JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Gastrointestinal dissemination and transmission of Staphylococcus aureus following bacteremia.
Infect. Immun.
PUBLISHED: 11-12-2014
Show Abstract
Hide Abstract
Mutations that alter virulence and antibiotic susceptibility arise and persist during Staphylococcus aureus bacteremia. However, an experimental system demonstrating transmission following bacteremia has been lacking, and thus implications of within-host adaptation for between-host transmission are unknown. We report that S. aureus disseminates to the gastrointestinal tract of mice following intravenous injection and readily transmits to co-housed naïve mice. Both intestinal dissemination and transmission were linked to the production of virulence factors based on gene deletion studies of the sae and agr two-component systems. Furthermore, antimicrobial selection for antibiotic-resistant S. aureus displaced susceptible S. aureus from the intestine of infected hosts, which led to the preferential transmission and dominance of antibiotic-resistant bacteria among co-housed untreated mice. These findings establish an animal model to investigate gastrointestinal dissemination and transmission of S. aureus, and suggest that adaptation during the course of systemic infection has implications beyond the level of a single host.
Related JoVE Video
Autophagy, viruses, and intestinal immunity.
Curr. Opin. Gastroenterol.
PUBLISHED: 10-08-2014
Show Abstract
Hide Abstract
To highlight recent findings that identify an essential role for the cellular degradative pathway of autophagy in governing a balanced response to intestinal pathogens and commensals.
Related JoVE Video
Autophagy gene atg16l1 prevents lethal T cell alloreactivity mediated by dendritic cells.
Immunity
PUBLISHED: 09-13-2014
Show Abstract
Hide Abstract
Atg16L1 mediates the cellular degradative process of autophagy and is considered a critical regulator of inflammation based on its genetic association with inflammatory bowel disease. Here we find that Atg16L1 deficiency leads to an exacerbated graft-versus-host disease (GVHD) in a mouse model of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Atg16L1-deficient allo-HSCT recipients with GVHD displayed increased T cell proliferation due to increased dendritic cell (DC) numbers and costimulatory molecule expression. Reduced autophagy within DCs was associated with lysosomal abnormalities and decreased amounts of A20, a negative regulator of DC activation. These results broaden the function of Atg16L1 and the autophagy pathway to include a role in limiting a DC-mediated response during inflammatory disease, such as GVHD.
Related JoVE Video
An enteric virus can replace the beneficial function of commensal bacteria.
Nature
PUBLISHED: 06-05-2014
Show Abstract
Hide Abstract
Intestinal microbial communities have profound effects on host physiology. Whereas the symbiotic contribution of commensal bacteria is well established, the role of eukaryotic viruses that are present in the gastrointestinal tract under homeostatic conditions is undefined. Here we demonstrate that a common enteric RNA virus can replace the beneficial function of commensal bacteria in the intestine. Murine norovirus (MNV) infection of germ-free or antibiotic-treated mice restored intestinal morphology and lymphocyte function without inducing overt inflammation and disease. The presence of MNV also suppressed an expansion of group 2 innate lymphoid cells observed in the absence of bacteria, and induced transcriptional changes in the intestine associated with immune development and type I interferon (IFN) signalling. Consistent with this observation, the IFN-? receptor was essential for the ability of MNV to compensate for bacterial depletion. Importantly, MNV infection offset the deleterious effect of treatment with antibiotics in models of intestinal injury and pathogenic bacterial infection. These data indicate that eukaryotic viruses have the capacity to support intestinal homeostasis and shape mucosal immunity, similarly to commensal bacteria.
Related JoVE Video
Autophagy facilitates Salmonella replication in HeLa cells.
MBio
PUBLISHED: 03-13-2014
Show Abstract
Hide Abstract
Autophagy is a process whereby a double-membrane structure (autophagosome) engulfs unnecessary cytosolic proteins, organelles, and invading pathogens and delivers them to the lysosome for degradation. We examined the fate of cytosolic Salmonella targeted by autophagy and found that autophagy-targeted Salmonella present in the cytosol of HeLa cells correlates with intracellular bacterial replication. Real-time analyses revealed that a subset of cytosolic Salmonella extensively associates with autophagy components p62 and/or LC3 and replicates quickly, whereas intravacuolar Salmonella shows no or very limited association with p62 or LC3 and replicates much more slowly. Replication of cytosolic Salmonella in HeLa cells is significantly decreased when autophagy components are depleted. Eventually, hyperreplication of cytosolic Salmonella potentiates cell detachment, facilitating the dissemination of Salmonella to neighboring cells. We propose that Salmonella benefits from autophagy for its cytosolic replication in HeLa cells. IMPORTANCE As a host defense system, autophagy is known to target a population of Salmonella for degradation and hence restricting Salmonella replication. In contrast to this concept, a recent report showed that knockdown of Rab1, a GTPase required for autophagy of Salmonella, decreases Salmonella replication in HeLa cells. Here, we have reexamined the fate of Salmonella targeted by autophagy by various cell biology-based assays. We found that the association of autophagy components with cytosolic Salmonella increases shortly after initiation of intracellular bacterial replication. Furthermore, through a live-cell imaging method, a subset of cytosolic Salmonella was found to be extensively associated with autophagy components p62 and/or LC3, and they replicated quickly. Most importantly, depletion of autophagy components significantly reduced the replication of cytosolic Salmonella in HeLa cells. Hence, in contrast to previous reports, we propose that autophagy facilitates Salmonella replication in the cytosol of HeLa cells.
Related JoVE Video
Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal Bacteroides vulgatus.
Immunity
PUBLISHED: 02-12-2014
Show Abstract
Hide Abstract
Nod2 has been extensively characterized as a bacterial sensor that induces an antimicrobial and inflammatory gene expression program. Therefore, it is unclear why Nod2 mutations that disrupt bacterial recognition are paradoxically among the highest risk factors for Crohn's disease, which involves an exaggerated immune response directed at intestinal bacteria. Here, we identified several abnormalities in the small-intestinal epithelium of Nod2(-/-) mice including inflammatory gene expression and goblet cell dysfunction, which were associated with excess interferon-? production by intraepithelial lymphocytes and Myd88 activity. Remarkably, these abnormalities were dependent on the expansion of a common member of the intestinal microbiota Bacteroides vulgatus, which also mediated exacerbated inflammation in Nod2(-/-) mice upon small-intestinal injury. These results indicate that Nod2 prevents inflammatory pathologies by controlling the microbiota and support a multihit disease model involving specific gene-microbe interactions.
