JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Characterization of ectopic colonies that form in widespread areas of the nervous system with neural stem cell transplants into the site of a severe spinal cord injury.
J. Neurosci.
PUBLISHED: 10-17-2014
Show Abstract
Hide Abstract
We reported previously the formation of ectopic colonies in widespread areas of the nervous system after transplantation of fetal neural stem cells (NSCs) into spinal cord transection sites. Here, we characterize the incidence, distribution, and cellular composition of the colonies. NSCs harvested from E14 spinal cords from rats that express GFP were treated with a growth factor cocktail and grafted into the site of a complete spinal cord transection. Two months after transplant, spinal cord and brain tissue were analyzed histologically. Ectopic colonies were found at long distances from the transplant in the central canal of the spinal cord, the surface of the brainstem and spinal cord, and in the fourth ventricle. Colonies were present in 50% of the rats, and most rats had multiple colonies. Axons extended from the colonies into the host CNS. Colonies were strongly positive for nestin, a marker for neural precursors, and contained NeuN-positive cells with processes resembling dendrites, GFAP-positive astrocytes, APC/CC1-positive oligodendrocytes, and Ki-67-positive cells, indicating ongoing proliferation. Stereological analyses revealed an estimated 21,818 cells in a colony in the fourth ventricle, of which 1005 (5%) were Ki-67 positive. Immunostaining for synaptic markers (synaptophysin and VGluT-1) revealed large numbers of synaptophysin-positive puncta within the colonies but fewer VGluT-1 puncta. Continuing expansion of NSC-derived cell masses in confined spaces in the spinal cord and brain could produce symptoms attributable to compression of nearby tissue. It remains to be determined whether other cell types with self-renewing potential can also form colonies.
Related JoVE Video
A re-assessment of long distance growth and connectivity of neural stem cells after severe spinal cord injury.
Exp. Neurol.
PUBLISHED: 04-06-2014
Show Abstract
Hide Abstract
As part of the NIH "Facilities of Research Excellence-Spinal Cord Injury" project to support independent replication, we repeated key parts of a study reporting robust engraftment of neural stem cells (NSCs) treated with growth factors after complete spinal cord transection in rats. Rats (n=20) received complete transections at thoracic level 3 (T3) and 2weeks later received NSC transplants in a fibrin matrix with a growth factor cocktail using 2 different transplantation methods (with and without removal of scar tissue). Control rats (n=9) received transections only. Hindlimb locomotor function was assessed with the BBB scale. Nine weeks post injury, reticulospinal tract axons were traced in 6 rats by injecting BDA into the reticular formation. Transplants grew to fill the lesion cavity in most rats although grafts made with scar tissue removal had large central cavities. Grafts blended extensively with host tissue obliterating the astroglial boundary at the cut ends, but in most cases there was a well-defined partition within the graft that separated rostral and caudal parts of the graft. In some cases, the partition contained non-neuronal scar tissue. There was extensive outgrowth of GFP labeled axons from the graft, but there was minimal ingrowth of host axons into the graft revealed by tract tracing and immunocytochemistry for 5HT. There were no statistically significant differences between transplant and control groups in the degree of locomotor recovery. Our results confirm the previous report that NSC transplants can fill lesion cavities and robustly extend axons, but reveal that most grafts do not create a continuous bridge of neural tissue between rostral and caudal segments.
Related JoVE Video
Calcium channel ?2?1 proteins mediate trigeminal neuropathic pain states associated with aberrant excitatory synaptogenesis.
