomeruli hypertrophied in both HET groups by 33%, resulting in total glomerular volumes that were similar between HET2K and WT mice but remained 50% lower in HET1K mice. On a normal-salt diet, 24-h MAP was not different between WT, HET2K, and HET1K mice (102 +/- 1, 103 +/- 1, and 102 +/- 2 mmHg). On a high-salt diet, MAP increased 9.1 +/- 1.9 mmHg in HET1K mice (P < 0.05) and 5.4 +/- 0.9 mmHg in HET2K mice (P < 0.05) and did not change significantly in WT mice. Creatinine clearance was 60% higher in WT mice but 30% lower in HET2K and HET1K mice fed a high-salt diet than in controls maintained on a normal-salt diet. Thus a reduction in nephron number (or total glomerular volume) alone does not lead to hypertension or kidney disease in aged mice, but exposure to high salt uncovers a hypertensive and renal phenotype.
Related JoVE Video
Chronic maternal hypertension characterized by renal dysfunction is associated with reduced placental blood flow during late gestation in rabbits.
Am. J. Physiol. Regul. Integr. Comp. Physiol.
PUBLISHED: 01-20-2010
Show Abstract
Hide Abstract
Maternal hypertension associated with renal disease is a common pregnancy complication. Previously, we have shown in a rabbit model of mild hypertension that offspring from hypertensive mothers have increased blood pressure as adults. In human pregnancy, hypertension has been associated with decreased utero-placental blood flow. The aim of this study was to determine placental blood flow (PBF) in mild (2-kidney-1-wrapped; 2K-1W) and moderate (2-kidney-2-wrapped; 2K-2W) rabbit models of maternal hypertension. We hypothesized that PBF would be inversely related to the severity of the hypertension. PBF and renal blood flow (RBF) were measured using microspheres on day 28 of a 32-day gestation, in normotensive (sham), 2K-1W, and 2K-2W hypertensive groups. Mean arterial pressure (MAP, approximately 7 mmHg, P < 0.05) was increased, and RBF ( approximately 35%, P < 0.05) was reduced in the 2K-1W and 2K-2W (MAP approximately 20 mmHg, P < 0.01; RBF approximately 53%, P < 0.05) groups compared with the sham group. In the 2K-1W group, PBF fell by approximately 12% (P = 0.08) and fetal-to-placental weight ratio increased by approximately 12% (P < 0.01) compared with the sham group, reflecting an increase in the functional capacity of the placenta to deliver nutrients to the fetus. In the 2K-2W group, PBF decreased approximately 51% (P < 0.05) compared with the sham group, without changes in placental efficiency. Thus, in late gestation, placental blood flow was significantly reduced in the moderate hypertension group, without accompanying changes in fetal or placental weight or placental efficiency. In contrast, mild hypertension resulted in an increase in placental efficiency, without significant changes in placental blood flow. These findings suggest that mild and moderate hypertension may alter placental delivery of nutrients via differing mechanisms dependent upon the severity of the hypertension.
Related JoVE Video
Reduced nephron endowment due to fetal uninephrectomy impairs renal sodium handling in male sheep.
Clin. Sci.
PUBLISHED: 01-14-2010
Show Abstract
Hide Abstract
Reduced nephron endowment is associated with development of renal and cardiovascular disease. We hypothesized this may be attributable to impaired sodium homoeostasis by the remaining nephrons. The present study investigated whether a nephron deficit, induced by fetal uninephrectomy at 100 days gestation (term=150 days), resulted in (i) altered renal sodium handling both under basal conditions and in response to an acute 0.9% saline load (50 ml.kg-1 of body weight.30 min-1); (ii) hypertension and (iii) altered expression of renal channels/transporters in male sheep at 6 months of age. Uninephrectomized animals had significantly elevated arterial pressure (90.1+/-1.6 compared with 77.8+/-2.9 mmHg; P<0.001), while glomerular filtration rate and renal blood flow (per g of kidney weight) were 30% lower than that of the sham animals. Total kidney weight was similar between the groups. Renal gene expression of apical NHE3 (type 3 Na+/H+ exchanger), ENaC (epithelium Na+ channel) beta and gamma subunits and basolateral Na+/K+ ATPase beta and gamma subunits were significantly elevated in uninephrectomized animals, while ENaC alpha subunit expression was reduced. Urine flow rate and sodium excretion increased in both groups in response to salt loading, but this increase in sodium excretion was delayed by approximately 90 min in the uninephrectomized animals, while total sodium output was 12% in excess of the infused load (P<0.05). In conclusion, the present study shows that animals with a congenital nephron deficit have alterations in tubular sodium channels/transporters and cannot rapidly correct for variations in sodium intake probably contributing to the development of hypertension. This suggests that people born with a nephron deficit should be monitored for early signs of renal and cardiovascular disease.
