JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Long-Term Safety and Efficacy of Factor IX Gene Therapy in Hemophilia B.
N. Engl. J. Med.
PUBLISHED: 11-20-2014
Show Abstract
Hide Abstract
Background In patients with severe hemophilia B, gene therapy that is mediated by a novel self-complementary adeno-associated virus serotype 8 (AAV8) vector has been shown to raise factor IX levels for periods of up to 16 months. We wanted to determine the durability of transgene expression, the vector dose-response relationship, and the level of persistent or late toxicity. Methods We evaluated the stability of transgene expression and long-term safety in 10 patients with severe hemophilia B: 6 patients who had been enrolled in an initial phase 1 dose-escalation trial, with 2 patients each receiving a low, intermediate, or high dose, and 4 additional patients who received the high dose (2×10(12) vector genomes per kilogram of body weight). The patients subsequently underwent extensive clinical and laboratory monitoring. Results A single intravenous infusion of vector in all 10 patients with severe hemophilia B resulted in a dose-dependent increase in circulating factor IX to a level that was 1 to 6% of the normal value over a median period of 3.2 years, with observation ongoing. In the high-dose group, a consistent increase in the factor IX level to a mean (±SD) of 5.1±1.7% was observed in all 6 patients, which resulted in a reduction of more than 90% in both bleeding episodes and the use of prophylactic factor IX concentrate. A transient increase in the mean alanine aminotransferase level to 86 IU per liter (range, 36 to 202) occurred between week 7 and week 10 in 4 of the 6 patients in the high-dose group but resolved over a median of 5 days (range, 2 to 35) after prednisolone treatment. Conclusions In 10 patients with severe hemophilia B, the infusion of a single dose of AAV8 vector resulted in long-term therapeutic factor IX expression associated with clinical improvement. With a follow-up period of up to 3 years, no late toxic effects from the therapy were reported. (Funded by the National Heart, Lung, and Blood Institute and others; ClinicalTrials.gov number, NCT00979238 .).
Related JoVE Video
Robust ZFN-mediated genome editing in adult hemophilic mice.
Blood
PUBLISHED: 10-01-2013
Show Abstract
Hide Abstract
Monogenic diseases, including hemophilia, represent ideal targets for genome-editing approaches aimed at correcting a defective gene. Here we report that systemic adeno-associated virus (AAV) vector delivery of zinc finger nucleases (ZFNs) and corrective donor template to the predominantly quiescent livers of adult mice enables production of high levels of human factor IX in a murine model of hemophilia B. Further, we show that off-target cleavage can be substantially reduced while maintaining robust editing by using obligate heterodimeric ZFNs engineered to minimize unwanted cleavage attributable to homodimerization of the ZFNs. These results broaden the therapeutic potential of AAV/ZFN-mediated genome editing in the liver and could expand this strategy to other nonreplicating cell types.
Related JoVE Video
CD8(+) T Cell Recognition of Epitopes Within the Capsid of Adeno-associated Virus 8-based Gene Transfer Vectors Depends on Vectors Genome.
Mol. Ther.
PUBLISHED: 08-28-2013
Show Abstract
Hide Abstract
Self-complementary adeno-associated viral (AAV) vectors expressing human factor IX (hF.IX) have achieved transient or sustained correction of hemophilia B in human volunteers. High doses of AAV2 or AAV8 vectors delivered to the liver caused in several patients an increase in transaminases accompanied by a rise in AAV capsid-specific T cells and a decrease in circulating hF.IX levels suggesting immune-mediated destruction of vector-transduced cells. Kinetics of these adverse events differed in patients receiving AAV2 or AAV8 vectors causing rise in transaminases at 3 versus 8 weeks after vector injection, respectively. To test if CD8(+) T cells to AAV8 vectors, which are similar to AAV2 vectors are fully-gutted vectors and thereby fail to encode structural viral proteins, could cause damage at this late time point, we tested in a series of mouse studies how long major histocompatibility (MHC) class I epitopes within AAV8 capsid can be presented to CD8(+) T cells. Our results clearly show that depending on the vectors genome, CD8(+) T cells can detect such epitopes on AAV8s capsid for up to 6 months indicating that the capsid of AAV8 degrades slowly in mice.
Related JoVE Video
Cellular localization and characterization of cytosolic binding partners for Gla domain-containing proteins PRRG4 and PRRG2.
J. Biol. Chem.
PUBLISHED: 07-19-2013
Show Abstract
Hide Abstract
The genes encoding a family of proteins termed proline-rich ?-carboxyglutamic acid (PRRG) proteins were identified and characterized more than a decade ago, but their functions remain unknown. These novel membrane proteins have an extracellular ?-carboxyglutamic acid (Gla) protein domain and cytosolic WW binding motifs. We screened WW domain arrays for cytosolic binding partners for PRRG4 and identified novel protein-protein interactions for the protein. We also uncovered a new WW binding motif in PRRG4 that is essential for these newly found protein-protein interactions. Several of the PRRG-interacting proteins we identified are essential for a variety of physiologic processes. Our findings indicate possible novel and previously unidentified functions for PRRG proteins.
Related JoVE Video
Overcoming preexisting humoral immunity to AAV using capsid decoys.
Sci Transl Med
PUBLISHED: 07-19-2013
Show Abstract
Hide Abstract
Adeno-associated virus (AAV) vectors delivered through the systemic circulation successfully transduce various target tissues in animal models. However, similar attempts in humans have been hampered by the high prevalence of neutralizing antibodies to AAV, which completely block vector transduction. We show in both mouse and nonhuman primate models that addition of empty capsid to the final vector formulation can, in a dose-dependent manner, adsorb these antibodies, even at high titers, thus overcoming their inhibitory effect. To further enhance the safety of the approach, we mutated the receptor binding site of AAV2 to generate an empty capsid mutant that can adsorb antibodies but cannot enter a target cell. Our work suggests that optimizing the ratio of full/empty capsids in the final formulation of vector, based on a patients anti-AAV titers, will maximize the efficacy of gene transfer after systemic vector delivery.
Related JoVE Video
Enhanced T cell function in a mouse model of human glycosylation.
J. Immunol.
PUBLISHED: 05-24-2013
Show Abstract
Hide Abstract
Clinical evidence for a more active immune response in humans compared with our closest hominid relative, the chimpanzee, includes the progression of HIV infection to AIDS, hepatitis B- and C-related inflammation, autoimmunity, and unwanted harmful immune responses to viral gene transfer vectors. Humans have a unique mutation of the enzyme CMP-N-acetylneuraminic acid hydroxylase (CMAH), causing loss of expression of the sialic acid Neu5Gc. This mutation, occurring 2 million years ago, likely altered the expression and function of ITIM-bearing inhibitory receptors (Siglecs) that bind sialic acids. Previous work showed that human T cells proliferate faster than chimpanzee T cells upon equivalent stimulation. In this article, we report that Cmah(-/-) mouse T cells proliferate faster and have greater expression of activation markers than wild-type mouse T cells. Metabolically reintroducing Neu5Gc diminishes the proliferation and activation of both human and murine Cmah(-/-) T cells. Importantly, Cmah(-/-) mice mount greater T cell responses to an adenovirus encoding an adeno-associated virus capsid transgene. Upon lymphocytic choriomeningitis virus infection, Cmah(-/-) mice make more lymphocytic choriomeningitis virus-specific T cells than WT mice, and these T cells are more polyfunctional. Therefore, a uniquely human glycosylation mutation, modeled in mice, leads to a more proliferative and active T cell population. These findings in a human-like mouse model have implications for understanding the hyperimmune responses that characterize some human diseases.
Related JoVE Video
Immune responses to AAV vectors: overcoming barriers to successful gene therapy.
Blood
PUBLISHED: 04-17-2013
Show Abstract
Hide Abstract
Gene therapy products for the treatment of genetic diseases are currently in clinical trials, and one of these, an adeno-associated viral (AAV) product, has recently been licensed. AAV vectors have achieved positive results in a number of clinical and preclinical settings, including hematologic disorders such as the hemophilias, Gaucher disease, hemochromatosis, and the porphyrias. Because AAV vectors are administered directly to the patient, the likelihood of a host immune response is high, as shown by human studies. Preexisting and/or recall responses to the wild-type virus from which the vector is engineered, or to the transgene product itself, can interfere with therapeutic efficacy if not identified and managed optimally. Small-scale clinical studies have enabled investigators to dissect the immune responses to the AAV vector capsid and to the transgene product, and to develop strategies to manage these responses to achieve long-term expression of the therapeutic gene. However, a comprehensive understanding of the determinants of immunogenicity of AAV vectors, and of potential associated toxicities, is still lacking. Careful immunosurveillance conducted as part of ongoing clinical studies will provide the basis for understanding the intricacies of the immune response in AAV-mediated gene transfer, facilitating safe and effective therapies for genetic diseases.
Related JoVE Video
Effective gene therapy for haemophilic mice with pathogenic factor IX antibodies.