Related JoVE Video
Autophagy meets phagocytosis.
Immunity
PUBLISHED: 09-24-2013
Show Abstract
Hide Abstract
Autophagy can degrade intracellular bacteria, but how this pathway contributes to phagocytosis is unclear. In this issue of Immunity, Bonilla et al. (2013) demonstrate an additional role for autophagy in Mycobacterium tuberculosis internalization by macrophages.
Related JoVE Video
Bacteria, its whats for dinner.
Cell Host Microbe
PUBLISHED: 06-18-2013
Show Abstract
Hide Abstract
While intestinal epithelial cells are known for secreting antimicrobial molecules, cell intrinsic defense mechanisms are less characterized. In this issue, Benjamin et al. (2013) demonstrate that MyD88 and autophagy within the intestinal epithelium detect invasive bacteria and prevent dissemination.
Related JoVE Video
Autophagy proteins control goblet cell function by potentiating reactive oxygen species production.
EMBO J.
PUBLISHED: 04-30-2013
Show Abstract
Hide Abstract
Delivery of granule contents to epithelial surfaces by secretory cells is a critical physiologic process. In the intestine, goblet cells secrete mucus that is required for homeostasis. Autophagy proteins are required for secretion in some cases, though the mechanism and cell biological basis for this requirement remain unknown. We found that in colonic goblet cells, proteins involved in initiation and elongation of autophagosomes were required for efficient mucus secretion. The autophagy protein LC3 localized to intracellular multi-vesicular vacuoles that were consistent with a fusion of autophagosomes and endosomes. Using cultured intestinal epithelial cells, we found that NADPH oxidases localized to and enhanced the formation of these LC3-positive vacuoles. Both autophagy proteins and endosome formation were required for maximal production of reactive oxygen species (ROS) derived from NADPH oxidases. Importantly, generation of ROS was critical to control mucin granule accumulation in colonic goblet cells. Thus, autophagy proteins can control secretory function through ROS, which is in part generated by LC3-positive vacuole-associated NADPH oxidases. These findings provide a novel mechanism by which autophagy proteins can control secretion.
Related JoVE Video
A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection.
Cell Host Microbe
PUBLISHED: 03-07-2013
Show Abstract
Hide Abstract
Polymorphisms in the essential autophagy gene Atg16L1 have been linked with susceptibility to Crohns disease, a major type of inflammatory bowel disease (IBD). Although the inability to control intestinal bacteria is thought to underlie IBD, the role of Atg16L1 during extracellular intestinal bacterial infections has not been sufficiently examined and compared to the function of other IBD susceptibility genes, such as Nod2, which encodes a cytosolic bacterial sensor. We find that Atg16L1 mutant mice are resistant to intestinal disease induced by the model bacterial pathogen Citrobacter rodentium. An Atg16L1 deficiency alters the intestinal environment to mediate an enhanced immune response that is dependent on monocytic cells, but this hyperimmune phenotype and its protective effects are lost in Atg16L1/Nod2 double-mutant mice. These results reveal an immunosuppressive function of Atg16L1 and suggest that gene variants affecting the autophagy pathway may have been evolutionarily maintained to protect against certain life-threatening infections.
Related JoVE Video
FIP200 regulates targeting of Atg16L1 to the isolation membrane.
EMBO Rep.
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
Autophagosome formation is a dynamic process that is strictly controlled by autophagy-related (Atg) proteins. However, how these Atg proteins are recruited to the autophagosome formation site or autophagic membranes remains poorly understood. Here, we found that FIP200, which is involved in proximal events, directly interacts with Atg16L1, one of the downstream Atg factors, in an Atg14- and phosphatidylinositol 3-kinase-independent manner. Atg16L1 deletion mutants, which lack the FIP200-interacting domain, are defective in proper membrane targeting. Thus, FIP200 regulates not only early events but also late events of autophagosome formation through direct interaction with Atg16L1.
Related JoVE Video
Viruses, autophagy genes, and Crohns disease.
Viruses
PUBLISHED: 06-08-2011
Show Abstract
Hide Abstract
The etiology of the intestinal disease Crohns disease involves genetic factors as well as ill-defined environmental agents. Several genetic variants linked to this disease are associated with autophagy, a process that is critical for proper responses to viral infections. While a role for viruses in this disease remains speculative, accumulating evidence indicate that this possibility requires serious consideration. In this review, we will examine the three-way relationship between viruses, autophagy genes, and Crohns disease and discuss how host-pathogen interactions can mediate complex inflammatory disorders.
Related JoVE Video
Virus-plus-susceptibility gene interaction determines Crohns disease gene Atg16L1 phenotypes in intestine.
Cell
PUBLISHED: 02-26-2010
Show Abstract
Hide Abstract
It is unclear why disease occurs in only a small proportion of persons carrying common risk alleles of disease susceptibility genes. Here we demonstrate that an interaction between a specific virus infection and a mutation in the Crohns disease susceptibility gene Atg16L1 induces intestinal pathologies in mice. This virus-plus-susceptibility gene interaction generated abnormalities in granule packaging and unique patterns of gene expression in Paneth cells. Further, the response to injury induced by the toxic substance dextran sodium sulfate was fundamentally altered to include pathologies resembling aspects of Crohns disease. These pathologies triggered by virus-plus-susceptibility gene interaction were dependent on TNFalpha and IFNgamma and were prevented by treatment with broad spectrum antibiotics. Thus, we provide a specific example of how a virus-plus-susceptibility gene interaction can, in combination with additional environmental factors and commensal bacteria, determine the phenotype of hosts carrying common risk alleles for inflammatory disease.