Related JoVE Video
Glomerular surface area is normalized in mice born with a nephron deficit: no role for AT1 receptors.
Am. J. Physiol. Renal Physiol.
PUBLISHED: 05-07-2009
Show Abstract
Hide Abstract
We examined whether deficits in glomerular capillary surface area associated with a congenital nephron deficit could be corrected by glomerular hypertrophy. Using unbiased stereological techniques, we examined the time course and mode of glomerular hypertrophy in mice lacking one allele for glial cell line-derived neurotrophic factor (GDNF). These GDNF heterozygous (Het) mice are born with approximately 30% less nephrons than wild-type (WT) littermates. An additional group of GDNF Het mice received the angiotensin type 1 (AT1)-receptor antagonist candesartan (Cand; 10 mg x kg(-1) x day(-1)) from 5 wk of age to determine the role of AT1 receptors in the compensatory hypertrophy. At 10 wk of age, the total volume of renal corpuscles, glomerular capillary surface area, and length of glomerular capillaries in the kidneys of GDNF Het mice were all markedly (approximately 45%) less than that of WT mice (P < 0.001). However, by 30 wk, and persisting at 60 wk of age, GDNF Het and WT mice did not significantly differ in any of these parameters. Furthermore, conscious 24-h mean arterial pressure (MAP) did not differ between GDNF Het and WT mice at any time point. MAP of GDNF Het-Cand mice was 20-30 mmHg less than that of GDNF Het-vehicle mice at all three ages, but Cand treatment did not significantly alter glomerular capillary dimensions. In conclusion, we have demonstrated that the deficit in glomerular capillary surface area associated with a congenital nephron deficit can be corrected for in adulthood by an increase in the total length of glomerular capillaries. This process does not require AT1 receptor activation.
Related JoVE Video
Developmental programming of a reduced nephron endowment: more than just a babys birth weight.
Am. J. Physiol. Renal Physiol.
PUBLISHED: 03-07-2009
Show Abstract
Hide Abstract
The risk of developing many adult-onset diseases, including hypertension, type 2 diabetes, and renal disease, is increased in low-birth-weight individuals. A potential underlying mechanism contributing to the onset of these diseases is the formation of a low nephron endowment during development. Evidence from the human, as well as many experimental animal models, has shown a strong association between low birth weight and a reduced nephron endowment. However, other animal models, particularly those in which the mother is exposed to elevated glucocorticoids for a short period, have shown a 20-40% reduction in nephron endowment without discernible changes in the birth weight of offspring. Such findings emphasize that a low birth weight is one, but certainly not the only, predictor of nephron endowment and suggests reduced nephron endowment and risk of developing adult-onset disease, even among normal-birth-weight individuals. Recognition of the dissociation between birth weight and nephron endowment is important for future studies aimed at elucidating the role of a reduced nephron endowment in the developmental programming of adult disease.
Related JoVE Video
Related JoVE Video
Blunted sodium excretion in response to a saline load in 5 year old female sheep following fetal uninephrectomy.