EMBO Mol Med
PUBLISHED: 04-08-2013
Show Abstract
Hide Abstract
Formation of pathogenic antibodies is a major problem in replacement therapies for inherited protein deficiencies. For example, antibodies to coagulation factors (inhibitors) seriously complicate treatment of haemophilia. While immune tolerance induction (ITI) protocols have been developed, inhibitors against factor IX (FIX) are difficult to eradicate due to anaphylactic reactions and nephrotic syndrome and thus substantially elevate risks for morbidity and mortality. However, hepatic gene transfer with an adeno-associated virus (AAV) serotype 8 vector expressing FIX (at levels of ?4% of normal) rapidly reversed pre-existing high-titre inhibitors in haemophilia B mice, eliminated antibody production by B cells, desensitized from anaphylaxis (even if protein therapy was resumed) and provided long-term correction. High levels of FIX protein suppressed memory B cells and increased Treg induction, indicating direct and indirect mechanisms of suppression of inhibitor formation. Persistent presence of Treg was required to prevent relapse of antibodies. Together, these data suggest that hepatic gene transfer-based ITI provides a safe and effective alternative to eradicate inhibitors. This strategy may be broadly applicable to reversal of antibodies in different genetic diseases.
Related JoVE Video
Gene therapy for rare diseases: summary of a national institutes of health workshop, september 13, 2012.
Hum. Gene Ther.
PUBLISHED: 03-23-2013
Show Abstract
Hide Abstract
Gene therapy has shown clinical efficacy for several rare diseases, using different approaches and vectors. The Gene Therapy for Rare Diseases workshop, sponsored by the National Institutes of Health (NIH) Office of Biotechnology Activities and Office of Rare Diseases Research, brought together investigators from different disciplines to discuss the challenges and opportunities for advancing the field including means for enhancing data sharing for preclinical and clinical studies, development and utilization of available NIH resources, and interactions with the U.S. Food and Drug Administration.
Related JoVE Video
Effects of immunosuppression on circulating adeno-associated virus capsid-specific T cells in humans.
Hum. Gene Ther.
PUBLISHED: 03-07-2013
Show Abstract
Hide Abstract
In humans adeno-associated virus (AAV)-mediated gene transfer is followed by expansion of AAV capsid-specific T cells, evidence of cell damage, and loss of transgene product expression, implicating immunological rejection of vector-transduced cells, which may be prevented by immunosuppressive drugs. We undertook this study to assess the effect of immunosuppression (IS) used for organ transplantation on immune responses to AAV capsid antigens. Recipients of liver or kidney transplants were tested before and 4 weeks after induction of IS in comparison with matched samples from healthy human adults and an additional cohort with comorbid conditions similar to those of the transplant patients. Our data show that transplant patients and comorbid control subjects have markedly higher frequencies of circulating AAV capsid-specific T cells compared with healthy adults. On average, IS resulted in a reduction of AAV-specific CD4? T cells, whereas numbers of circulating CD8? effector and central memory T cells tended to increase. Independent of the type of transplant or the IS regimens, the trend of AAV capsid-specific T cell responses after drug treatment varied; in some patients responses were unaffected whereas others showed decreases or even pronounced increases, casting doubt on the usefulness of prophylactic IS for AAV vector recipients.
Related JoVE Video
Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital Amaurosis type 2.
Ophthalmology
PUBLISHED: 03-06-2013
Show Abstract
Hide Abstract
The aim of this study was to show the clinical data of long-term (3-year) follow-up of 5 patients affected by Leber congenital amaurosis type 2 (LCA2) treated with a single unilateral injection of adeno-associated virus AAV2-hRPE65v2.
Related JoVE Video
Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human factor VIII variant.
Blood
PUBLISHED: 02-20-2013
Show Abstract
Hide Abstract
Recombinant adeno-associated virus (rAAV) vectors encoding human factor VIII (hFVIII) were systematically evaluated for hemophilia A (HA) gene therapy. A 5.7-kb rAAV-expression cassette (rAAV-HLP-codop-hFVIII-N6) containing a codon-optimized hFVIII cDNA in which a 226 amino acid (aa) B-domain spacer replaced the entire B domain and a hybrid liver-specific promoter (HLP) mediated 10-fold higher hFVIII levels in mice compared with non-codon-optimized variants. A further twofold improvement in potency was achieved by replacing the 226-aa N6 spacer with a novel 17-aa peptide (V3) in which 6 glycosylation triplets from the B domain were juxtaposed. The resulting 5.2-kb rAAV-HLP-codop-hFVIII-V3 cassette was more efficiently packaged within AAV virions and mediated supraphysiologic hFVIII expression (732 ± 162% of normal) in HA knock-out mice following administration of 2 × 10(12) vector genomes/kg, a vector dose shown to be safe in subjects with hemophilia B. Stable hFVIII expression at 15 ± 4% of normal was observed at this dose in a nonhuman primate. hFVIII expression above 100% was observed in 3 macaques that received a higher dose of either this vector or the N6 variant. These animals developed neutralizing anti-FVIII antibodies that were abrogated with transient immunosuppression. Therefore, rAAV-HLP-codop-hFVIII-V3 substantially improves the prospects of effective HA gene therapy.
Related JoVE Video
Treatment of diabetes and long-term survival after insulin and glucokinase gene therapy.
Diabetes
PUBLISHED: 02-01-2013
Show Abstract
Hide Abstract
Diabetes is associated with severe secondary complications, largely caused by poor glycemic control. Treatment with exogenous insulin fails to prevent these complications completely, leading to significant morbidity and mortality. We previously demonstrated that it is possible to generate a "glucose sensor" in skeletal muscle through coexpression of glucokinase and insulin, increasing glucose uptake and correcting hyperglycemia in diabetic mice. Here, we demonstrate long-term efficacy of this approach in a large animal model of diabetes. A one-time intramuscular administration of adeno-associated viral vectors of serotype 1 encoding for glucokinase and insulin in diabetic dogs resulted in normalization of fasting glycemia, accelerated disposal of glucose after oral challenge, and no episodes of hypoglycemia during exercise for >4 years after gene transfer. This was associated with recovery of body weight, reduced glycosylated plasma proteins levels, and long-term survival without secondary complications. Conversely, exogenous insulin or gene transfer for insulin or glucokinase alone failed to achieve complete correction of diabetes, indicating that the synergistic action of insulin and glucokinase is needed for full therapeutic effect. This study provides the first proof-of-concept in a large animal model for a gene transfer approach to treat diabetes.
Related JoVE Video
Engineered AAV vector minimizes in vivo targeting of transduced hepatocytes by capsid-specific CD8+ T cells.
Blood
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
Recent clinical trials have shown that evasion of CD8(+) T-cell responses against viral capsid is critical for successful liver-directed gene therapy with adeno-associated viral (AAV) vectors for hemophilia. Preclinical models to test whether use of alternate serotypes or capsid variants could avoid this deleterious response have been lacking. Here, the ability of CD8(+) T cells ("cap-CD8," specific for a capsid epitope presented by human B*0702 or murine H2-L(d) molecules) to target AAV-infected hepatocytes was investigated. In a murine model based on adoptive transfer of ex vivo expanded cap-CD8, AAV2-transduced livers showed CD8(+) T-cell infiltrates, transaminitis, significant reduction in factor IX transgene expression, and loss of transduced hepatocytes. AAV8 gene transfer resulted in prolonged susceptibility to cap-CD8, consistent with recent clinical findings. In contrast, using an AAV2(Y-F) mutant capsid, which is known to be less degraded by proteasomes, preserved transgene expression and largely avoided hepatotoxicity. In vitro assays confirmed reduced major histocompatibility complex class I presentation of this capsid and killing of human or murine hepatocytes compared with AAV2. In conclusion, AAV capsids can be engineered to substantially reduce the risk of destruction by cytotoxic T lymphocytes, whereas use of alternative serotypes per se does not circumvent this obstacle.
Related JoVE Video
IL12-mediated liver inflammation reduces the formation of AAV transcriptionally active forms but has no effect over preexisting AAV transgene expression.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Recombinant adenoassociated viral vectors (rAAV) have proven to be excellent candidates for gene therapy clinical applications. Recent results showed that cellular immunity to AAV represents a major challenge facing the clinical use of systemic administration of these vectors. Interestingly, no preclinical animal model has previously fully reproduced the clinical findings. The aim of the present work was to enhance the T cell immune response against AAV capsid in mice by the administration of a rAAV expressing the immunostimulatory cytokine IL-12. Our results indicate that although IL-12 expression enhanced the AAV capsid-specific immune response it failed to eliminate transduced hepatocytes and long-term expression was achieved. We found that AAV-mediated transgene expression is altered by IL-12-induced liver inflammation. However, IL-12 expression has no effect over preexisting AAV-mediated transgene expression. IL-12 down-regulates AAV mediated transgene expression via induction of IFN-? production by NK and T cells, but without altering the transduction efficiency measured by viral genomes. Our results indicate that liver inflammation affects the formation of transcriptionally active AAV vector genomes through an unknown mechanism that can be avoided by the use of DNA-demethylating or anti-inflammatory agents.
Related JoVE Video
Self-complementary AAVs induce more potent transgene product-specific immune responses compared to a single-stranded genome.
Mol. Ther.
PUBLISHED: 12-20-2011
Show Abstract
Hide Abstract
Using a mouse model we show that self-complementary (sc) adeno-associated virus (AAV) vectors pseudotyped with capsids of serotypes 2, 7 or 8 induce more potent transgene product-specific CD8(+) T cell and antibody responses compared to corresponding single-stranded (ss)AAV vectors. These data suggest that the higher and more rapidly appearing amounts of transgene product achieved with scAAV vectors may increase detrimental immune responses in gene transfer recipients.
Related JoVE Video
rAAV human trial experience.
Methods Mol. Biol.