Related JoVE Video
Role of autophagy and autophagy genes in inflammatory bowel disease.
Curr. Top. Microbiol. Immunol.
PUBLISHED: 10-06-2009
Show Abstract
Hide Abstract
Polymorphisms associated with two genes in the autophagy pathway, ATG16L1 and IRGM1, have been implicated in susceptibility to Crohns disease, an idiopathic inflammatory disease typically involving the gastrointestinal tract. The intestinal mucosa is a site of careful immune regulation where the epithelium and immune cells encounter pathogens as well as a robust and diverse population of indigenous microbes that are predominately bacteria. Since the role of autophagy in immunity is broad and expanding, it is unclear which downstream functions of autophagy and which cell types are the key factors in Crohns disease susceptibility. This chapter reviews the recent literature on the roles of ATG16L1 and IRGM1 in the autophagy pathway, inflammation, antimicrobial immunity, and the biology of the intestine, and discusses how these genes may contribute to Crohns disease pathogenesis.
Related JoVE Video
Identification of Atg5-dependent transcriptional changes and increases in mitochondrial mass in Atg5-deficient T lymphocytes.
Autophagy
PUBLISHED: 07-10-2009
Show Abstract
Hide Abstract
Autophagy is implicated in many functions of mammalian cells such as organelle recycling, survival and differentiation, and is essential for the maintenance of T and B lymphocytes. Here, we demonstrate that autophagy is a constitutive process during T cell development. Deletion of the essential autophagy genes Atg5 or Atg7 in T cells resulted in decreased thymocyte and peripheral T cell numbers, and Atg5-deficient T cells had a decrease in cell survival. We employed functional-genetic and integrative computational analyses to elucidate specific functions of the autophagic process in developing T-lineage lymphocytes. Our whole-genome transcriptional profiling identified a set of 699 genes differentially expressed in Atg5-deficient and Atg5-sufficient thymocytes (Atg5-dependent gene set). Strikingly, the Atg5-dependent gene set was dramatically enriched in genes encoding proteins associated with the mitochondrion. In support of a role for autophagy in mitochondrial maintenance in T lineage cells, the deletion of Atg5 led to increased mitochondrial mass in peripheral T cells. We also observed a correlation between mitochondrial mass and Annexin-V staining in peripheral T cells. We propose that autophagy is critical for mitochondrial maintenance and T cell survival. We speculate that, similar to its role in yeast or mammalian liver cells, autophagy is required in T cells for the removal of damaged or aging mitochondria and that this contributes to the cell death of autophagy-deficient T cells.
Related JoVE Video
Quantitation of selective autophagic protein aggregate degradation in vitro and in vivo using luciferase reporters.
Autophagy
PUBLISHED: 05-06-2009
Show Abstract
Hide Abstract
The analysis of autophagy in cells and tissue has principally been performed via qualitative measures. These assays identify autophagosomes or measure the conversion of LC3I to LC3II. However, qualitative assays fail to quantitate the degradation of an autophagic substrate and therefore only indirectly measure an intact autophagic system. "Autophagic flux" can be measured using long-lived proteins that are degraded via autophagy. We developed a quantifiable luciferase reporter assay that measures the degradation of a long-lived polyglutamine protein aggregate, polyQ80-luciferase. Using this reporter, the induction of autophagy via starvation or rapamycin in cells preferentially decreases polyQ80-luciferase when compared with a nonaggregating polyQ19-luciferase after four hours of treatment. This response was both time- and concentration-dependent, prevented by autophagy inhibitors and absent in ATG5 knockout cells. We adapted this assay to living animals by electroporating polyQ19-luciferase and polyQ80-luciferase expression constructs into the right and left tibialis anterior (TA) muscles of mice, respectively. The change in the ratio of polyQ80-luciferase to polyQ19-luciferase signal before and after autophagic stimulation or inhibition was quantified via in vivo bioluminescent imaging. Following two days of starvation or treatment with intraperitoneal rapamycin, there was a approximately 35% reduction in the ratio of polyQ80:polyQ19-luciferase activity, consistent with the selective autophagic degradation of polyQ80 protein. This autophagic response in skeletal muscle in vivo was abrogated by co-treatment with chloroquine and in ATG16L1 hypomorphic mice. Our study demonstrates a method to quantify the autophagic flux of an expanded polyglutamine via luciferase reporters in vitro and in vivo.
Related JoVE Video
A common role for Atg16L1, Atg5 and Atg7 in small intestinal Paneth cells and Crohn disease.
Autophagy
PUBLISHED: 02-08-2009
Show Abstract
Hide Abstract
Recently identified genetic determinants for enhanced susceptibility to Crohn disease (CD) included polymorphisms in the ATG16L1 and IRGM1 loci suggesting that the autophagy pathway plays a role in the pathogenesis of this disease. We have generated and analyzed three mouse models with diminished expression of autophagy proteins and show how the loss of function of various autophagy components contributes to CD pathogenesis. In the mouse small intestine, one common cellular target of Atg16L1, Atg5 and Atg7 is the Paneth cell, a specialized epithelial cell whose main function is the delivery of antimicrobial factors into the intestinal lumen by production and secretion of its characteristic cytoplasmic granules. Autophagy-deficient Paneth cells exhibited a striking loss of function in this granule exocytosis pathway. Transcriptional analysis revealed a gain of function whereby the gene expression associated with inflammatory responses was increased in autophagy-deficient Paneth cells. Importantly, we validated these findings by analyzing intestinal tissues from CD patients. Similar Paneth cell abnormalities were observed in CD patients homozygous for the ATG16L1 risk allele. Thus, one role for the autophagy pathway in CD pathogenesis is through selective effects on the biology and specialized properties of Paneth cells.
Related JoVE Video
Guidelines for the use and interpretation of assays for monitoring autophagy.