J. Biol. Chem.
PUBLISHED: 01-23-2014
Show Abstract
Hide Abstract
To investigate a potential mechanism underlying trigeminal nerve injury-induced orofacial hypersensitivity, we used a rat model of chronic constriction injury to the infraorbital nerve (CCI-ION) to study whether CCI-ION caused calcium channel ?2?1 (Cav?2?1) protein dysregulation in trigeminal ganglia and associated spinal subnucleus caudalis and C1/C2 cervical dorsal spinal cord (Vc/C2). Furthermore, we studied whether this neuroplasticity contributed to spinal neuron sensitization and neuropathic pain states. CCI-ION caused orofacial hypersensitivity that correlated with Cav?2?1 up-regulation in trigeminal ganglion neurons and Vc/C2. Blocking Cav?2?1 with gabapentin, a ligand for the Cav?2?1 proteins, or Cav?2?1 antisense oligodeoxynucleotides led to a reversal of orofacial hypersensitivity, supporting an important role of Cav?2?1 in orofacial pain processing. Importantly, increased Cav?2?1 in Vc/C2 superficial dorsal horn was associated with increased excitatory synaptogenesis and increased frequency, but not the amplitude, of miniature excitatory postsynaptic currents in dorsal horn neurons that could be blocked by gabapentin. Thus, CCI-ION-induced Cav?2?1 up-regulation may contribute to orofacial neuropathic pain states through abnormal excitatory synapse formation and enhanced presynaptic excitatory neurotransmitter release in Vc/C2.
Related JoVE Video
A re-assessment of treatment with a tyrosine kinase inhibitor (imatinib) on tissue sparing and functional recovery after spinal cord injury.
Exp. Neurol.
PUBLISHED: 01-16-2014
Show Abstract
Hide Abstract
This study was undertaken as part of the NIH "Facilities of Research Excellence-Spinal Cord Injury" project to support independent replication of published studies. Here, we repeat key parts of a study reporting that rats treated with imatinib (Gleevec®, Novartis) after spinal cord contusion injury exhibited enhanced bladder function, greater recovery of motor function, and increased tissue sparing. Young adult female SCA Sprague-Dawley rats received moderate contusion injuries at T9-T10 using the MASCIS weight drop device. One group (n=16) received oral doses of imatinib 30min after injury and then daily doses for 5days. A control group (n=18) received vehicle. Motor function was assessed with the BBB locomotor rating scale and a contact plantar placement task. Bladder function was assessed by measuring the amount of urine retained in the bladder. Tissue preservation was assessed by immunostaining and stereological analysis. Rats that received imatinib had lower volumes of retained urine, suggesting improved bladder function, but there were no significant differences in motor function on any of the other tasks. Tissue preservation was assessed by immunostaining and stereological analysis. Quantitative analysis of spared tissue, cyst size, spared white matter, and inflammatory cell invasion revealed no significant differences between imatinib treated and control rats. Taken together our results confirm the findings that treatment with imatinib improves bladder function after SCI but fail to replicate findings of improved motor function, enhanced tissue sparing, and decreased inflammatory cell invasion.
Related JoVE Video
Effect of Overground Training Augmented By Mental Practice On Gait Velocity in Chronic, Incomplete Spinal Cord Injury.
Arch Phys Med Rehabil
PUBLISHED: 11-22-2013
Show Abstract
Hide Abstract
To compare efficacy of a regimen combining mental practice (MP) with overground training with the efficacy of a regimen comprised of overground training only on gait velocity and lower extremity motor outcomes in individuals with chronic (> 12 months post injury), incomplete, spinal cord injury (SCI).
Related JoVE Video
Effort, performance, and motivation: Insights from robot-assisted training of human golf putting and rat grip strength.
IEEE Int Conf Rehabil Robot
PUBLISHED: 11-05-2013
Show Abstract
Hide Abstract
Robotic devices can modulate success rates and required effort levels during motor training, but it is unclear how this affects performance gains and motivation. Here we present results from training unimpaired humans in a virtual golf-putting task, and training spinal cord injured (SCI) rats in a grip strength task using robotically modulated success rates and effort levels. Robotic assistance in golf practice increased trainees feelings of competence, and, paradoxically, increased their sense effort, even though it had mixed effects on learning. Reducing effort during a grip strength training task led rats with SCI to practice the task more frequently. However, the more frequent practice of these rats did not cause them to exceed the strength gains achieved by rats that exercised less often at higher required effort levels. These results show that increasing success and decreasing effort with robots increases motivation, but has mixed effects on performance gains.
Related JoVE Video
Targeted engagement of a dorsal premotor circuit in the treatment of post-stroke paresis.
NeuroRehabilitation
PUBLISHED: 08-17-2013
Show Abstract
Hide Abstract
Good motor outcome after stroke has been found to correlate with increased activity in a dorsal premotor (PMd) brain circuit, suggesting that therapeutic strategies targeting this circuit might have a favorable, causal influence on motor status.