PUBLISHED: 10-29-2011
Show Abstract
Hide Abstract
Recombinant AAV vectors have been used in clinical trials since the mid-1990s, with over 300 subjects enrolled in studies. Although there are not yet licensed AAV products, there are several clear examples of clinical efficacy, and recombinant AAV vectors have a strong safety record after administration both locally and systemically. This chapter provides a review of two types of studies that have shown efficacy, including studies for Lebers congenital amaurosis, a hereditary retinal degenerative disorder in which subretinal administration of AAV has shown efficacy in terms of improvement in multiple measures of visual/retinal function; and of Parkinsons disease which has also shown improvement in clinical and imaging studies after gene transfer to the CNS. The chapter also provides a detailed review of the results of studies of gene therapy for hemophilia, in which short-term efficacy was achieved, but expression of the donated gene failed to persist, likely due to an immune response to the vector. Safety issues relating to AAV-mediated gene transfer are discussed, including a detailed review of the single death to have occurred in an AAV gene therapy trial (likely unrelated to the AAV vector), and of issues related to integration and insertional mutagenesis, risk of germline transmission, and risks related to immune responses to either vector or transgene product. Finally, protocols for determining the presence of vector DNA in body fluids using real-time quantitative PCR, and for isolating, cryopreserving, and testing peripheral blood mononuclear cells for interferon-? (IFN-?) responses to capsid are described in detail.
Related JoVE Video
Clinical trial opportunities in hemostasis and thrombosis: NHBLI State-of-the-Science symposium.
Am. J. Hematol.
PUBLISHED: 10-12-2011
Show Abstract
Hide Abstract
Clinical trials in hemostasis and thrombosis (HT) are needed to guide medical practice and future research. Providing public support for trials that could have the greatest impact on clinical care has been a major challenge. The National Heart, Lung and Blood Institute (NHLBI) convened a State-of-the-Science meeting in Bethesda on September 14th and 15th, 2009 to identify Phase II and III clinical trials in HT that could have critical impact on healthcare. An oversight committee composed of representatives of the NHLBI and three experienced extramural investigators chose chairs of subcommittees representing six broad areas of investigation in adult and pediatric HT. Chairs were charged with identifying important, feasible proposals. Nineteen trial concepts were presented at this public meeting, followed by open commentary from members of an independent external panel chosen to evaluate the trials and from symposium participants from the wider scientific community. Descriptions of two important clinical trial concepts from each of the six subcommittees are provided in the Supporting Information. Phase II-III clinical trials that could have high impact include studies for treatment of venous thromboembolism (TE) in children and in adults, the potential utility of statins in prophylaxis of TE, prophylaxis of adults with severe hemophilia, management of heparin-induced thrombocytopenia (HIT) and of primary immune thrombocytopenia (ITP). The external panel also provided recommendations concerning infrastructure and approach that could improve the conduct of studies including: development of core organizations with expertise in design of clinical trials, biostatistics, and contract development; funding based on output and milestones; and enhanced investment in coordinating centers.
Related JoVE Video
ARFI ultrasound monitoring of hemorrhage and hemostasis in vivo in canine von Willebrand disease and hemophilia.
Ultrasound Med Biol
PUBLISHED: 07-07-2011
Show Abstract
Hide Abstract
A validated method for assessing hemostasis in vivo is critical for testing the hemostatic efficacy of therapeutic agents designed for patients with bleeding disorders such as von Willebrand disease (VWD) and hemophilia A. We hypothesize that rate of bleeding and time to hemostasis can be monitored in vivo by acoustic radiation force impulse (ARFI) ultrasound. We performed ARFI imaging following 12-gauge needle puncture of hind limb muscle encompassing an ?2 mm vein in six normal, eight naïve hemophilia A before and after infusing canine factor VIII, three hemophilia A expressing canine factor VIIa following gene transfer, and two naïve VWD dogs. Serial data sets were processed with custom software to (1) estimate the rate of hemorrhage and (2) estimate the time of hemostasis onset. The rate of hemorrhage during the first 30 min following puncture was markedly increased in the VWD dogs relative to normal but was not significantly different between normal, naïve hemophilia A or hemophilia A expressing cFVIIa. ARFI-derived times to hemostasis were significantly longer in naïve hemophilia A dogs than in normal dogs and were shortened by canine coagulation factors VIII and VIIa. These data support our hypothesis that rate of hemorrhage and time to hemostasis in vivo in response to a standardized hemostatic challenge can be detected by ARFI ultrasound in canine models of VWD and hemophilia. These data also suggest that the ARFI-monitored hemostatic challenge is relevant for in vivo testing of the hemostatic efficacy of therapeutic clotting factor replacement products used to treat inherited bleeding disorders.
Related JoVE Video
Cardiac gene transfer of short hairpin RNA directed against phospholamban effectively knocks down gene expression but causes cellular toxicity in canines.
Hum. Gene Ther.
PUBLISHED: 06-08-2011
Show Abstract
Hide Abstract
Derangements in calcium cycling have been described in failing hearts, and preclinical studies have suggested that therapies aimed at correcting this defect can lead to improvements in cardiac function and survival. One strategy to improve calcium cycling would be to inhibit phospholamban (PLB), the negative regulator of SERCA2a that is upregulated in failing hearts. The goal of this study was to evaluate the safety and efficacy of using adeno-associated virus (AAV)-mediated cardiac gene transfer of short hairpin RNA (shRNA) to knock down expression of PLB. Six dogs were treated with self-complementary AAV serotype 6 (scAAV6) expressing shRNA against PLB. Three control dogs were treated with empty AAV6 capsid, and two control dogs were treated with scAAV6 expressing dominant negative PLB. Vector was delivered via a percutaneously inserted cardiac injection catheter. PLB mRNA and protein expression were analyzed in three of six shRNA dogs between days 16 and 26. The other three shRNA dogs and five control dogs were monitored long-term to assess cardiac safety. PLB mRNA was reduced 16-fold, and PLB protein was reduced 5-fold, with treatment. Serum troponin elevation and depressed cardiac function were observed in the shRNA group only at 4 weeks. An enzyme-linked immunospot assay failed to detect any T cells reactive to AAV6 capsid in peripheral blood mononuclear cells, heart, or spleen. Microarray analysis revealed alterations in cardiac expression of several microRNAs with shRNA treatment. AAV6-mediated cardiac gene transfer of shRNA effectively knocks down PLB expression but is associated with severe cardiac toxicity. Toxicity may result from dysregulation of endogenous microRNA pathways.
Related JoVE Video
Capsid-specific T-cell responses to natural infections with adeno-associated viruses in humans differ from those of nonhuman primates.
Mol. Ther.
PUBLISHED: 05-17-2011
Show Abstract
Hide Abstract
Hepatic adeno-associated virus serotype 2 (AAV2)-mediated gene transfer failed to achieve sustained transgene product expression in human subjects. We formulated the hypothesis that rejection of AAV-transduced hepatocytes is caused by AAV capsid-specific CD8(+) T cells that become reactivated upon gene transfer. Although this hypothesis was compatible with clinical data, which showed a rise in circulating AAV capsid-specific T cells following injection of AAV vectors, it did not explain that AAV vectors achieved long-term transgene expression in rhesus macaques, which are naturally infected with AAV serotypes closely related to those of humans. To address this apparent contradiction, we tested human and rhesus macaque samples for AAV capsid-specific T cells by intracellular cytokine staining combined with staining for T-cell subset and differentiation markers. This highly sensitive method, which could provide a tool to monitor adverse T-cell responses in gene transfer trials, showed that AAV capsid-specific CD8(+) and CD4(+) T cells can be detected in blood of naturally infected humans and rhesus macaques. They are present at higher frequencies in rhesus macaques. Furthermore, T cells from humans and rhesus macaques exhibit striking differences in their differentiation status and in their functions, which may explain the disparate duration of AAV-mediated gene transfer in these two species.
Related JoVE Video
In vivo genome editing restores haemostasis in a mouse model of haemophilia.
Nature
PUBLISHED: 05-06-2011
Show Abstract
Hide Abstract
Editing of the human genome to correct disease-causing mutations is a promising approach for the treatment of genetic disorders. Genome editing improves on simple gene-replacement strategies by effecting in situ correction of a mutant gene, thus restoring normal gene function under the control of endogenous regulatory elements and reducing risks associated with random insertion into the genome. Gene-specific targeting has historically been limited to mouse embryonic stem cells. The development of zinc finger nucleases (ZFNs) has permitted efficient genome editing in transformed and primary cells that were previously thought to be intractable to such genetic manipulation. In vitro, ZFNs have been shown to promote efficient genome editing via homology-directed repair by inducing a site-specific double-strand break (DSB) at a target locus, but it is unclear whether ZFNs can induce DSBs and stimulate genome editing at a clinically meaningful level in vivo. Here we show that ZFNs are able to induce DSBs efficiently when delivered directly to mouse liver and that, when co-delivered with an appropriately designed gene-targeting vector, they can stimulate gene replacement through both homology-directed and homology-independent targeted gene insertion at the ZFN-specified locus. The level of gene targeting achieved was sufficient to correct the prolonged clotting times in a mouse model of haemophilia B, and remained persistent after induced liver regeneration. Thus, ZFN-driven gene correction can be achieved in vivo, raising the possibility of genome editing as a viable strategy for the treatment of genetic disease.
Related JoVE Video
Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges.
Nat. Rev. Genet.
PUBLISHED: 04-19-2011
Show Abstract
Hide Abstract
In vivo gene replacement for the treatment of inherited disease is one of the most compelling concepts in modern medicine. Adeno-associated virus (AAV) vectors have been extensively used for this purpose and have shown therapeutic efficacy in a range of animal models. Successful translation to the clinic was initially slow, but long-term expression of donated genes at therapeutic levels has now been achieved in patients with inherited retinal disorders and haemophilia B. Recent exciting results have raised hopes for the treatment of many other diseases. As we discuss here, the prospects and challenges for AAV gene therapy are to a large extent dependent on the target tissue and the specific disease.