Daniel J Klionsky, Fábio C Abdalla, Hagai Abeliovich, Robert T Abraham, Abraham Acevedo-Arozena, Khosrow Adeli, Lotta Agholme, Maria Agnello, Patrizia Agostinis, Julio A Aguirre-Ghiso, Hyung Jun Ahn, Ouardia Ait-Mohamed, Slimane Ait-Si-Ali, Takahiko Akematsu, Shizuo Akira, Hesham M Al-Younes, Munir A Al-Zeer, Matthew L Albert, Roger L Albin, Javier Alegre-Abarrategui, Maria Francesca Aleo, Mehrdad Alirezaei, Alexandru Almasan, Maylin Almonte-Becerril, Atsuo Amano, Ravi Amaravadi, Shoba Amarnath, Amal O Amer, Nathalie Andrieu-Abadie, Vellareddy Anantharam, David K Ann, Shailendra Anoopkumar-Dukie, Hiroshi Aoki, Nadezda Apostolova, Giuseppe Arancia, John P Aris, Katsuhiko Asanuma, Nana Y O Asare, Hisashi Ashida, Valerie Askanas, David S Askew, Patrick Auberger, Misuzu Baba, Steven K Backues, Eric H Baehrecke, Ben A Bahr, Xue-Yuan Bai, Yannick Bailly, Robert Baiocchi, Giulia Baldini, Walter Balduini, Andrea Ballabio, Bruce A Bamber, Edward T W Bampton, Gábor Bánhegyi, Clinton R Bartholomew, Diane C Bassham, Robert C Bast, Henri Batoko, Boon-Huat Bay, Isabelle Beau, Daniel M Béchet, Thomas J Begley, Christian Behl, Christian Behrends, Soumeya Bekri, Bryan Bellaire, Linda J Bendall, Luca Benetti, Laura Berliocchi, Henri Bernardi, Francesca Bernassola, Sébastien Besteiro, Ingrid Bhatia-Kiššová, Xiaoning Bi, Martine Biard-Piechaczyk, Janice S Blum, Lawrence H Boise, Paolo Bonaldo, David L Boone, Beat C Bornhauser, Karina R Bortoluci, Ioannis Bossis, Fréderic Bost, Jean-Pierre Bourquin, Patricia Boya, Michaël Boyer-Guittaut, Peter V Bozhkov, Nathan R Brady, Claudio Brancolini, Andreas Brech, Jay E Brenman, Ana Brennand, Emery H Bresnick, Patrick Brest, Dave Bridges, Molly L Bristol, Paul S Brookes, Eric J Brown, John H Brumell, Nicola Brunetti-Pierri, Ulf T Brunk, Dennis E Bulman, Scott J Bultman, Geert Bultynck, Lena F Burbulla, Wilfried Bursch, Jonathan P Butchar, Wanda Buzgariu, Sérgio P Bydlowski, Ken Cadwell, Monika Cahova, Dongsheng Cai, Jiyang Cai, Qian Cai, Bruno Calabretta, Javier Calvo-Garrido, Nadine Camougrand, Michelangelo Campanella, Jenny Campos-Salinas, Eleonora Candi, Lizhi Cao, Allan B Caplan, Simon R Carding, Sandra M Cardoso, Jennifer S Carew, Cathleen R Carlin, Virginie Carmignac, Leticia A M Carneiro, Serena Carra, Rosario A Caruso, Giorgio Casari, Caty Casas, Roberta Castino, Eduardo Cebollero, Francesco Cecconi, Jean Celli, Hassan Chaachouay, Han-Jung Chae, Chee-Yin Chai, David C Chan, Edmond Y Chan, Raymond Chuen-Chung Chang, Chi-Ming Che, Ching-Chow Chen, Guang-Chao Chen, Guo-Qiang Chen, Min Chen, Quan Chen, Steve S-L Chen, WenLi Chen, Xi Chen, Xiangmei Chen, Xiequn Chen, Ye-Guang Chen, Yingyu Chen, Yongqiang Chen, Yu-Jen Chen, Zhixiang Chen, Alan Cheng, Christopher H K Cheng, Yan Cheng, Heesun Cheong, Jae-Ho Cheong, Sara Cherry, Russ Chess-Williams, Zelda H Cheung, Eric Chevet, Hui-Ling Chiang, Roberto Chiarelli, Tomoki Chiba, Lih-Shen Chin, Shih-Hwa Chiou, Francis V Chisari, Chi Hin Cho, Dong-Hyung Cho, Augustine M K Choi, DooSeok Choi, Kyeong Sook Choi, Mary E Choi, Salem Chouaib, Divaker Choubey, Vinay Choubey, Charleen T Chu, Tsung-Hsien Chuang, Sheau-Huei Chueh, Taehoon Chun, Yong-Joon Chwae, Mee-Len Chye, Roberto Ciarcia, Maria R Ciriolo, Michael J Clague, Robert S B Clark, Peter G H Clarke, Robert Clarke, Patrice Codogno, Hilary A Coller, María I Colombo, Sergio Comincini, Maria Condello, Fabrizio Condorelli, Mark R Cookson, Graham H Coombs, Isabelle Coppens, Ramón Corbalán, Pascale Cossart, Paola Costelli, Safia Costes, Ana Coto-Montes, Eduardo Couve, Fraser P Coxon, James M Cregg, José L Crespo, Marianne J Cronjé, Ana Maria Cuervo, Joseph J Cullen, Mark J Czaja, Marcello D'Amelio, Arlette Darfeuille-Michaud, Lester M Davids, Faith E Davies, Massimo De Felici, John F de Groot, Cornelis A M de Haan, Luisa De Martino, Angelo De Milito, Vincenzo De Tata, Jayanta Debnath, Alexei Degterev, Benjamin Dehay, Lea M D Delbridge, Francesca Demarchi, Yi Zhen Deng, Jörn Dengjel, Paul Dent, Donna Denton, Vojo Deretic, Shyamal D Desai, Rodney J Devenish, Mario Di