PLoS ONE
Show Abstract
Hide Abstract
Previously, we have shown that fetal uninephrectomy (uni-x) causes hypertension in female sheep by 2 years of age. Whilst the hypertension was not exacerbated by 5 years of age, these uni-x sheep had greater reductions in renal blood flow (RBF). To further explore these early indications of a decline in renal function, we investigated the renal response to a saline load (25 ml/kg/40 min) in 5-year old female uni-x and sham sheep. Basal mean arterial pressure was ?15 mmHg greater (P(Group)<0.001), and sodium excretion (?50%), glomerular filtration rate (?30%, GFR) and RBF (?40%) were all significantly lower (P(Group)<0.01) in uni-x compared to sham animals. In response to saline loading, sodium excretion increased significantly in both groups (P(Time)<0.001), however this response was blunted in uni-x sheep (P(GroupxTime)<0.01). This was accompanied with an attenuated increase in GFR and fractional sodium excretion (both P(GroupxTime)<0.05), and reduced activation of the renin-angiotensin system (both P<0.05), as compared to the sham group. The reduction in sodium excretion was associated with up-regulations in the renal gene expression of NHE3 and Na(+)/K(+) ATPase ? and ? subunits in the kidney cortex of the uni-x compared to the sham animals (P<0.05). Notably, neither group completely excreted the saline load within the recovery period, but the uni-x retained a higher percentage of the total volume (uni-x: 48±7%; sham: 22±9%, P<0.05). In conclusion, a reduced ability to efficiently regulate extracellular fluid homeostasis is evident in female sheep at 5 years of age, which was exacerbated in animals born with a congenital nephron deficit. Whilst there was no overt exacerbation of hypertension and renal insufficiency with age in the uni-x sheep, these animals may be more vulnerable to secondary renal insults.
Related JoVE Video
Increased cardiovascular and renal risk is associated with low nephron endowment in aged females: an ovine model of fetal unilateral nephrectomy.
PLoS ONE
Show Abstract
Hide Abstract
Previously we have shown that ovariectomised (OVX) female sheep have reduced renal function and elevated blood pressure from 6 months of age following fetal uninephrectomy (uni-x) at 100 days of gestation (term = 150 days). In the current study we examined if in intact female sheep the onset of decline in renal function and elevation in blood pressure was prevented. Studies were performed at 1 year, 2 and 5 years of age. Following fetal uni-x at 100 days, intact female sheep had ~30% reduction in glomerular filtration rate (GFR) at 1 year, which did not exacerbate with age (P(treatment) = 0.0001, P(age) = 0.7). In contrast renal blood flow was similar between the treatment groups at 1 year of age but had declined in the uni-x animals at 5 years of age (P(treatment × age) = 0.046). Interestingly, intact uni-x sheep did not develop elevations in arterial pressure until 2 years of age. Furthermore, uni-x animals had a similar capacity to respond to a cardiac challenge at 1 year and 2 years of age, however, cardiac functional reserve was significantly reduced compared to sham group at 5 years of age. Uni-x animals exhibited an increase in left ventricular dimensions at 5 years of age compared to the sham animals and compared to 2 years of age (P(treatment)<0.001, P(treatment × age)<0.001). In conclusion, the onset of renal dysfunction preceded the onset of hypertension in intact female uni-x sheep. Furthermore, this study showed that the intact females are protected from the impact of a reduced nephron endowment on cardiovascular health early in life as opposed to our findings in young male sheep and OVX uni-x female sheep. However, with ageing this protection is lost as evidenced by presence of left ventricular hypertrophy and impaired cardiac function in 5 year old uni-x female sheep.
Related JoVE Video
Long-term alteration in maternal blood pressure and renal function after pregnancy in normal and growth-restricted rats.
Hypertension
Show Abstract
Hide Abstract
Intrauterine growth restriction is associated with increased risk of adult cardiorenal diseases. Small birth weight females are more likely to experience complications during their own pregnancy, including pregnancy-induced hypertension, preeclampsia, and gestational diabetes. We determined whether the physiological demand of pregnancy predisposes growth-restricted females to cardiovascular and renal dysfunction later in life. Late gestation bilateral uterine vessel ligation was performed in Wistar-Kyoto rats. At 4 months, restricted and control female offspring were mated with normal males and delivered naturally (ex-pregnant). Regardless of maternal birth weight, at 13 months, ex-pregnant females developed elevated mean arterial pressure (indwelling tail-artery catheter; +6 mm Hg), reduced effective renal blood flow ((14)C-PAH clearance; -23%), and increased renal vascular resistance (+27%) compared with age-matched virgins. Glomerular filtration rate ((3)H-inulin clearance) was not different across groups. This adverse cardiorenal phenotype in ex-pregnant females was associated with elevated systemic (+57%) and altered intrarenal components of the renin-angiotensin system. After pregnancy at 13 months, coronary flow (Langendorff preparation) was halved in restricted females compared with controls, and together with reduced NO excretion, this may increase susceptibility to additional lifestyle challenges. Our results have implications for aging females who have been pregnant, suggesting long-term cardiovascular and renal alterations, with additional consequences for females who were small at birth.