Related JoVE Video
Safety of liver gene transfer following peripheral intravascular delivery of adeno-associated virus (AAV)-5 and AAV-6 in a large animal model.
Hum. Gene Ther.
PUBLISHED: 03-08-2011
Show Abstract
Hide Abstract
Intravascular delivery of adeno-associated virus (AAV) vector is commonly used for liver-directed gene therapy. In humans, the high prevalence of neutralizing antibodies to AAV-2 capsid and the wide cross-reactivity with other serotypes hamper vector transduction efficacy. Moreover, the safety of gene-based approaches depends on vector biodistribution, vector dose, and route of administration. Here we sought to characterize the safety of AAV-5 and AAV-6 for liver-mediated human factor IX (hFIX) expression in rabbits at doses of 1 × 10(12) or 1 × 10(13) viral genomes/kg. Circulating therapeutic levels of FIX were observed in both cohorts of AAV-6-hFIX, whereas for AAV-5-hFIX only the high dose was effective. Long-lasting inhibitory antibodies to hFIX were detected in three of the 10 AAV-6-injected animals but were absent in the AAV-5 group. Overall, vector shedding in the semen was transient and vector dose-dependent. However, the kinetics of clearance were remarkably faster for AAV-5 (3-5 weeks) compared with AAV-6 (10-13 weeks). AAV-6 vector sequences outside the liver were minimal at 20-30 weeks post-injection. In contrast, AAV-5 exhibited relatively high amounts of vector DNA in tissues other than the liver. Together these data are useful to further define the safety and potential for clinical translation of these AAV vectors.
Related JoVE Video
Catalytic domain modification and viral gene delivery of activated factor VII confers hemostasis at reduced expression levels and vector doses in vivo.
Blood
PUBLISHED: 02-16-2011
Show Abstract
Hide Abstract
Catalytic domain variants of activated factor VII (FVIIa) with enhanced hemostatic properties are highly attractive for the treatment of bleeding disorders via gene-based therapy. To explore this in a hemophilic mouse model, we characterized 2 variants of murine activated FVII (mFVIIa-VEAY and mFVIIa-DVQ) with modified catalytic domains, based on recombinant human FVIIa (rhFVIIa) variants. Using purified recombinant proteins, we showed that murine FVIIa (mFVIIa) and variants had comparable binding to human and murine tissue factor (TF) and exhibited similar extrinsic coagulant activity. In vitro in the absence of TF, the variants showed a 6- to 17-fold enhanced proteolytic and coagulant activity relative to mFVIIa, but increased inactivation by antithrombin. Gene delivery of mFVIIa-VEAY resulted in long-term, effective hemostasis at 5-fold lower expression levels relative to mFVIIa in hemophilia A mice or in hemophilia B mice with inhibitors to factor IX. However, expression of mFVIIa-VEAY at 14-fold higher than therapeutic levels resulted in a progressive mortality to 70% within 6 weeks after gene delivery. These results are the first demonstration of the hemostatic efficacy of continuous expression, in the presence or absence of inhibitors, of a high-activity gene-based FVIIa variant in an animal model of hemophilia.
Related JoVE Video
PEG-modulated column chromatography for purification of recombinant adeno-associated virus serotype 9.
J. Virol. Methods
PUBLISHED: 01-19-2011
Show Abstract
Hide Abstract
Column chromatography has been described for purification of recombinant adeno-associated viral vectors (rAAV) serotypes 1, 2, 5, 6 and 8. Some of these purification processes have been used in manufacturing pre-clinical grade and clinical grade rAAV vectors. Recently, recombinant AAV9 has been reported to be highly efficient in transducing cardiac muscle in animal models. Systemic or cardiac gene delivery and other applications may require large quantities of rAAV9 vectors, thus a scalable method supporting large scale purification of rAAV9 is needed for clinical development. However, column chromatography-based purification has not been reported to date for rAAV9. This study reports a polyethylene glycol (PEG) modulated chromatography process for purification of AAV9 vectors. Inclusion of PEG in chromatography buffers modulated rAAV9 elution profiles in a manner that resulted in significantly improved resin binding capacity, vector purity and yield. PEG-modulated methods were developed and optimized for hydroxyapatite and ion exchange chromatography, and shown to result in vectors of high purity and functional activity.
Related JoVE Video
Long-term safety and efficacy following systemic administration of a self-complementary AAV vector encoding human FIX pseudotyped with serotype 5 and 8 capsid proteins.
Mol. Ther.
PUBLISHED: 01-18-2011
Show Abstract
Hide Abstract
Adeno-associated virus vectors (AAV) show promise for liver-targeted gene therapy. In this study, we examined the long-term consequences of a single intravenous administration of a self-complementary AAV vector (scAAV2/ 8-LP1-hFIXco) encoding a codon optimized human factor IX (hFIX) gene in 24 nonhuman primates (NHPs). A dose-response relationship between vector titer and transgene expression was observed. Peak hFIX expression following the highest dose of vector (2 × 10(12) pcr-vector genomes (vg)/kg) was 21 ± 3 µg/ml (~420% of normal). Fluorescent in-situ hybridization demonstrated scAAV provirus in almost 100% of hepatocytes at that dose. No perturbations of clinical or laboratory parameters were noted and vector genomes were cleared from bodily fluids by 10 days. Macaques transduced with 2 × 10(11) pcr-vg/kg were followed for the longest period (~5 years), during which time expression of hFIX remained >10% of normal level, despite a gradual decline in transgene copy number and the proportion of transduced hepatocytes. All macaques developed serotype-specific antibodies but no capsid-specific cytotoxic T lymphocytes were detected. The liver was preferentially transduced with 300-fold more proviral copies than extrahepatic tissues. Long-term biochemical, ultrasound imaging, and histologic follow-up of this large cohort of NHP revealed no toxicity. These data support further evaluation of this vector in hemophilia B patients.
Related JoVE Video
Immune responses to AAV in clinical trials.
Curr Gene Ther
PUBLISHED: 01-13-2011
Show Abstract
Hide Abstract
Findings in the first clinical trial in which an adeno-associated virus (AAV) vector was introduced into the liver of human subjects highlighted an issue not previously identified in animal studies. Upon AAV gene transfer to liver, two subjects developed transient elevation of liver enzymes, likely as a consequence of immune rejection of transduced hepatocytes mediated by AAV capsid-specific CD8(+) T cells. Studies in healthy donors showed that humans carry a population of antigen-specific memory CD8(+) T cells probably arising from wild-type AAV infections. The hypothesis formulated at that time was that these cells expanded upon re-exposure to capsid, i.e. upon AAV-2 hepatic gene transfer, and cleared AAV epitope-bearing transduced hepatocytes. Other hypotheses have been formulated which include specific receptor-binding properties of AAV-2 capsid, presence of capsid-expressing DNA in AAV vector preparations, and expression of alternate open reading frames from the transgene; emerging data from clinical trials however fail to support these competing hypotheses. Possible solutions to the problem are discussed, including the administration of a short-term immunosuppression regimen concomitant with gene transfer, or the development of more efficient vectors that can be administered at lower doses. While more studies will be necessary to define mechanisms and risks associated with capsid-specific immune responses in humans, monitoring of these responses in clinical trials will be essential to achieving the goal of long-term therapeutic gene transfer in humans.
Related JoVE Video
Adeno-associated virus vectors serotype 2 induce prolonged proliferation of capsid-specific CD8+ T cells in mice.
Mol. Ther.
PUBLISHED: 12-14-2010
Show Abstract
Hide Abstract
Using adoptive transfer models we determined that an adeno-associated viral vector of serotype 2 (AAV2) induces in mice proliferation of CD8(+) T cells that recognize an epitope within the viral capsid. Proliferation to an endogenous epitope within viral protein (VP)3 could be observed for at least 3 weeks while a foreign epitope placed at multiple copies within VP2 elicited CD8(+) T cell expansion for at least 10 weeks. These data show that capsid antigens of AAV2 degrade slowly over a period of weeks and during this period provide targets to CD8(+) T cells.
Related JoVE Video
Assessing the potential for AAV vector genotoxicity in a murine model.
Blood
PUBLISHED: 11-24-2010
Show Abstract
Hide Abstract
Gene transfer using adeno-associated virus (AAV) vectors has great potential for treating human disease. Recently, questions have arisen about the safety of AAV vectors, specifically, whether integration of vector DNA in transduced cell genomes promotes tumor formation. This study addresses these questions with high-dose liver-directed AAV-mediated gene transfer in the adult mouse as a model (80 AAV-injected mice and 52 controls). After 18 months of follow-up, AAV-injected mice did not show a significantly higher rate of hepatocellular carcinoma compared with controls. Tumors in mice treated with AAV vectors did not have significantly different amounts of vector DNA compared with adjacent normal tissue. A novel high-throughput method for identifying AAV vector integration sites was developed and used to clone 1029 integrants. Integration patterns in tumor tissue and adjacent normal tissue were similar to each other, showing preferences for active genes, cytosine-phosphate-guanosine islands, and guanosine/cytosine-rich regions. [corrected] Gene expression data showed that genes near integration sites did not show significant changes in expression patterns compared with genes more distal to integration sites. No integration events were identified as causing increased oncogene expression. Thus, we did not find evidence that AAV vectors cause insertional activation of oncogenes and subsequent tumor formation.