Gioacchino, Gilbert Di Paolo, Chiara Di Pietro, Guillermo Díaz-Araya, Inés Díaz-Laviada, Maria T Diaz-Meco, Javier Diaz-Nido, Ivan Dikic, Savithramma P Dinesh-Kumar, Wen-Xing Ding, Clark W Distelhorst, Abhinav Diwan, Mojgan Djavaheri-Mergny, Svetlana Dokudovskaya, Zheng Dong, Frank C Dorsey, Victor Dosenko, James J Dowling, Stephen Doxsey, Marlène Dreux, Mark E Drew, Qiuhong Duan, Michel A Duchosal, Karen Duff, Isabelle Dugail, Madeleine Durbeej, Michael Duszenko, Charles L Edelstein, Aimee L Edinger, Gustavo Egea, Ludwig Eichinger, N Tony Eissa, Suhendan Ekmekcioglu, Wafik S El-Deiry, Zvulun Elazar, Mohamed Elgendy, Lisa M Ellerby, Kai Er Eng, Anna-Mart Engelbrecht, Simone Engelender, Jekaterina Erenpreisa, Ricardo Escalante, Audrey Esclatine, Eeva-Liisa Eskelinen, Lucile Espert, Virginia Espina, Huizhou Fan, Jia Fan, Qi-Wen Fan, Zhen Fan, Shengyun Fang, Yongqi Fang, Manolis Fanto, Alessandro Fanzani, Thomas Farkas, Jean-Claude Farré, Mathias Faure, Marcus Fechheimer, Carl G Feng, Jian Feng, Qili Feng, Youji Feng, László Fésüs, Ralph Feuer, Maria E Figueiredo-Pereira, Gian Maria Fimia, Diane C Fingar, Steven Finkbeiner, Toren Finkel, Kim D Finley, Filomena Fiorito, Edward A Fisher, Paul B Fisher, Marc Flajolet, Maria L Florez-McClure, Salvatore Florio, Edward A Fon, Francesco Fornai, Franco Fortunato, Rati Fotedar, Daniel H Fowler, Howard S Fox, Rodrigo Franco, Lisa B Frankel, Marc Fransen, José M Fuentes, Juan Fueyo, Jun Fujii, Kozo Fujisaki, Eriko Fujita, Mitsunori Fukuda, Ruth H Furukawa, Matthias Gaestel, Philippe Gailly, Malgorzata Gajewska, Brigitte Galliot, Vincent Galy, Subramaniam Ganesh, Barry Ganetzky, Ian G Ganley, Fen-Biao Gao, George F Gao, Jinming Gao, Lorena Garcia, Guillermo Garcia-Manero, Mikel Garcia-Marcos, Marjan Garmyn, Andrei L Gartel, Evelina Gatti, Mathias Gautel, Thomas R Gawriluk, Matthew E Gegg, Jiefei Geng, Marc Germain, Jason E Gestwicki, David A Gewirtz, Saeid Ghavami, Pradipta Ghosh, Anna M Giammarioli, Alexandra N Giatromanolaki, Spencer B Gibson, Robert W Gilkerson, Michael L Ginger, Henry N Ginsberg, Jakub Golab, Michael S Goligorsky, Pierre Golstein, Candelaria Gomez-Manzano, Ebru Goncu, Céline Gongora, Claudio D Gonzalez, Ramon Gonzalez, Cristina González-Estévez, Rosa Ana González-Polo, Elena Gonzalez-Rey, Nikolai V Gorbunov, Sharon Gorski, Sandro Goruppi, Roberta A Gottlieb, Devrim Gozuacik, Giovanna Elvira Granato, Gary D Grant, Kim N Green, Aleš Gregorc, Frédéric Gros, Charles Grose, Thomas W Grunt, Philippe Gual, Jun-Lin Guan, Kun-Liang Guan, Sylvie M Guichard, Anna S Gukovskaya, Ilya Gukovsky, Jan Gunst, Asa B Gustafsson, Andrew J Halayko, Amber N Hale, Sandra K Halonen, Maho Hamasaki, Feng Han, Ting Han, Michael K Hancock, Malene Hansen, Hisashi Harada, Masaru Harada, Stefan E Hardt, J Wade Harper, Adrian L Harris, James Harris, Steven D Harris, Makoto Hashimoto, Jeffrey A Haspel, Shin-Ichiro Hayashi, Lori A Hazelhurst, Congcong He, You-Wen He, Marie-Josee Hebert, Kim A Heidenreich, Miep H Helfrich, Gudmundur V Helgason, Elizabeth P Henske, Brian Herman, Paul K Herman, Claudio Hetz, Sabine Hilfiker, Joseph A Hill, Lynne J Hocking, Paul Hofman, Thomas G Hofmann, Jörg Höhfeld, Tessa L Holyoake, Ming-Huang Hong, David A Hood, Gökhan S Hotamisligil, Ewout J Houwerzijl, Maria Høyer-Hansen, Bingren Hu, Chien-An A Hu, Hong-Ming Hu, Ya Hua, Canhua Huang, Ju Huang, Shengbing Huang, Wei-Pang Huang, Tobias B Huber, Won-Ki Huh, Tai-Ho Hung, Ted R Hupp, Gang Min Hur, James B Hurley, Sabah N A Hussain, Patrick J Hussey, Jung Jin Hwang, Seungmin Hwang, Atsuhiro Ichihara, Shirin Ilkhanizadeh, Ken Inoki, Takeshi Into, Valentina Iovane, Juan L Iovanna, Nancy Y Ip, Yoshitaka Isaka, Hiroyuki Ishida, Ciro Isidoro, Ken-Ichi Isobe, Akiko Iwasaki, Marta Izquierdo, Yotaro Izumi, Panu M Jaakkola, Marja Jäättelä, George R Jackson, William T Jackson, Bassam Janji, Marina Jendrach, Ju-Hong Jeon, Eui-Bae Jeung, Hong Jiang, Hongchi Jiang, Jean X Jiang, Ming Jiang, Qing Jiang, Xuejun Jiang, Alberto Jiménez, Meiyan Jin, Shengkan Jin, Cheol O Joe, Terje Johansen, Daniel