JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Origin of a novel regulatory module by duplication and degeneration of an ancient plant transcription factor.
Mol. Phylogenet. Evol.
PUBLISHED: 04-04-2014
Show Abstract
Hide Abstract
It is commonly believed that gene duplications provide the raw material for morphological evolution. Both the number of genes and size of gene families have increased during the diversification of land plants. Several small proteins that regulate transcription factors have recently been identified in plants, including the LITTLE ZIPPER (ZPR) proteins. ZPRs are post-translational negative regulators, via heterodimerization, of class III Homeodomain Leucine Zipper (C3HDZ) proteins that play a key role in directing plant form and growth. We show that ZPR genes originated as a duplication of a C3HDZ transcription factor paralog in the common ancestor of euphyllophytes (ferns and seed plants). The ZPRs evolved by degenerative mutations resulting in loss all of the C3HDZ functional domains, except the leucine zipper that modulates dimerization. ZPRs represent a novel regulatory module of the C3HDZ network unique to the euphyllophyte lineage, and their origin correlates to a period of rapid morphological changes and increased complexity in land plants. The origin of the ZPRs illustrates the significance of gene duplications in creating developmental complexity during land plant evolution that likely led to morphological evolution.
Related JoVE Video
Antimicrobial activity of Hibiscus sabdariffa aqueous extracts against Escherichia coli O157:H7 and Staphylococcus aureus in a microbiological medium and milk of various fat concentrations.
J. Food Prot.
PUBLISHED: 02-05-2014
Show Abstract
Hide Abstract
Hibiscus sabdariffa L. calyces are widely used in the preparation of beverages. The calyces contain compounds that exhibit antimicrobial activity, yet little research has been conducted on their possible use in food systems as antimicrobials. Aqueous extracts prepared from the brand "Mi Costenita" were sterilized by membrane filtration (0.22-?m pore size) or autoclaving (121 °C, 30 min) and tested for antimicrobial activity against the foodborne pathogens Escherichia coli O157:H7 strains ATCC 43894 and Cider and Staphylococcus aureus strains SA113 and ATCC 27708 in a microbiological medium and ultrahigh-temperature-processed milk with various fat percentages. Extracts heated by autoclaving exhibited greater activity than did filtered extracts in a microbiological medium. Against E. coli, results of 20 mg/ml filtered extract were not different from those of the control, whereas autoclaved extracts reduced viable cells ca. 3 to 4 log CFU/ml. At 60 mg/ml, both extracts inactivated cells after 24 h. There were reduced populations of both strains of S. aureus (ca. 2.7 and 3 log CFU/ml, respectively) after 24 h of incubation in 40 mg/ml filtered extracts. When grown in autoclaved extracts at 40 mg/ml, both strains of S. aureus were inactivated after 9 h. Autoclaved extracts had decreased anthocyanin content (2.63 mg/liter) compared with filtered extracts (14.27 mg/liter), whereas the phenolic content (48.7 and 53.8 mg/g) remained similar for both treatments. Autoclaved extracts were then tested for activity in milk at various fat concentrations (skim [<0.5%], 1%, 2%, and whole [>3.25%]) against a 1:1 mixture of the two strains of E. coli O157:H7 and a 1:1 mixture of the two strains of S. aureus. Extracts at 40 mg/ml inactivated S. aureus after 168 h in skim and whole milk, and E. coli was inactivated after 96 h in 60 mg/ml extract in all fat levels. These findings show the potential use of Hibiscus extracts to prevent the growth of pathogens in foods and beverages.
Related JoVE Video
Mega-nano detection of foodborne pathogens and transgenes using molecular beacon and semiconductor quantum dot technologies.