Related JoVE Video
Manufacturing and regulatory strategies for clinical AAV2-hRPE65.
Curr Gene Ther
PUBLISHED: 06-28-2010
Show Abstract
Hide Abstract
Recombinant adeno-associated virus (AAV) -based vectors expressing therapeutic gene products have shown great promise for human gene therapy. A recent milestone has been the safety and efficacy observed using recombinant AAV2 expressing retinal pigment epithelial associated 65KDa protein for Leber Congenital Amaurosis. This review summarizes manufacturing and characterization of AAV2-hRPE65v2, the vector used in one completed Phase I/II clinical trial. Regulatory challenges and strategies that were successfully used for this groundbreaking trial are described.
Related JoVE Video
Patients beware: commercialized stem cell treatments on the web.
Cell Stem Cell
PUBLISHED: 06-17-2010
Show Abstract
Hide Abstract
A report by the International Society for Stem Cell Research (ISSCR)s Task Force on Unproven Stem Cell Treatments outlines development of resources for patients, their families, and physicians seeking information on stem cell treatments.
Related JoVE Video
Safety of AAV factor IX peripheral transvenular gene delivery to muscle in hemophilia B dogs.
Mol. Ther.
PUBLISHED: 04-27-2010
Show Abstract
Hide Abstract
Muscle represents an attractive target tissue for adeno-associated virus (AAV) vector-mediated gene transfer for hemophilia B (HB). Experience with direct intramuscular (i.m.) administration of AAV vectors in humans showed that the approach is safe but fails to achieve therapeutic efficacy. Here, we present a careful evaluation of the safety profile (vector, transgene, and administration procedure) of peripheral transvenular administration of AAV-canine factor IX (cFIX) vectors to the muscle of HB dogs. Vector administration resulted in sustained therapeutic levels of cFIX expression. Although all animals developed a robust antibody response to the AAV capsid, no T-cell responses to the capsid antigen were detected by interferon (IFN)-gamma enzyme-linked immunosorbent spot (ELISpot). Interleukin (IL)-10 ELISpot screening of lymphocytes showed reactivity to cFIX-derived peptides, and restimulation of T cells in vitro in the presence of the identified cFIX epitopes resulted in the expansion of CD4(+)FoxP3(+)IL-10(+) T-cells. Vector administration was not associated with systemic inflammation, and vector spread to nontarget tissues was minimal. At the local level, limited levels of cell infiltrates were detected when the vector was administered intravascularly. In summary, this study in a large animal model of HB demonstrates that therapeutic levels of gene transfer can be safely achieved using a novel route of intravascular gene transfer to muscle.
Related JoVE Video
Viral vector-mediated RNA interference.
Curr Opin Pharmacol
PUBLISHED: 04-13-2010
Show Abstract
Hide Abstract
RNA interference (RNAi) is a powerful gene silencing mechanism that if properly harnessed has the potential to revolutionize medical interventions. Delivery of inhibitory RNAs to target tissues needs to be safe, efficient, and for many diseases, long-lasting, in order to exploit this endogenous mechanism for therapeutic purposes. Viral vector systems, based on adeno-associated viruses and lentiviruses, are ideally suited to mediate RNAi because they can safely transduce a wide range of tissues and provide sustained levels of gene expression. There are now many examples of the use of viral vector-mediated RNAi to inhibit gene expression in animal models of disease, and in many cases proof-of-principle has been demonstrated. The efficient delivery of RNAi has also uncovered a number of concerns that raise questions regarding the clinical application of this technology, including off-target effects, innate immune responses, and alterations in the endogenous microRNA (miRNA) pathway. However, over the past several years, work has been done to address these problems and a number of solutions are now being implemented to mitigate these potential risks. With a deeper understanding of RNAi and continued progress in designing RNAi effectors, viral vector-mediated RNAi has the potential to change the way many diseases are treated.
Related JoVE Video
Safety and efficacy of subretinal readministration of a viral vector in large animals to treat congenital blindness.
Sci Transl Med
PUBLISHED: 04-09-2010
Show Abstract
Hide Abstract
Lebers congenital amaurosis (LCA) is a group of severe inherited retinal degenerations that are symptomatic in infancy and lead to total blindness in adulthood. Recent clinical trials using recombinant adeno-associated virus serotype 2 (rAAV2) successfully reversed blindness in patients with LCA caused by RPE65 mutations after one subretinal injection. However, it was unclear whether treatment of the second eye in the same manner would be safe and efficacious, given the potential for a complicating immune response after the first injection. Here, we evaluated the immunological and functional consequences of readministration of rAAV2-hRPE65v2 to the contralateral eye using large animal models. Neither RPE65-mutant (affected; RPE65(-/-)) nor unaffected animals developed antibodies against the transgene product, but all developed neutralizing antibodies against the AAV2 capsid in sera and intraocular fluid after subretinal injection. Cell-mediated immune responses were benign, with only 1 of 10 animals in the study developing a persistent T cell immune response to AAV2, a response that was mediated by CD4(+) T cells. Sequential bilateral injection caused minimal inflammation and improved visual function in affected animals. Thus, subretinal readministration of rAAV2 in animals is safe and effective, even in the setting of preexisting immunity to the vector, a parameter that has been used to exclude patients from gene therapy trials.
Related JoVE Video
Peripheral transvenular delivery of adeno-associated viral vectors to skeletal muscle as a novel therapy for hemophilia B.
Blood
PUBLISHED: 03-24-2010
Show Abstract
Hide Abstract
Muscle represents an important tissue target for adeno-associated viral (AAV) vector-mediated gene transfer of the factor IX (FIX) gene in hemophilia B (HB) subjects with advanced liver disease. Previous studies of direct intramuscular administration of an AAV-FIX vector in humans showed limited efficacy. Here we adapted an intravascular delivery system of AAV vectors encoding the FIX transgene to skeletal muscle of HB dogs. The procedure, performed under transient immunosuppression (IS), resulted in widespread transduction of muscle and sustained, dose-dependent therapeutic levels of canine FIX transgene up to 10-fold higher than those obtained by intramuscular delivery. Correction of bleeding time correlated clinically with a dramatic reduction of spontaneous bleeding episodes. None of the dogs (n = 14) receiving the AAV vector under transient IS developed inhibitory antibodies to canine FIX; transient inhibitor was detected after vector delivery without IS. The use of AAV serotypes with high tropism for muscle and low susceptibility to anti-AAV2 antibodies allowed for efficient vector administration in naive dogs and in the presence of low- but not high-titer anti-AAV2 antibodies. Collectively, these results demonstrate the feasibility of this approach for treatment of HB and highlight the importance of IS to prevent immune responses to the FIX transgene product.
Related JoVE Video
Gene therapy for Lebers congenital amaurosis is safe and effective through 1.5 years after vector administration.
Mol. Ther.
PUBLISHED: 12-01-2009
Show Abstract
Hide Abstract
The safety and efficacy of gene therapy for inherited retinal diseases is being tested in humans affected with Lebers congenital amaurosis (LCA), an autosomal recessive blinding disease. Three independent studies have provided evidence that the subretinal administration of adeno-associated viral (AAV) vectors encoding RPE65 in patients affected with LCA2 due to mutations in the RPE65 gene, is safe and, in some cases, results in efficacy. We evaluated the long-term safety and efficacy (global effects on retinal/visual function) resulting from subretinal administration of AAV2-hRPE65v2. Both the safety and the efficacy noted at early timepoints persist through at least 1.5 years after injection in the three LCA2 patients enrolled in the low dose cohort of our trial. A transient rise in neutralizing antibodies to AAV capsid was observed but there was no humoral response to RPE65 protein. The persistence of functional amelioration suggests that AAV-mediated gene transfer to the human retina does not elicit immunological responses which cause significant loss of transduced cells. The persistence of physiologic effect supports the possibility that gene therapy may influence LCA2 disease progression. The safety of the intervention and the stability of the improvement in visual and retinal function in these subjects support the use of AAV-mediated gene augmentation therapy for treatment of inherited retinal diseases.
Related JoVE Video
Proteasome inhibitors decrease AAV2 capsid derived peptide epitope presentation on MHC class I following transduction.
Mol. Ther.
PUBLISHED: 11-10-2009
Show Abstract
Hide Abstract
Adeno-associated viral (AAV) vectors are an extensively studied and highly used vector platform for gene therapy applications. We hypothesize that in the first clinical trial using AAV to treat hemophilia B, AAV capsid proteins were presented on the surface of transduced hepatocytes, resulting in clearance by antigen-specific CD8+ T cells and consequent loss of therapeutic transgene expression. It has been previously shown that proteasome inhibitors can have a dramatic effect on AAV transduction in vitro and in vivo. Here, we describe using the US Food and Drug Administration-approved proteasome inhibitor, bortezomib, to decrease capsid antigen presentation on hepatocytes in vitro, whereas at the same time, enhancing gene expression in vivo. Using an AAV capsid-specific T-cell reporter (TCR) line to analyze the effect of proteasome inhibitors on antigen presentation, we demonstrate capsid antigen presentation at low multiplicities of infection (MOIs), and inhibition of antigen presentation at pharmacologic levels of bortezomib. We also demonstrate that bortezomib can enhance Factor IX (FIX) expression from an AAV2 vector in mice, although the same effect was not observed for AAV8 vectors. A pharmacological agent that can enhance AAV transduction, decrease T-cell activation/proliferation, and decrease capsid antigen presentation would be a promising solution to obstacles to successful AAV-mediated, liver-directed gene transfer in humans.