E Johnson, Gail V W Johnson, Nicola L Jones, Bertrand Joseph, Suresh K Joseph, Annie M Joubert, Gábor Juhász, Lucienne Juillerat-Jeanneret, Chang Hwa Jung, Yong-Keun Jung, Kai Kaarniranta, Allen Kaasik, Tomohiro Kabuta, Motoni Kadowaki, Katarina Kågedal, Yoshiaki Kamada, Vitaliy O Kaminskyy, Harm H Kampinga, Hiromitsu Kanamori, Chanhee Kang, Khong Bee Kang, Kwang Il Kang, Rui Kang, Yoon-A Kang, Tomotake Kanki, Thirumala-Devi Kanneganti, Haruo Kanno, Anumantha G Kanthasamy, Arthi Kanthasamy, Vassiliki Karantza, Gur P Kaushal, Susmita Kaushik, Yoshinori Kawazoe, Po-Yuan Ke, John H Kehrl, Ameeta Kelekar, Claus Kerkhoff, David H Kessel, Hany Khalil, Jan A K W Kiel, Amy A Kiger, Akio Kihara, Deok Ryong Kim, Do-Hyung Kim, Dong-Hou Kim, Eun-Kyoung Kim, Hyung-Ryong Kim, Jae-Sung Kim, Jeong Hun Kim, Jin Cheon Kim, John K Kim, Peter K Kim, Seong Who Kim, Yong-Sun Kim, Yonghyun Kim, Adi Kimchi, Alec C Kimmelman, Jason S King, Timothy J Kinsella, Vladimir Kirkin, Lorrie A Kirshenbaum, Katsuhiko Kitamoto, Kaio Kitazato, Ludger Klein, Walter T Klimecki, Jochen Klucken, Erwin Knecht, Ben C B Ko, Jan C Koch, Hiroshi Koga, Jae-Young Koh, Young Ho Koh, Masato Koike, Masaaki Komatsu, Eiki Kominami, Hee Jeong Kong, Wei-jia Kong, Viktor I Korolchuk, Yaichiro Kotake, Michael I Koukourakis, Juan B Kouri Flores, Attila L Kovács, Claudine Kraft, Dimitri Krainc, Helmut Krämer, Carole Kretz-Remy, Anna M Krichevsky, Guido Kroemer, Rejko Krüger, Oleg Krut, Nicholas T Ktistakis, Chia-Yi Kuan, Róza Kucharczyk, Ashok Kumar, Raj Kumar, Sharad Kumar, Mondira Kundu, Hsing-Jien Kung, Tino Kurz, Ho Jeong Kwon, Albert R La Spada, Frank Lafont, Trond Lamark, Jacques Landry, Jon D Lane, Pierre Lapaquette, Jocelyn F Laporte, Lajos László, Sergio Lavandero, Josée N Lavoie, Robert Layfield, Pedro A Lazo, Weidong Le, Laurent Le Cam, Daniel J Ledbetter, Alvin J X Lee, Byung-Wan Lee, Gyun Min Lee, Jongdae Lee, Ju-Hyun Lee, Michael Lee, Myung-Shik Lee, Sug Hyung Lee, Christiaan Leeuwenburgh, Patrick Legembre, Renaud Legouis, Michael Lehmann, Huan-Yao Lei, Qun-Ying Lei, David A Leib, José Leiro, John J Lemasters, Antoinette Lemoine, Maciej S Lesniak, Dina Lev, Victor V Levenson, Beth Levine, Efrat Levy, Faqiang Li, Jun-lin Li, Lian Li, Sheng Li, Weijie Li, Xue-Jun Li, Yan-Bo Li, Yi-Ping Li, Chengyu Liang, Qiangrong Liang, Yung-Feng Liao, Pawel P Liberski, Andrew Lieberman, Hyunjung J Lim, Kah-Leong Lim, Kyu Lim, Chiou-Feng Lin, Fu-Cheng Lin, Jian Lin, Jiandie D Lin, Kui Lin, Wan-Wan Lin, Weei-Chin Lin, Yi-Ling Lin, Rafael Linden, Paul Lingor, Jennifer Lippincott-Schwartz, Michael P Lisanti, Paloma B Liton, Bo Liu, Chun-Feng Liu, Kaiyu Liu, Leyuan Liu, Qiong A Liu, Wei Liu, Young-Chau Liu, Yule Liu, Richard A Lockshin, Chun-Nam Lok, Sagar Lonial, Benjamin Loos, Gabriel Lopez-Berestein, Carlos Lopez-Otin, Laura Lossi, Michael T Lotze, Péter Low, Binfeng Lu, Bingwei Lu, Bo Lu, Zhen Lu, Fredéric Luciano, Nicholas W Lukacs, Anders H Lund, Melinda A Lynch-Day, Yong Ma, Fernando Macian, Jeff P MacKeigan, Kay F Macleod, Frank Madeo, Luigi Maiuri, Maria Chiara Maiuri, Davide Malagoli, May Christine V Malicdan, Walter Malorni, Na Man, Eva-Maria Mandelkow, Stéphen Manon, Irena Manov, Kai Mao, Xiang Mao, Zixu Mao, Philippe Marambaud, Daniela Marazziti, Yves L Marcel, Katie Marchbank, Piero Marchetti, Stefan J Marciniak, Mateus Marcondes, Mohsen Mardi, Gabriella Marfè, Guillermo Mariño, Maria Markaki, Mark R Marten, Seamus J Martin, Camille Martinand-Mari, Wim Martinet, Marta Martinez-Vicente, Matilde Masini, Paola Matarrese, Saburo Matsuo, Raffaele Matteoni, Andreas Mayer, Nathalie M Mazure, David J McConkey, Melanie J McConnell, Catherine McDermott, Christine McDonald, Gerald M McInerney, Sharon L McKenna, BethAnn McLaughlin, Pamela J McLean, Christopher R McMaster, G Angus McQuibban, Alfred J Meijer, Miriam H Meisler, Alicia Meléndez, Thomas J Melia, Gerry Melino, Maria A Mena, Javier A Menendez, Rubem F S Menna-Barreto, Manoj B Menon, Fiona M Menzies, Carol A Mercer, Adalberto Merighi, Diane E Merry, Stefania Meschini, Christian G