Related JoVE Video
Effects of tempol and candesartan on neural control of the kidney.
Auton Neurosci
Show Abstract
Hide Abstract
We compared the effects of tempol (300 ?mol kg(-1) plus 300 ?mol kg(-1) h(-1), n=14) and candesartan (10 ?g kg(-1) plus 10 ?g kg(-1) h(-1), n=14) on renal haemodynamics, excretory function, and responses to electrical stimulation of the renal nerves (RNS) in lean and obese rabbits under pentobarbitone anaesthesia. Depressor responses to tempol (-16 ± 2 mmHg) and candesartan (-12 ± 1 mmHg) were similar. Candesartan, but not tempol, significantly increased basal renal blood flow (RBF; +36 ± 7%). Tempol, but not candesartan, significantly reduced glomerular filtration rate (GFR; -30 ± 10%) and sodium excretion (U(Na)V; -44 ± 14%). RNS induced frequency-dependent reductions in RBF (-20 ± 3% at 1 Hz), GFR (-28 ± 6% at 1 Hz) and U(Na)V (-55 ± 6% at 1 Hz). Candesartan blunted these responses. Tempol did not significantly alter RBF and GFR responses to RNS but blunted the U(Na)V response. Responses to RNS, and the effects of tempol and candesartan, were similar in lean compared with obese rabbits. Unlike candesartan, tempol did not induce renal vasodilatation, maintain GFR and U(Na)V during reductions in arterial pressure, or blunt neurally-mediated vasoconstriction. In conclusion, unlike the AT(1)-receptor antagonist candesartan, tempol does not blunt the effects of RNS on renal haemodynamic function. Furthermore, under the current experimental conditions superoxide appears to make little contribution to the actions of endogenous angiotensin II on baseline renal haemodynamics or excretory function, or their responses to RNS.
Related JoVE Video
Renal responses to furosemide are significantly attenuated in male sheep at 6 months of age following fetal uninephrectomy.
Am. J. Physiol. Regul. Integr. Comp. Physiol.
Show Abstract
Hide Abstract
We have previously shown that fetal uninephrectomy (uni-x) at 100 days of gestation (term = 150 days) in male sheep results in a 30% nephron deficit, reduction in glomerular filtration rate (GFR) and renal blood flow, and elevation in arterial pressure at 6 mo of age. Furthermore, in response to an acute 0.9% saline load, sodium excretion was significantly delayed in uni-x animals leading us to speculate that tubuloglomerular feedback (TGF) activity was reset in uni-x animals. In the present study, we induced TGF blockade by furosemide administration (1.5 mg/kg iv over 90 min) and determined GFR, effective renal plasma flow, and urine and sodium excretion responses in 6-mo-old male sheep. In response to furosemide, a significant diuresis and natriuresis was observed in the sham group; however, the response was significantly delayed and reduced in uni-x animals (both, P(treatment×time) < 0.001). Cummulative urinary and sodium output was significantly less in the uni-x compared with the sham sheep (both, P(treatment×time) < 0.001). GFR was increased in the sham but not the uni-x sheep (P(treatment×time) < 0.0001). In conclusion, the excretory response to furosemide was attenuated in the uni-x sheep, and this suggests a rightward resetting of the TGF operating point. The TGF mechanism is important in the fine tuning of sodium homeostasis and is likely a contributing factor for the dysfunction in sodium regulation we have previously observed in the uni-x animals.
Related JoVE Video
Postnatal ontogeny of angiotensin receptors and ACE2 in male and female rats.
Gend Med
Show Abstract
Hide Abstract
Sex differences in the expression of the angiotensin (Ang) II receptors and angiotensin-converting enzyme 2 (ACE2) have been hypothesized to be a potential mechanism contributing to sex-specific differences in arterial pressure. Currently, sex differences in the expression of the angiotensin receptors and ACE2 remain undefined.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.