Related JoVE Video
Age-dependent effects of RPE65 gene therapy for Lebers congenital amaurosis: a phase 1 dose-escalation trial.
Lancet
PUBLISHED: 10-23-2009
Show Abstract
Hide Abstract
Gene therapy has the potential to reverse disease or prevent further deterioration of vision in patients with incurable inherited retinal degeneration. We therefore did a phase 1 trial to assess the effect of gene therapy on retinal and visual function in children and adults with Lebers congenital amaurosis.
Related JoVE Video
The Jeremiah Metzger Lecture: gene therapy for inherited disorders: from Christmas disease to Lebers amaurosis.
Trans. Am. Clin. Climatol. Assoc.
PUBLISHED: 09-22-2009
Show Abstract
Hide Abstract
This paper will focus on recent developments in the field of gene therapy for inherited disorders. From a historical perspective, this Metzger lecture is a follow-on to one presented by Dr. William Kelley in 1987, entitled "Current Status of Human Gene Therapy" (Transactions Am Clin. Climatol. Assoc. 99:152-169) (1). In 1987, gene transfer studies in human subjects were yet to be undertaken; the first clinical studies, infusion of genetically modified autologous T cells into two young girls with ADA-SCID, would not take place until 1990 (2). Todays lecture will summarize progress since that time in one area, that of in vivo gene transfer for genetic disease. I will describe progress in two areas, gene therapy for the bleeding disorder hemophilia B, and for a subset of retinal degenerative disorders termed Lebers congenital amaurosis, due to mutations in the gene encoding retinal pigment epithelium-specific 65 kilodalton protein (RPE65). This lecture will demonstrate the interconnected nature of progress in these two areas, as careful delineation of the obstacles in hemophilia led to the realization that success could be achieved in Lebers.
Related JoVE Video
Impact of the underlying mutation and the route of vector administration on immune responses to factor IX in gene therapy for hemophilia B.
Mol. Ther.
PUBLISHED: 07-14-2009
Show Abstract
Hide Abstract
Immune responses to factor IX (F.IX), a major concern in gene therapy for hemophilia, were analyzed for adeno-associated viral (AAV-2) gene transfer to skeletal muscle and liver as a function of the F9 underlying mutation. Vectors identical to those recently used in clinical trials were administered to four lines of hemophilia B mice on a defined genetic background [C3H/HeJ with deletion of endogenous F9 and transgenic for a range of nonfunctional human F.IX (hF.IX) variants]. The strength of the immune response to AAV-encoded F.IX inversely correlated with the degree of conservation of endogenous coding information and levels of endogenous antigen. Null mutation animals developed T- and B-cell responses in both protocols. However, inhibitor titers were considerably higher upon muscle gene transfer (or protein therapy). Transduced muscles of Null mice had strong infiltrates with CD8+ cells, which were much more limited in the liver and not seen for the other mutations. Sustained expression was achieved with liver transduction in mice with crm(-) nonsense and missense mutations, although they still formed antibodies upon muscle gene transfer. Therefore, endogenous expression prevented T-cell responses more effectively than antibody formation, and immune responses varied substantially depending on the protocol and the underlying mutation.
Related JoVE Video
AAV-1-mediated gene transfer to skeletal muscle in humans results in dose-dependent activation of capsid-specific T cells.
Blood
PUBLISHED: 06-08-2009
Show Abstract
Hide Abstract
In a clinical trial for adeno-associated virus serotype 1 (AAV-1)-mediated gene transfer to muscle for lipoprotein lipase (LPL) deficiency, 1 subject from the high-dose cohort experienced a transient increase in the muscle enzyme creatine phosphokinase (CPK) 4 weeks after gene transfer. Simultaneously, after an initial downward trend consistent with expression of LPL, plasma triglyceride levels returned to baseline. We characterized B- and T-cell responses to the vector and the transgene product in the subjects enrolled in this study. IFN-gamma enzyme-linked immunosorbent spot (ELISpot) and intracellular cytokine staining assays performed on peripheral blood mononuclear cells (PBMCs) from the subject who experienced the CPK elevation showed the activation of capsid-specific CD4(+) and CD8(+) T cells. Four of 8 subjects had detectable T-cell responses to capsid with dose-dependent kinetics of appearance. Subjects with detectable T-cell responses to capsid also had higher anti-AAV-1 IgG3 antibody titer. No subject developed B- or T-cell responses to the LPL transgene product. These findings suggest that T-cell responses directed to the AAV-1 capsid are dose-dependent. Whether they also limit the duration of expression of the transgene at higher doses is unclear, and will require additional analyses at later time points.
Related JoVE Video
Successful treatment of canine hemophilia by continuous expression of canine FVIIa.
Blood
PUBLISHED: 05-16-2009
Show Abstract
Hide Abstract
Continuous expression of activated factor VII (FVIIa) via gene transfer is a potential therapeutic approach for hemophilia patients with or without inhibitory antibodies to human factor VIII (FVIII) or IX (FIX). Here, we investigate whether gene transfer of an engineered canine FVIIa (cFVIIa) transgene can affect hemostasis in a canine model of hemophilia, a good predictor of efficacy of hemophilia treatments. Purified recombinant cFVIIa exhibited 12-fold higher tissue factor-dependent activity than purified recombinant zymogen cFVII. Subsequently, we generated a serotype 8 recombinant adeno-associated viral vector expressing cFVIIa from a liver-specific promoter. Vector delivery via the portal vein in hemophilia A and B dogs was well tolerated, and long-term expression of cFVIIa resulted in a shortening of the prothrombin time, partial correction of the whole blood clotting time and thromboelastography parameters, and a complete absence of spontaneous bleeding episodes. No evidence of hepatotoxicity, thrombotic complications, or inhibitory immune response was found. These data provide the first evidence for in vivo efficacy and safety of continuously expressed FVIIa as a FVIII/FIX-bypassing agent in a large animal model of hemophilia, avoiding the risk of inhibitor formation associated with bolus FVIII or FIX infusion.
Related JoVE Video
Diverse IgG subclass responses to adeno-associated virus infection and vector administration.
J. Med. Virol.
PUBLISHED: 05-12-2009
Show Abstract
Hide Abstract
Humoral immune responses occur following exposure to Adeno-associated virus (AAV) or AAV vectors. Many studies characterized antibody responses to AAV, but human IgG subclass responses to AAV have not been previously described. In this study, IgG subclass responses were examined in serum samples of normal human subjects exposed to wild-type AAV, subjects injected intramuscularly with AAV vectors and subjects injected intravascularly with AAV vectors. A diversity of IgG subclass responses to AAV capsid were found in different subjects. IgG1 was found to be the dominant response. IgG2, IgG3, and IgG4 responses were also observed in most normal human subjects; IgG2 and IgG3 each represented the major fraction of total anti-AAV capsid IgG in a subset of normal donors. Subjects exposed to AAV vectors showed IgG responses to AAV capsid of all four IgG subclasses. IgG responses to AAV capsid in clinical trial subjects were inversely proportional to the level of pre-existing anti-AAV antibody and independent of the vector dose. The high levels of anti-AAV capsid IgG1 can mask differences in IgG2, IgG3, and IgG4 responses that were observed in this study. Analysis of IgG subclass distribution of anti-AAV capsid antibodies indicates a complex, non-uniform pattern of responses to this viral antigen. J. Med. Virol. 81:65-74, 2009. (c) 2008 Wiley-Liss, Inc.
Related JoVE Video
Undetectable transcription of cap in a clinical AAV vector: implications for preformed capsid in immune responses.
Mol. Ther.
PUBLISHED: 05-06-2009
Show Abstract
Hide Abstract
In a gene therapy clinical trial for hemophilia B, adeno-associated virus 2 (AAV2) capsid-specific CD8(+) T cells were previously implicated in the elimination of vector-transduced hepatocytes, resulting in loss of human factor IX (hFIX) transgene expression. To test the hypothesis that expression of AAV2 cap DNA impurities in the AAV2-hFIX vector was the source of epitopes presented on transduced cells, transcription of cap was assessed by quantitative reverse transcription-PCR (Q-RT-PCR) following transduction of target cells with the vector used in the clinical trial. Transcriptional profiling was also performed for residual Amp(R), and adenovirus E2A and E4. Although trace amounts of DNA impurities were present in the clinical vector, transcription of these sequences was not detected after transduction of human hepatocytes, nor in mice administered a dose 26-fold above the highest dose administered in the clinical study. Two methods used to minimize encapsidated DNA impurities in the clinical vector were: (i) a vector (cis) production plasmid with a backbone exceeding the packaging limit of AAV; and (ii) a vector purification step that achieved separation of the vector from vector-related impurities (e.g., empty capsids). In conclusion, residual cap expression was undetectable following transduction with AAV2-hFIX clinical vectors. Preformed capsid protein is implicated as the source of epitopes recognized by CD8(+) T cells that eliminated vector-transduced cells in the clinical study.
Related JoVE Video
A preclinical animal model to assess the effect of pre-existing immunity on AAV-mediated gene transfer.
Mol. Ther.