Meyer, Thomas F Meyer, Chao-Yu Miao, Jun-Ying Miao, Paul A M Michels, Carine Michiels, Dalibor Mijaljica, Ana Milojkovic, Saverio Minucci, Clelia Miracco, Cindy K Miranti, Ioannis Mitroulis, Keisuke Miyazawa, Noboru Mizushima, Baharia Mograbi, Simin Mohseni, Xavier Molero, Bertrand Mollereau, Faustino Mollinedo, Takashi Momoi, Iryna Monastyrska, Martha M Monick, Mervyn J Monteiro, Michael N Moore, Rodrigo Mora, Kevin Moreau, Paula I Moreira, Yuji Moriyasu, Jorge Moscat, Serge Mostowy, Jeremy C Mottram, Tomasz Motyl, Charbel E-H Moussa, Sylke Müller, Sylviane Muller, Karl Münger, Christian Münz, Leon O Murphy, Maureen E Murphy, Antonio Musarò, Indira Mysorekar, Eiichiro Nagata, Kazuhiro Nagata, Aimable Nahimana, Usha Nair, Toshiyuki Nakagawa, Kiichi Nakahira, Hiroyasu Nakano, Hitoshi Nakatogawa, Meera Nanjundan, Naweed I Naqvi, Derek P Narendra, Masashi Narita, Miguel Navarro, Steffan T Nawrocki, Taras Y Nazarko, Andriy Nemchenko, Mihai G Netea, Thomas P Neufeld, Paul A Ney, Ioannis P Nezis, Huu Phuc Nguyen, Daotai Nie, Ichizo Nishino, Corey Nislow, Ralph A Nixon, Takeshi Noda, Angelika A Noegel, Anna Nogalska, Satoru Noguchi, Lucia Notterpek, Ivana Novak, Tomoyoshi Nozaki, Nobuyuki Nukina, Thorsten Nürnberger, Beat Nyfeler, Keisuke Obara, Terry D Oberley, Salvatore Oddo, Michinaga Ogawa, Toya Ohashi, Koji Okamoto, Nancy L Oleinick, F Javier Oliver, Laura J Olsen, Stefan Olsson, Onya Opota, Timothy F Osborne, Gary K Ostrander, Kinya Otsu, Jing-hsiung James Ou, Mireille Ouimet, Michael Overholtzer, Bulent Ozpolat, Paolo Paganetti, Ugo Pagnini, Nicolas Pallet, Glen E Palmer, Camilla Palumbo, Tianhong Pan, Theocharis Panaretakis, Udai Bhan Pandey, Zuzana Papackova, Issidora Papassideri, Irmgard Paris, Junsoo Park, Ohkmae K Park, Jan B Parys, Katherine R Parzych, Susann Patschan, Cam Patterson, Sophie Pattingre, John M Pawelek, Jianxin Peng, David H Perlmutter, Ida Perrotta, George Perry, Shazib Pervaiz, Matthias Peter, Godefridus J Peters, Morten Petersen, Goran Petrovski, James M Phang, Mauro Piacentini, Philippe Pierre, Valérie Pierrefite-Carle, Gérard Pierron, Ronit Pinkas-Kramarski, Antonio Piras, Natik Piri, Leonidas C Platanias, Stefanie Pöggeler, Marc Poirot, Angelo Poletti, Christian Poüs, Mercedes Pozuelo-Rubio, Mette Prætorius-Ibba, Anil Prasad, Mark Prescott, Muriel Priault, Nathalie Produit-Zengaffinen, Ann Progulske-Fox, Tassula Proikas-Cezanne, Serge Przedborski, Karin Przyklenk, Rosa Puertollano, Julien Puyal, Shu-Bing Qian, Liang Qin, Zheng-Hong Qin, Susan E Quaggin, Nina Raben, Hannah Rabinowich, Simon W Rabkin, Irfan Rahman, Abdelhaq Rami, Georg Ramm, Glenn Randall, Felix Randow, V Ashutosh Rao, Jeffrey C Rathmell, Brinda Ravikumar, Swapan K Ray, Bruce H Reed, John C Reed, Fulvio Reggiori, Anne Regnier-Vigouroux, Andreas S Reichert, John J Reiners, Russel J Reiter, Jun Ren, Jose L Revuelta, Christopher J Rhodes, Konstantinos Ritis, Elizete Rizzo, Jeffrey Robbins, Michel Roberge, Hernan Roca, Maria C Roccheri, Stéphane Rocchi, H Peter Rodemann, Santiago Rodríguez de Córdoba, Bärbel Rohrer, Igor B Roninson, Kirill Rosen, Magdalena M Rost-Roszkowska, Mustapha Rouis, Kasper M A Rouschop, Francesca Rovetta, Brian P Rubin, David C Rubinsztein, Klaus Ruckdeschel, Edmund B Rucker, Assaf Rudich, Emil Rudolf, Nelson Ruiz-Opazo, Rossella Russo, Tor Erik Rusten, Kevin M Ryan, Stefan W Ryter, David M Sabatini, Junichi Sadoshima, Tapas Saha, Tatsuya Saitoh, Hiroshi Sakagami, Yasuyoshi Sakai, Ghasem Hoseini Salekdeh, Paolo Salomoni, Paul M Salvaterra, Guy Salvesen, Rosa Salvioli, Anthony M J Sanchez, José A Sánchez-Alcázar, Ricardo Sánchez-Prieto, Marco Sandri, Uma Sankar, Poonam Sansanwal, Laura Santambrogio, Shweta Saran, Sovan Sarkar, Minnie Sarwal, Chihiro Sasakawa, Ausra Sasnauskiene, Miklós Sass, Ken Sato, Miyuki Sato, Anthony H V Schapira, Michael Scharl, Hermann M Schätzl, Wiep Scheper, Stefano Schiaffino, Claudio Schneider, Marion E Schneider, Regine Schneider-Stock, Patricia V Schoenlein, Daniel F Schorderet, Christoph Schüller, Gary K Schwartz, Luca Scorrano, Linda