Related JoVE Video
A re-assessment of the effects of treatment with a non-steroidal anti-inflammatory (ibuprofen) on promoting axon regeneration via RhoA inhibition after spinal cord injury.
Exp. Neurol.
PUBLISHED: 05-14-2013
Show Abstract
Hide Abstract
This study was undertaken as part of the NIH "Facilities of Research Excellence-Spinal Cord Injury" project to support independent replication of published studies. Here, we repeat key parts of a study reporting that rats treated with ibuprofen via subcutaneous minipump exhibited greater recovery of motor function and enhanced axonal growth after spinal cord injury. We carried out 3 separate experiments in which young adult female Sprague-Dawley rats received dorsal over-hemisections at T6-T7, and then were implanted with osmotic minipumps for subcutaneous delivery of ibuprofen or saline. Motor function was assessed with the BBB Locomotor Rating Scale, footprint analysis, and with a grid walk task. Combined group sizes for functional analyses were n=34 rats treated with ibuprofen and n=39 controls. Bladder function was assessed by measuring the amount of urine retained in the bladder twice per day. Four weeks post-injury, CST axons were traced by injecting BDA into the sensorimotor cortex; 5HT axons were assessed by immunostaining. Analysis of data from all rats revealed no significant differences between groups. Analysis of data excluding rats with lesions that were larger than intended indicated improved locomotor function in ibuprofen-treated rats at early post-lesion intervals in one of the individual experiments. Rats that received Ibuprofen did not demonstrate statistically significant improvements in bladder function. Quantitative analyses of CST and 5HT axon distribution also did not reveal differences between ibuprofen-treated and control rats. Taken together, our results only partially replicate the findings that treatment with ibuprofen improves motor function after SCI but fail to replicate findings regarding enhanced axon growth.
Related JoVE Video
A re-assessment of the effects of intracortical delivery of inosine on transmidline growth of corticospinal tract axons after unilateral lesions of the medullary pyramid.
Exp. Neurol.
PUBLISHED: 07-13-2011
Show Abstract
Hide Abstract
This study was undertaken as part of the NIH "Facilities of Research Excellence-Spinal Cord Injury", which supports independent replication of published studies. Here, we repeat an experiment reporting that intracortical delivery of inosine promoted trans-midline growth of corticospinal tract (CST) axons in the spinal cord after unilateral injury to the medullary pyramid. Rats received unilateral transections of the medullary pyramid and 1 day later, a cannula assembly was implanted into the sensorimotor cortex contralateral to the pyramidotomy to deliver either inosine or vehicle. The cannula assembly was attached to an osmotic minipump that was implanted sub-cutaneously. Seventeen or 18 days post-injury, the CST was traced by making multiple injections of miniruby-BDA into the sensorimotor cortex. Rats were killed for tract tracing 14 days after the BDA injections. Sections through the cervical spinal cord were stained for BDA and immunostained for GAP43 and GFAP. Our results revealed no evidence for enhanced growth of CST axons across the midline of the dorsal column in rats that received intracortical infusion of inosine. Possible reasons for the failure to replicate are discussed.
Related JoVE Video
A re-assessment of the effects of treatment with an epidermal growth factor receptor (EGFR) inhibitor on recovery of bladder and locomotor function following thoracic spinal cord injury in rats.
Exp. Neurol.
PUBLISHED: 03-23-2011
Show Abstract
Hide Abstract
This study was undertaken as part of the NIH "Facilities of Research Excellence-Spinal Cord Injury" project to support independent replication of published studies. Here, we repeat an experiment in which rats that received an inhibitor of the epidermal growth factor receptor (EGFR) exhibited greater sparing/recovery of bladder and motor function and enhanced sparing at the lesion site after contusion injuries at the thoracic level. Young adult female Sprague-Dawley rats received moderate contusions with the NYU impactor (10 g from 12.5 mm, 2 mm rod diameter), and then were implanted with catheters attached to osmotic minipumps for intra-spinal delivery of either PD168393 dissolved in 5% DMSO and HBSS or vehicle alone. Motor function was assessed with the Basso, Beattie, and Bresnahan Locomotor Rating Scale (BBB) and with a grid walk task. Bladder function was assessed by measuring the amount of urine retained in the bladder. Tactile sensitivity was assessed using von Frey hairs and heat and cold sensitivity were assessed by testing hindlimb sensitivity to ethylchloride spray and a hotplate respectively. Rats that received PD168393 were more impaired on motor assessments and also showed greater bladder impairment (larger amounts of retained urine) than rats that received vehicle. These results thus fail to confirm previous studies reporting enhanced recovery following treatment with PD168393.