PUBLISHED: 04-14-2009
Show Abstract
Hide Abstract
Hepatic adeno-associated virus (AAV)-serotype 2-mediated gene transfer results in sustained transgene expression in experimental animals but not in human subjects. We hypothesized that loss of transgene expression in humans might be caused by immune memory mechanisms that become reactivated upon AAV vector transfer. Here, we tested the effect of immunological memory to AAV capsid on AAV-mediated gene transfer in a mouse model. Upon hepatic transfer of an AAV2 vector expressing human factor IX (hF.IX), mice immunized with adenovirus (Ad) vectors expressing AAV8 capsid before AAV2 transfer developed less circulating hF.IX and showed a gradual loss of hF.IX gene copies in liver cells as compared to control animals. This was not observed in mice immunized with an Ad vectors expressing AAV2 capsid before transfer of rAAV8-hF.IX vectors. The lower hF.IX expression was primarily linked to AAV-binding antibodies that lacked AAV-neutralizing activity in vitro rather than to AAV capsid-specific CD8(+) T cells.
Related JoVE Video
Mouse models of cystathionine beta-synthase deficiency reveal significant threshold effects of hyperhomocysteinemia.
FASEB J.
PUBLISHED: 04-02-2009
Show Abstract
Hide Abstract
Untreated cystathionine beta-synthase (CBS) deficiency in humans is characterized by extremely elevated plasma total homocysteine (tHcy>200 microM), with thrombosis as the major cause of morbidity. Treatment with vitamins and diet leads to a dramatic reduction in thrombotic events, even though patients often still have severe elevations in tHcy (>80 microM). To understand the difference between extreme and severe hyperhomocysteinemia, we have examined two mouse models of CBS deficiency: Tg-hCBS Cbs(-/-) mice, with a mean serum tHcy of 169 microM, and Tg-I278T Cbs(-/-) mice, with a mean tHcy of 296 microM. Only Tg-I278T Cbs(-/-) animals exhibited strong biological phenotypes, including facial alopecia, osteoporosis, endoplasmic reticulum (ER) stress in the liver and kidney, and a 20% reduction in mean survival time. Metabolic profiling of serum and liver reveals that Tg-I278T Cbs(-/-) mice have significantly elevated levels of free oxidized homocysteine but not protein-bound homocysteine in serum and elevation of all forms of homocysteine and S-adenosylhomocysteine in the liver compared to Tg-hCBS Cbs(-/-) mice. RNA profiling of livers indicate that Tg-I278T Cbs(-/-) and Tg-hCBS Cbs(-/-) mice have unique gene signatures, with minimal overlap. Our results indicate that there is a clear pathogenic threshold effect for tHcy and bring into question the idea that mild elevations in tHcy are directly pathogenic.
Related JoVE Video
Capsid antigen presentation flags human hepatocytes for destruction after transduction by adeno-associated viral vectors.
J. Clin. Invest.
PUBLISHED: 03-23-2009
Show Abstract
Hide Abstract
Adeno-associated virus (AAV) vectors are effective gene delivery vehicles mediating long-lasting transgene expression. Data from a clinical trial of AAV2-mediated hepatic transfer of the Factor IX gene (F9) into hemophilia B subjects suggests that CTL responses against AAV capsid can eliminate transduced hepatocytes and prevent long-term F9 expression. However, the capacity of hepatocytes to present AAV capsid-derived antigens has not been formally demonstrated, nor whether transduction by AAV sensitizes hepatocytes for CTL-mediated destruction. To investigate the fate of capsids after transduction, we engineered a soluble TCR for the detection of capsid-derived peptide:MHC I (pMHC) complexes. TCR multimers exhibited antigen and HLA specificity and possessed high binding affinity for cognate pMHC complexes. With this reagent, capsid pMHC complexes were detectable by confocal microscopy following AAV-mediated transduction of human hepatocytes. Although antigen presentation was modest, it was sufficient to flag transduced cells for CTL-mediated lysis in an in vitro killing assay. Destruction of hepatocytes was inhibited by soluble TCR, demonstrating a possible application for this reagent in blocking undesirable CTL responses. Together, these studies provide a mechanism for the loss of transgene expression and transient elevations in aminotransferases following AAV-mediated hepatic gene transfer in humans and a potential therapeutic intervention to abrogate these limitations imposed by the host T cell response.
Related JoVE Video
Protein replacement therapy and gene transfer in canine models of hemophilia A, hemophilia B, von willebrand disease, and factor VII deficiency.
ILAR J
PUBLISHED: 03-19-2009
Show Abstract
Hide Abstract
Dogs with hemophilia A, hemophilia B, von Willebrand disease (VWD), and factor VII deficiency faithfully recapitulate the severe bleeding phenotype that occurs in humans with these disorders. The first rational approach to diagnosing these bleeding disorders became possible with the development of reliable assays in the 1940s through research that used these dogs. For the next 60 years, treatment consisted of replacement of the associated missing or dysfunctional protein, first with plasma-derived products and subsequently with recombinant products. Research has consistently shown that replacement products that are safe and efficacious in these dogs prove to be safe and efficacious in humans. But these highly effective products require repeated administration and are limited in supply and expensive; in addition, plasma-derived products have transmitted bloodborne pathogens. Recombinant proteins have all but eliminated inadvertent transmission of bloodborne pathogens, but the other limitations persist. Thus, gene therapy is an attractive alternative strategy in these monogenic disorders and has been actively pursued since the early 1990s. To date, several modalities of gene transfer in canine hemophilia have proven to be safe, produced easily detectable levels of transgene products in plasma that have persisted for years in association with reduced bleeding, and correctly predicted the vector dose required in a human hemophilia B liver-based trial. Very recently, however, researchers have identified an immune response to adeno-associated viral gene transfer vector capsid proteins in a human liver-based trial that was not present in preclinical testing in rodents, dogs, or nonhuman primates. This article provides a review of the strengths and limitations of canine hemophilia, VWD, and factor VII deficiency models and of their historical and current role in the development of improved therapy for humans with these inherited bleeding disorders.
Related JoVE Video
Host and vector-dependent effects on the risk of germline transmission of AAV vectors.
Mol. Ther.
PUBLISHED: 03-17-2009
Show Abstract
Hide Abstract
The assessment of the risk of germline transmission of vector-coded sequences is critical for clinical translation of gene transfer strategies. We used rabbit models to analyze the risk of germline transmission of adeno-associated viral (AAV) vectors. Intravenous injection of AAV-2 or AAV-8 resulted in liver-mediated, long-term expression of therapeutic levels of human factor IX (hFIX) in a dose-dependent manner. In high-dose cohorts, AAV-8 resulted in twofold higher levels of circulating hFIX and of vector DNA in liver compared to AAV-2. Vector sequences were found in the semen of all rabbits. The kinetics of vector clearance from semen was dose- and time-dependent but serotype-independent. No late recurrence of AAV-8 sequences was found in the semen over several consecutive cycles of spermatogenesis. In a novel rabbit model, AAV-2 or AAV-8 sequences were detected in the semen of vasectomized animals that lack germ cells. Therefore, structures of the genitourinary (GU) tract, as well as the testis, contribute significantly to vector shedding in the semen. Collectively, data from these two models suggest that the risk of inadvertent germline transmission in males by AAV-8 vectors is low, similar to that of AAV-2, and that AAV dissemination to the semen is in part modulated by host-dependent factors.
Related JoVE Video
Long-term correction of inhibitor-prone hemophilia B dogs treated with liver-directed AAV2-mediated factor IX gene therapy.
Blood
PUBLISHED: 02-10-2009
Show Abstract
Hide Abstract
Preclinical studies and initial clinical trials have documented the feasibility of adenoassociated virus (AAV)-mediated gene therapy for hemophilia B. In an 8-year study, inhibitor-prone hemophilia B dogs (n = 2) treated with liver-directed AAV2 factor IX (FIX) gene therapy did not have a single bleed requiring FIX replacement, whereas dogs undergoing muscle-directed gene therapy (n = 3) had a bleed frequency similar to untreated FIX-deficient dogs. Coagulation tests (whole blood clotting time [WBCT], activated clotting time [ACT], and activated partial thromboplastin time [aPTT]) have remained at the upper limits of the normal ranges in the 2 dogs that received liver-directed gene therapy. The FIX activity has remained stable between 4% and 10% in both liver-treated dogs, but is undetectable in the dogs undergoing muscle-directed gene transfer. Integration site analysis by linear amplification-mediated polymerase chain reaction (LAM-PCR) suggested the vector sequences have persisted predominantly in extrachromosomal form. Complete blood count (CBC), serum chemistries, bile acid profile, hepatic magnetic resonance imaging (MRI) and computed tomography (CT) scans, and liver biopsy were normal with no evidence for tumor formation. AAV-mediated liver-directed gene therapy corrected the hemophilia phenotype without toxicity or inhibitor development in the inhibitor-prone null mutation dogs for more than 8 years.
Related JoVE Video
Enhanced factor VIII heavy chain for gene therapy of hemophilia A.
Mol. Ther.
PUBLISHED: 01-06-2009
Show Abstract
Hide Abstract
Hemophilia A gene therapy using recombinant adenovirus-associated virus (AAV) vectors has been hampered by the size of the factor VIII (FVIII) cDNA. Previously, splitting the FVIII coding sequence into a heavy-chain (HC) fragment and a light-chain (LC) fragment for dual recombinant AAV vector delivery has been successfully explored. However, the main disadvantage of this approach is a "chain imbalance" problem in which LC secretion is approximately 1-2 logs higher than that of HC, and therefore, the majority of protein synthesized is nonfunctional. To improve HC secretion, we constructed alternate FVIII HCs based on our observation that LC facilitates HC secretion. To our surprise, most of the new HC molecules exhibited enhanced expression over the traditional HC molecule (HC(745)). The optimized HC mutein, HC(HL), including additional acidic-region-3 (ar3) sequences, exhibited three- to fivefold higher activity in both enzyme-linked immunosorbent assay (ELISA) and activated partial thromboplastin time (aPTT) assay in in vitro testing. Further characterization suggested ar3 sequences increased HC secretion, rather than promoting HC synthesis. Intravenous delivery of AAV8-HC(HL)+AAV8-LC or AAV8-HC(745)+AAV8-LC achieved phenotypic correction in hemophilia A mice. Mice receiving AAV8-HC(HL)+AAV8-LC achieved three- to fourfold higher HC expression than AAV8-HC(745)+AAV8-LC, consistent with the FVIII functional assays. HC(HL) should be substituted for HC(745) in a dual AAV vector strategy due to its enhanced expression.
