JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Protein Hit1, a novel box C/D snoRNP assembly factor, controls cellular concentration of the scaffolding protein Rsa1 by direct interaction.
Nucleic Acids Res.
PUBLISHED: 08-28-2014
Show Abstract
Hide Abstract
Biogenesis of eukaryotic box C/D small nucleolar ribonucleoprotein particles (C/D snoRNPs) involves conserved trans-acting factors, which are proposed to facilitate the assembly of the core proteins Snu13p/15.5K, Nop58p/NOP58, Nop56p/NOP56 and Nop1p/Fibrillarin on box C/D small nucleolar RNAs (C/D snoRNAs). In yeast, protein Rsa1 acts as a platform, interacting with both the RNA-binding core protein Snu13 and protein Pih1 of the Hsp82-R2TP chaperone complex. In this work, a proteomic approach coupled with functional and structural studies identifies protein Hit1 as a novel Rsa1p-interacting partner involved in C/D snoRNP assembly. Hit1p contributes to in vivo C/D snoRNA stability and pre-RNA maturation kinetics. It associates with U3 snoRNA precursors and influences its 3'-end processing. Remarkably, Hit1p is required to maintain steady-state levels of Rsa1p. This stabilizing activity is likely to be general across eukaryotic species, as the human protein ZNHIT3(TRIP3) showing sequence homology with Hit1p regulates the abundance of NUFIP1, the Rsa1p functional homolog. The nuclear magnetic resonance solution structure of the Rsa1p317-352-Hit1p70-164 complex reveals a novel mode of protein-protein association explaining the strong stability of the Rsa1p-Hit1p complex. Our biochemical data show that C/D snoRNAs and the core protein Nop58 can interact with the purified Snu13p-Rsa1p-Hit1p heterotrimer.
Related JoVE Video
The Pih1-Tah1 cochaperone complex inhibits Hsp90 molecular chaperone ATPase activity.
J. Biol. Chem.
PUBLISHED: 07-27-2010
Show Abstract
Hide Abstract
Hsp90 (heat shock protein 90) is an ATP-dependent molecular chaperone regulated by collaborating proteins called cochaperones. This machinery is involved in the conformational activation of client proteins like signaling kinases, transcription factors, or ribonucleoproteins (RNP) such as telomerase. TPR (TetratricoPeptide Repeat)-containing protein associated with Hsp90 (Tah1) and protein interacting with Hsp90 (Pih1) have been identified in Saccharomyces cerevisiae as two Hsp90 cochaperones involved in chromatin remodeling complexes and small nucleolar RNP maturation. Tah1 possesses a minimal TPR domain and binds specifically to the Hsp90 C terminus, whereas Pih1 displays no homology to other protein motifs and has been involved in core RNP protein interaction. While Pih1 alone was unstable and was degraded from its N terminus, we showed that Pih1 and Tah1 form a stable heterodimeric complex that regulates Hsp90 ATPase activity. We used different biophysical approaches such as analytical ultracentrifugation, microcalorimetry, and noncovalent mass spectrometry to characterize the Pih1-Tah1 complex and its interaction with Hsp90. We showed that the Pih1-Tah1 heterodimer binds to Hsp90 with a similar affinity and the same stoichiometry as Tah1 alone. However, the Pih1-Tah1 complex antagonizes Tah1 activity on Hsp90 and inhibits the chaperone ATPase activity. We further identified the region within Pih1 responsible for interaction with Tah1 and inhibition of Hsp90, allowing us to suggest an interaction model for the Pih1-Tah1/Hsp90 complex. These results, together with previous reports, suggest a role for the Pih1-Tah1 cochaperone complex in the recruitment of client proteins such as core RNP proteins to Hsp90.
Related JoVE Video
3- to 5 DNA unwinding by TIP49b proteins.
FEBS J.
PUBLISHED: 06-18-2010
Show Abstract
Hide Abstract
TIP49b (reptin) is an essential eukaryotic AAA+ ATPase involved in a variety of cellular processes, such as chromatin remodeling during double-strand break repair, transcriptional regulation, control of cell proliferation and small nucleolar RNA biogenesis. How it acts at the molecular level remains largely unknown. In the present study, we show that both human TIP49b and its yeast orthologue, Rvb2p, cooperatively bind single-stranded DNA as monomers. Binding stimulates a slow ATPase activity and supports a 3- to 5 DNA unwinding activity that requires a 3-protruding tail >or= 30 nucleotides. The data obtained indicate that DNA unwinding of 3- to 5 junctions is also constrained by the length of flanking duplex DNA. By contrast, TIP49b hexamers were found to be inactive for ATP hydrolysis and DNA unwinding, suggesting that, in cells, protein factors that remain unknown might be required to recycle these into an active form.
Related JoVE Video
Crystal structures of A. acidocaldarius endoglucanase Cel9A in complex with cello-oligosaccharides: strong -1 and -2 subsites mimic cellobiohydrolase activity.
J. Mol. Biol.
PUBLISHED: 06-30-2009
Show Abstract
Hide Abstract
Alicyclobacillus acidocaldarius endoglucanase Cel9A (AaCel9A) is an inverting glycoside hydrolase with beta-1,4-glucanase activity on soluble polymeric substrates. Here, we report three X-ray structures of AaCel9A: a ligand-free structure at 1.8 A resolution and two complexes at 2.66 and 2.1 A resolution, respectively, with cellobiose obtained by co-crystallization and with cellotetraose obtained by the soaking method. AaCel9A forms an (alpha/alpha)(6)-barrel like other glycoside hydrolase family 9 enzymes. When cellobiose is used as a ligand, three glucosyl binding subsites are occupied, including two on the glycone side, while with cellotetraose as a ligand, five subsites, including four on the glycone side, are occupied. A structural comparison showed no conformational rearrangement of AaCel9A upon ligand binding. The structural analysis demonstrates that of the four minus subsites identified, subsites -1 and -2 show the strongest interaction with bound glucose. In conjunction with the open active-site cleft of AaCel9A, this is able to reconcile the previously observed cleavage of short-chain oligosaccharides with cellobiose as main product with the endo mode of action on larger polysaccharides.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.