Related JoVE Video
Calcium channel alpha-2-delta-1 protein upregulation in dorsal spinal cord mediates spinal cord injury-induced neuropathic pain states.
Pain
PUBLISHED: 01-15-2011
Show Abstract
Hide Abstract
Spinal cord injury (SCI) commonly results in the development of neuropathic pain, which can dramatically impair the quality of life for SCI patients. SCI-induced neuropathic pain can be manifested as both tactile allodynia (a painful sensation to a non-noxious stimulus) and hyperalgesia (an enhanced sensation to a painful stimulus). The mechanisms underlying these pain states are poorly understood. Clinical studies have shown that gabapentin, a drug that binds to the voltage-gated calcium channel alpha-2-delta-1 subunit (Ca(v)?2?-1) proteins is effective in the management of SCI-induced neuropathic pain. Accordingly, we hypothesized that tactile allodynia post SCI is mediated by an upregulation of Ca(v)?2?-1 in dorsal spinal cord. To test this hypothesis, we examined whether SCI-induced dysregulation of spinal Ca(v)?2?-1 plays a contributory role in below-level allodynia development in a rat spinal T9 contusion injury model. We found that Ca(v)?2?-1 expression levels were significantly increased in L4-6 dorsal, but not ventral, spinal cord of SCI rats that correlated with tactile allodynia development in the hind paw plantar surface. Furthermore, both intrathecal gabapentin treatment and blocking SCI-induced Ca(v)?2?-1 protein upregulation by intrathecal Ca(v)?2?-1 antisense oligodeoxynucleotides could reverse tactile allodynia in SCI rats. These findings support that SCI-induced Ca(v)?2?-1 upregulation in spinal dorsal horn is a key component in mediating below-level neuropathic pain states, and selectively targeting this pathway may provide effective pain relief for SCI patients. Spinal cord contusion injury caused increased calcium channel Ca(v)?2?-1 subunit expression in dorsal spinal cord that contributes to neuropathic pain states.
Related JoVE Video
A re-assessment of a combinatorial treatment involving Schwann cell transplants and elevation of cyclic AMP on recovery of motor function following thoracic spinal cord injury in rats.
Exp. Neurol.
PUBLISHED: 09-23-2010
Show Abstract
Hide Abstract
This study was undertaken as part of the NIH "Facilities of Research-Spinal Cord Injury" project to support independent replication of published studies. Here, we repeated a study reporting that a combinatorial treatment with transplants of Schwann cells, systemic delivery of Rolipram to enhance cyclic AMP levels, and intra-spinal injections of dibutyryl cyclic AMP enhanced locomotor recovery in rats after contusion injuries at the thoracic level. We compared the following experimental groups: 1) rats that received Schwann cell transplants, systemic Rolipram, and injections of db-cyclic AMP (the combined treatment group that showed the greatest improvement in function); 2) rats that received Schwann cell transplants only and implantation of empty pumps as control; 3) rats that received Rolipram only and implantation of empty pumps as control, and 4) control rats that received no treatment other than the injection of DMEM into the spinal cord and implantation of empty pumps. The principal findings reported in Pearse et al. were not replicated in that the combined treatment group did not exhibit greater recovery on any of the measures, although the group that received Schwann cells only did exhibit enhanced recovery on several of the outcome measures. The failure of the combined treatment may be due in part to less successful engraftment of Schwann cells in our study vs. Pearse et al. Issues relating to failures to replicate, especially when effect size is small, are discussed.
Related JoVE Video
Bilateral cervical contusion spinal cord injury in rats.
Exp. Neurol.