Related JoVE Video
The gene therapy journey for hemophilia: are we there yet?
Hematology Am Soc Hematol Educ Program
Show Abstract
Hide Abstract
Since the isolation and characterization of the genes for FVIII and FIX some 30 years ago, a longstanding goal of the field has been development of successful gene therapy for the hemophilias. In a landmark study published in 2011, Nathwani et al demonstrated successful conversion of severe hemophilia B to mild or moderate disease in 6 adult males who underwent intravenous infusion of an adeno-associated viral (AAV) vector expressing factor IX. These 6 subjects have now exhibited expression of FIX at levels ranging from 1% to 6% of normal for periods of > 2 years. This review discusses obstacles that were overcome to reach this goal and the next steps in clinical investigation. Safety issues that will need to be addressed before more widespread use of this approach are discussed. Efforts to extend AAV-mediated gene therapy to hemophilia A, and alternate approaches that may be useful for persons with severe liver disease, who may not be candidates for gene transfer to liver, are also discussed.
Related JoVE Video
In vitro and in vivo studies of IgG-derived Treg epitopes (Tregitopes): a promising new tool for tolerance induction and treatment of autoimmunity.
J. Clin. Immunol.
Show Abstract
Hide Abstract
Tregitopes are regulatory T cell epitopes derived from immunoglobulin G (IgG) that stimulate CD25(+) FoxP3(+) T cells to expand. In conjunction with these Tregs, Tregitopes can prevent, treat, and even cure autoimmune disease in mouse models, suppress allo-specific responses in murine transplant models, inhibit CD8(+) T cell responses to recombinant adeno-associated virus (AAV) gene transfer vectors, and induce adaptive Tregs in DO11.10 mice. In this review of recent Tregitope studies, we summarize their effects in vitro and describe recent comparisons between intravenous IgG (IVIG) and Tregitopes in standard in vivo immune tolerance models. Further investigations of the mechanism of action of Tregitopes in the preclinical models described here will lead to clinical trials where Tregitopes may have the potential to alter the treatment of autoimmune disease, transplantation, and allergy, and to improve the efficiency of gene and protein replacement therapies.
Related JoVE Video
The efficacy and the risk of immunogenicity of FIX Padua (R338L) in hemophilia B dogs treated by AAV muscle gene therapy.
Blood
Show Abstract
Hide Abstract
Studies on gene therapy for hemophilia B (HB) using adeno-associated viral (AAV) vectors showed that the safety of a given strategy is directly related to the vector dose. To overcome this limitation, we sought to test the efficacy and the risk of immunogenicity of a novel factor IX (FIX) R338L associated with ? 8-fold increased specific activity. Muscle-directed expression of canine FIX-R338L by AAV vectors was carried out in HB dogs. Therapeutic levels of circulating canine FIX activity (3.5%-8%) showed 8- to 9-fold increased specific activity, similar to humans with FIX-R338L. Phenotypic improvement was documented by the lack of bleeding episodes for a cumulative 5-year observation. No antibody formation and T-cell responses to FIX-R338L were observed, even on challenges with FIX wild-type protein. Moreover, no adverse vascular thrombotic complications were noted. Thus, FIX-R338L provides an attractive strategy to safely enhance the efficacy of gene therapy for HB.
Related JoVE Video
The gene therapy journey for hemophilia: are we there yet?
Blood
Show Abstract
Hide Abstract
Since the isolation and characterization of the genes for FVIII and FIX some 30 years ago, a longstanding goal of the field has been development of successful gene therapy for the hemophilias. In a landmark study published in 2011, Nathwani et al demonstrated successful conversion of severe hemophilia B to mild or moderate disease in 6 adult males who underwent intravenous infusion of an adeno-associated viral (AAV) vector expressing factor IX. These 6 subjects have now exhibited expression of FIX at levels ranging from 1% to 6% of normal for periods of > 2 years. This review discusses obstacles that were overcome to reach this goal and the next steps in clinical investigation. Safety issues that will need to be addressed before more widespread use of this approach are discussed. Efforts to extend AAV-mediated gene therapy to hemophilia A, and alternate approaches that may be useful for persons with severe liver disease, who may not be candidates for gene transfer to liver, are also discussed.
Related JoVE Video
Safe, long-term hepatic expression of anti-HCV shRNA in a nonhuman primate model.
Mol. Ther.
Show Abstract
Hide Abstract
The hepatitis C virus (HCV) chronically infects 2% of the world population and effective treatment is limited by long duration and significant side-effects. Here, we describe a novel drug, intended as a "single-shot " therapy, which expresses three short hairpin RNAs (shRNAs) that simultaneously target multiple conserved regions of the HCV genome as confirmed in vitro by knockdown of an HCV replicon system. Using a recombinant adeno-associated virus (AAV) serotype 8 vector for delivery, comprehensive transduction of hepatocytes was achieved in vivo in a nonhuman primate (NHP) model following a single intravenous injection. However, dose ranging studies performed in 13 NHP resulted in high-expression levels of shRNA from wild-type (wt) Pol III promoters and dose-dependent hepatocellular toxicity, the first demonstration of shRNA-related toxicity in primates, establishing that the hepatotoxicity arises from highly conserved features of the RNA interference (RNAi) pathway. In the second generation drug, each promoter was re-engineered to reduce shRNA transcription to levels that circumvent toxicity but still inhibit replicon activity. In vivo testing of this modified construct in 18 NHPs showed conservation of hepatocyte transduction but complete elimination of hepatotoxicity, even with sustained shRNA expression for 50 days. These data support progression to a clinical study for treatment of HCV infection.
Related JoVE Video
Pharmacological modulation of humoral immunity in a nonhuman primate model of AAV gene transfer for hemophilia B.
Mol. Ther.
Show Abstract
Hide Abstract
Liver gene transfer for hemophilia B has shown very promising results in recent clinical studies. A potential complication of gene-based treatments for hemophilia and other inherited disorders, however, is the development of neutralizing antibodies (NAb) against the therapeutic transgene. The risk of developing NAb to the coagulation factor IX (F.IX) transgene product following adeno-associated virus (AAV)-mediated hepatic gene transfer for hemophilia is small but not absent, as formation of inhibitory antibodies to F.IX is observed in experimental animals following liver gene transfer. Thus, strategies to modulate antitransgene NAb responses are needed. Here, we used the anti-B cell monoclonal antibody rituximab (rtx) in combination with cyclosporine A (CsA) to eradicate anti-human F.IX NAb in rhesus macaques previously injected intravenously with AAV8 vectors expressing human F.IX. A short course of immunosuppression (IS) resulted in eradication of anti-F.IX NAb with restoration of plasma F.IX transgene product detection. In one animal, following IS anti-AAV6 antibodies also dropped below detection, allowing for successful AAV vector readministration and resulting in high levels (60% or normal) of F.IX transgene product in plasma. Though the number of animals is small, this study supports for the safety and efficacy of B cell-targeting therapies to eradicate NAb developed following AAV-mediated gene transfer.
Related JoVE Video
AAV2 gene therapy readministration in three adults with congenital blindness.
Sci Transl Med
Show Abstract
Hide Abstract
Demonstration of safe and stable reversal of blindness after a single unilateral subretinal injection of a recombinant adeno-associated virus (AAV) carrying the RPE65 gene (AAV2-hRPE65v2) prompted us to determine whether it was possible to obtain additional benefit through a second administration of the AAV vector to the contralateral eye. Readministration of vector to the second eye was carried out in three adults with Leber congenital amaurosis due to mutations in the RPE65 gene 1.7 to 3.3 years after they had received their initial subretinal injection of AAV2-hRPE65v2. Results (through 6 months) including evaluations of immune response, retinal and visual function testing, and functional magnetic resonance imaging indicate that readministration is both safe and efficacious after previous exposure to AAV2-hRPE65v2.
Related JoVE Video
Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer.
Blood
Show Abstract
Hide Abstract
In previous work we transferred a human factor IX-encoding adeno-associated viral vector (AAV) into skeletal muscle of men with severe hemophilia B. Biopsy of injected muscle up to 1 year after vector injection showed evidence of gene transfer by Southern blot and of protein expression by IHC and immunofluorescent staining. Although the procedure appeared safe, circulating F.IX levels remained subtherapeutic (< 1%). Recently, we obtained muscle tissue from a subject injected 10 years earlier who died of causes unrelated to gene transfer. Using Western blot, IHC, and immunofluorescent staining, we show persistent factor IX expression in injected muscle tissue. F.IX transcripts were detected in injected skeletal muscle using RT-PCR, and isolated whole genomic DNA tested positive for the presence of the transferred AAV vector sequence. This is the longest reported transgene expression to date from a parenterally administered AAV vector, with broad implications for the future of muscle-directed gene transfer.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.