IEEE Trans Nanobioscience
PUBLISHED: 05-29-2013
Show Abstract
Hide Abstract
Signature molecules derived from Listeria monocytogenes, Bacillus thuringiensis, and Salmonella Typhimurium were detected directly on food substrates (mega) by coupling molecular beacon technology utilizing fluorescent resonance energy transfer (FRET), luminescent nanoscale semiconductor quantum dots, and nanoscale quenchers. We designed target DNA sequences for detecting hlyA, Bt cry1Ac, and invA genes from L. monocytogenes, B. thuringiensis and Salmonella Typhimurium, respectively, and prepared molecular beacons for specific targets for use in real-time monitoring. We successfully detected increased fluorescence in the presence of signature molecules at molecular beacon (MB) concentrations from 1.17 nM to 40 nM, depending upon system tested in (water, milk or plant leaves), respective target (hlyA, Bt cry1Ac, or invA) and genomic DNA target concentration (50-800 ng). We were able to detect bacterial genomic DNA derived from L. monocytogenes and Salmonella sp. in a food system, 2% milk ( > 20% of total volume). Furthermore, we infiltrated the Bt cry1Ac beacon in the presence of genomic DNA extracted from B. thuringiensis into Arabidopsis thaliana leaves and observed increased fluorescence in the presence of the target, indicating the ability to use these beacons in a plant system.
Related JoVE Video
Narrow terahertz attenuation signatures in Bacillus thuringiensis.
J Biophotonics
PUBLISHED: 03-12-2013
Show Abstract
Hide Abstract
Terahertz absorption signatures from culture-cultivated Bacillus thuringiensis were measured with a THz photomixing spectrometer operating from 400 to 1200 GHz. We observe two distinct signatures centered at ?955 and 1015 GHz, and attribute them to the optically coupled particle vibrational resonance (surface phonon-polariton) of Bacillus spores. This demonstrates the potential of the THz attenuation signatures as "fingerprints" for label-free biomolecular detection. (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
Related JoVE Video
Antimicrobial activity of Yerba Mate (Ilex paraguariensis) aqueous extracts against?Escherichia coli?O157:H7 and?Staphylococcus aureus.
J. Food Sci.
PUBLISHED: 07-05-2011
Show Abstract
Hide Abstract
Bioactive compounds from natural plant sources are becoming increasingly important to the food industry.?Ilex paraguariensis?is used in the preparation of a widely popular tea beverage (Yerba Mate) in the countries of Uruguay, Paraguay, Argentina, and Brazil. In this study, extracts of 4 brands of commercial tea, derived from the holly plant species,?Ilex paraguariensis, were evaluated for their ability to inhibit or inactivate bacterial foodborne pathogens. The ultimate goal was to evaluate potential use of the extracts in commercial applications. Dialyzed aqueous extracts were screened for antimicrobial activity against?Escherichia coli?O157:H7 and?Staphylococcus aureus.?S. aureus?was found to be the more sensitive to extracts than?E. coli?O157:H7. Minimum bactericidal concentrations (MBCs) were determined to be approximately 150 to 800 ?g/mL and 25 to 50 ?g/mL against?E. coli?O157:H7 and?S. aureus, respectively. A Uruguayan brand had reduced activity against?E. coli?O157:H7 compared to the Argentinean brands tested. It was concluded that Yerba Mate could be used as a potential antimicrobial in foods and beverages against these pathogenic bacteria.
Related JoVE Video
Aqueous extracts of yerba mate (Ilex paraguariensis) as a natural antimicrobial against Escherichia coli O157:H7 in a microbiological medium and pH 6.0 apple juice.
J. Food Prot.
Show Abstract
Hide Abstract
Ilex paraguariensis is popularly used in the preparation of a tea infusion (yerba mate), most commonly produced and consumed in the South American countries of Uruguay, Paraguay, Argentina, and Brazil. In this study, aqueous extracts of commercial tea, derived from the holly plant species I. paraguariensis were evaluated for their ability to inhibit or inactivate Escherichia coli O157:H7 in a microbiological medium and modified apple juice. Dialyzed, lyophilized aqueous extracts were screened for antimicrobial activity against E. coli O157:H7 strains ATCC 43894 and Cider in tryptic soy broth (TSB) and apple juice (adjusted to pH 6.0 to allow for growth of the bacterium). A mixture of the two strains was used as the inoculum when apple juice was used as the medium. MBCs were determined to be ca. 5 and 10 mg/ml for ATCC 43894 and Cider, respectively, in TSB. Higher concentrations of the extract were required to inactivate E. coli O157:H7 in pH-adjusted apple juice. An approximate 4.5-log reduction was observed for E. coli O157:H7 treated with 40 mg/ml extract. It was concluded that aqueous extracts from commercial yerba mate have potential to be used as antimicrobials in foods and beverages against pathogenic E. coli O157:H7.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.