PUBLISHED: 06-03-2009
Show Abstract
Hide Abstract
There is increasing motivation to develop clinically relevant experimental models for cervical SCI in rodents and techniques to assess deficits in forelimb function. Here we describe a bilateral cervical contusion model in rats. Female Sprague-Dawley rats received mild or moderate cervical contusion injuries (using the Infinite Horizons device) at C5, C6, or C7/8. Forelimb motor function was assessed using a grip strength meter (GSM); sensory function was assessed by the von Frey hair test; the integrity of the corticospinal tract (CST) was assessed by biotinylated dextran amine (BDA) tract tracing. Mild contusions caused primarily dorsal column (DC) and gray matter (GM) damage while moderate contusions produced additional damage to lateral and ventral tissue. Forelimb and hindlimb function was severely impaired immediately post-injury, but all rats regained the ability to use their hindlimbs for locomotion. Gripping ability was abolished immediately after injury but recovered partially, depending upon the spinal level and severity of the injury. Rats exhibited a loss of sensation in both fore- and hindlimbs that partially recovered, and did not exhibit allodynia. Tract tracing revealed that the main contingent of CST axons in the DC was completely interrupted in all but one animal whereas the dorsolateral CST (dlCST) was partially spared, and dlCST axons gave rise to axons that arborized in the GM caudal to the injury. Our data demonstrate that rats can survive significant bilateral cervical contusion injuries at or below C5 and that forepaw gripping function recovers after mild injuries even when the main component of CST axons in the dorsal column is completely interrupted.
Related JoVE Video
A straight alley version of the BBB locomotor scale.
Exp. Neurol.
PUBLISHED: 02-20-2009
Show Abstract
Hide Abstract
We describe here an alternative procedure for assessing hindlimb locomotor function after spinal cord injury that uses the BBB scale, but tests animals in a reward-baited straight alley rather than an open field. Rats were trained to ambulate in a straight alley and habituated to the open field typically used for BBB open field testing. Three groups of rats were tested. Sprague-Dawley rats received either 200 kD (n=19) or 300 kD contusions (n=9) at T9 with the Infinite Horizon device. Fisher rats (n=8) received moderate contusions (12.5 mm) at T8 with the NYU impactor. BBB scores were assessed at different post-injury intervals in the open field and the straight alley, and scores were compared by correlation analyses. BBB scores in the open field vs. the straight alley were highly correlated (r=0.90), validating the use of the straight alley for locomotor assessment. Rats exhibited a larger number of bouts of continuous steps in the straight alley vs. the open field (termed passes), providing more opportunities to score hindlimb use and coordination over the 4 min testing interval. Comparisons of scores across days revealed higher day-to-day correlations in the straight alley vs. the open field (r(2) values of 0.90 and 0.74 for the straight alley and open field respectively), revealing that the straight alley yielded more reliable scores.
Related JoVE Video
Forelimb locomotor assessment scale (FLAS): novel assessment of forelimb dysfunction after cervical spinal cord injury.
Exp. Neurol.
PUBLISHED: 01-30-2009
Show Abstract
Hide Abstract
We describe here a novel forelimb locomotor assessment scale (FLAS) that assesses forelimb use during locomotion in rats injured at the cervical level. A quantitative scale was developed that measures movements of shoulder, elbow, and wrist joints, forepaw position and digit placement, forelimb-hindlimb coordination, compensatory behaviors adopted while walking, and balance. Female Sprague-Dawley rats received graded cervical contusions ranging from 200 to 230 ("mild," n=11) and 250-290 kdyn ("moderate," n=13) between C5 and C8. Rats were videotaped post-injury as they walked along an alley to determine deficits and recovery of forelimb function. Recovery of shoulder and elbow joint movement occurred rapidly (within 1-7 days post-injury), whereas recovery of wrist joint movement was slower and more variable. Most rats in all groups displayed persistent deficits in forepaw and digit movement, but developed compensatory behaviors to allow functional forward locomotion within 1-2 weeks post-injury. Recovery of forelimb function as measured by the FLAS reached a plateau by 3 weeks post-injury in all groups. Rats with mild contusions displayed greater locomotor recovery than rats with moderate contusions, but exhibited persistent deficits compared to sham controls. Reliability was tested by having seven raters (three internal, four external) from different laboratories, independently and blindly score videos of all rats. The multivariate correlation between all raters, all animals, and all time points ranged from r(2)=0.88-0.96 (p<0.0001), indicating a high inter-rater reliability. Thus, the FLAS is a simple, inexpensive, sensitive, and reliable measure of forelimb function during locomotion following cervical SCI.
Related JoVE Video
Thrombospondin-4 contributes to spinal sensitization and neuropathic pain states.
J. Neurosci.
Show Abstract
Hide Abstract
Neuropathic pain is a common cause of pain after nerve injury, but its molecular basis is poorly understood. In a post-gene chip microarray effort to identify new target genes contributing to neuropathic pain development, we report here the characterization of a novel neuropathic pain contributor, thrombospondin-4 (TSP4), using a neuropathic pain model of spinal nerve ligation injury. TSP4 is mainly expressed in astrocytes and significantly upregulated in the injury side of dorsal spinal cord that correlates with the development of neuropathic pain states. TSP4 blockade by intrathecal antibodies, antisense oligodeoxynucleotides, or inactivation of the TSP4 gene reverses or prevents behavioral hypersensitivities. Intrathecal injection of TSP4 protein into naive rats is sufficient to enhance the frequency of EPSCs in spinal dorsal horn neurons, suggesting an increased excitatory presynaptic input, and to cause similar behavioral hypersensitivities. Together, these findings support that injury-induced spinal TSP4 may contribute to spinal presynaptic hypersensitivity and neuropathic pain states. Development of TSP4 antagonists has the therapeutic potential for target-specific neuropathic pain management.
Related JoVE Video
Salmon fibrin treatment of spinal cord injury promotes functional recovery and density of serotonergic innervation.
Exp. Neurol.
Show Abstract
Hide Abstract
The neural degeneration caused by spinal cord injury leaves a cavity at the injury site that greatly inhibits repair. One approach to promoting repair is to fill the cavity with a scaffold to limit further damage and encourage regrowth. Injectable materials are advantageous scaffolds because they can be placed as a liquid in the lesion site then form a solid in vivo that precisely matches the contours of the lesion. Fibrin is one type of injectable scaffold, but risk of infection from blood borne pathogens has limited its use. We investigated the potential utility of salmon fibrin as an injectable scaffold to treat spinal cord injury since it lacks mammalian infectious agents and encourages greater neuronal extension in vitro than mammalian fibrin or Matrigel®, another injectable material. Female rats received a T9 dorsal hemisection injury and were treated with either salmon or human fibrin at the time of injury while a third group served as untreated controls. Locomotor function was assessed using the BBB scale, bladder function was analyzed by measuring residual urine, and sensory responses were tested by mechanical stimulation (von Frey hairs). Histological analyses quantified the glial scar, lesion volume, and serotonergic fiber density. Rats that received salmon fibrin exhibited significantly improved recovery of both locomotor and bladder function and a greater density of serotonergic innervation caudal to the lesion site without exacerbation of pain. Rats treated with salmon fibrin also exhibited less autophagia than those treated with human fibrin, potentially pointing to amelioration of sensory dysfunction. Glial scar formation and lesion size did not differ significantly among groups. The pattern and timing of salmon fibrins effects suggest that it acts on neuronal populations but not by stimulating long tract regeneration. Salmon fibrin clearly has properties distinct from those of mammalian fibrin and is a beneficial injectable scaffold for treatment of spinal cord injury.
Related JoVE Video
A rat chronic pain model of spinal cord contusion injury.
Methods Mol. Biol.
Show Abstract
Hide Abstract
Spinal cord injury-induced pain is a common clinical problem affecting adversely the quality of daily lives of spinal cord injured patients. Management with current pain medications can only lead to partial pain relief in some spinal cord injured patients, which is usually associated with unfavorable side effects. Development of specific medications for spinal cord injury-induced pain states relies on identification of new targets and/or pathways that contribute to chronic pain development post injury. We describe here the generation of a spinal cord contusion injury model that mimics the etiology and phenotypes of chronic pain states in spinal cord injured patients. Therefore, this model can be a useful tool for studying spinal cord injury mechanisms, functional recovery, research, and development of new medications for better functional and symptomatic improvements, including pain management.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.