Sealy, Per O Seglen, Juan Segura-Aguilar, Iban Seiliez, Oleksandr Seleverstov, Christian Sell, Jong Bok Seo, Duska Separovic, Vijayasaradhi Setaluri, Takao Setoguchi, Carmine Settembre, John J Shacka, Mala Shanmugam, Irving M Shapiro, Eitan Shaulian, Reuben J Shaw, James H Shelhamer, Han-Ming Shen, Wei-Chiang Shen, Zu-Hang Sheng, Yang Shi, Kenichi Shibuya, Yoshihiro Shidoji, Jeng-Jer Shieh, Chwen-Ming Shih, Yohta Shimada, Shigeomi Shimizu, Takahiro Shintani, Orian S Shirihai, Gordon C Shore, Andriy A Sibirny, Stan B Sidhu, Beata Sikorska, Elaine C M Silva-Zacarin, Alison Simmons, Anna Katharina Simon, Hans-Uwe Simon, Cristiano Simone, Anne Simonsen, David A Sinclair, Rajat Singh, Debasish Sinha, Frank A Sinicrope, Agnieszka Sirko, Parco M Siu, Efthimios Sivridis, Vojtech Skop, Vladimir P Skulachev, Ruth S Slack, Soraya S Smaili, Duncan R Smith, María S Soengas, Thierry Soldati, Xueqin Song, Anil K Sood, Tuck Wah Soong, Federica Sotgia, Stephen A Spector, Claudia D Spies, Wolfdieter Springer, Srinivasa M Srinivasula, Leonidas Stefanis, Joan S Steffan, Ruediger Stendel, Harald Stenmark, Anastasis Stephanou, Stephan T Stern, Cinthya Sternberg, Björn Stork, Peter Stralfors, Carlos S Subauste, Xinbing Sui, David Sulzer, Jiaren Sun, Shi-Yong Sun, Zhi-Jun Sun, Joseph J Y Sung, Kuninori Suzuki, Toshihiko Suzuki, Michele S Swanson, Charles Swanton, Sean T Sweeney, Lai-King Sy, Gyorgy Szabadkai, Ira Tabas, Heinrich Taegtmeyer, Marco Tafani, Krisztina Takács-Vellai, Yoshitaka Takano, Kaoru Takegawa, Genzou Takemura, Fumihiko Takeshita, Nicholas J Talbot, Kevin S W Tan, Keiji Tanaka, Kozo Tanaka, Daolin Tang, Dingzhong Tang, Isei Tanida, Bakhos A Tannous, Nektarios Tavernarakis, Graham S Taylor, Gregory A Taylor, J Paul Taylor, Lance S Terada, Alexei Terman, Gianluca Tettamanti, Karin Thevissen, Craig B Thompson, Andrew Thorburn, Michael Thumm, Fengfeng Tian, Yuan Tian, Glauco Tocchini-Valentini, Aviva M Tolkovsky, Yasuhiko Tomino, Lars Tönges, Sharon A Tooze, Cathy Tournier, John Tower, Roberto Towns, Vladimir Trajkovic, Leonardo H Travassos, Ting-Fen Tsai, Mario P Tschan, Takeshi Tsubata, Allan Tsung, Boris Turk, Lorianne S Turner, Suresh C Tyagi, Yasuo Uchiyama, Takashi Ueno, Midori Umekawa, Rika Umemiya-Shirafuji, Vivek K Unni, Maria I Vaccaro, Enza Maria Valente, Greet Van den Berghe, Ida J van der Klei, Wouter van Doorn, Linda F van Dyk, Marjolein van Egmond, Leo A van Grunsven, Peter Vandenabeele, Wim P Vandenberghe, Ilse Vanhorebeek, Eva C Vaquero, Guillermo Velasco, Tibor Vellai, Jose Miguel Vicencio, Richard D Vierstra, Miquel Vila, Cécile Vindis, Giampietro Viola, Maria Teresa Viscomi, Olga V Voitsekhovskaja, Clarissa von Haefen, Marcela Votruba, Keiji Wada, Richard Wade-Martins, Cheryl L Walker, Craig M Walsh, Jochen Walter, Xiang-Bo Wan, Aimin Wang, Chenguang Wang, Dawei Wang, Fan Wang, Fen Wang, Guanghui Wang, Haichao Wang, Hong-Gang Wang, Horng-Dar Wang, Jin Wang, Ke Wang, Mei Wang, Richard C Wang, Xinglong Wang, Xuejun Wang, Ying-Jan Wang, Yipeng Wang, Zhen Wang, Zhigang Charles Wang, Zhinong Wang, Derick G Wansink, Diane M Ward, Hirotaka Watada, Sarah L Waters, Paul Webster, Lixin Wei, Conrad C Weihl, William A Weiss, Scott M Welford, Long-Ping Wen, Caroline A Whitehouse, J Lindsay Whitton, Alexander J Whitworth, Tom Wileman, John W Wiley, Simon Wilkinson, Dieter Willbold, Roger L Williams, Peter R Williamson, Bradly G Wouters, Chenghan Wu, Dao-Cheng Wu, William K K Wu, Andreas Wyttenbach, Ramnik J Xavier, Zhijun Xi, Pu Xia, Gengfu Xiao, Zhiping Xie, Zhonglin Xie, Da-zhi Xu, Jianzhen Xu, Liang Xu, Xiaolei Xu, Ai Yamamoto, Akitsugu Yamamoto, Shunhei Yamashina, Michiaki Yamashita, Xianghua Yan, Mitsuhiro Yanagida, Dun-Sheng Yang, Elizabeth Yang, Jin-Ming Yang, Shi Yu Yang, Wannian Yang, Wei Yuan Yang, Zhifen Yang, Meng-Chao Yao, Tso-Pang Yao, Behzad Yeganeh, Wei-Lien Yen, Jia-Jing Yin, Xiao-Ming Yin, Ook-Joon Yoo, Gyesoon Yoon, Seung-Yong Yoon, Tomohiro Yorimitsu, Yuko Yoshikawa, Tamotsu Yoshimori, Kohki Yoshimoto, Ho Jin You, Richard J Youle, Anas Younes, Li Yu, Long Yu, Seong-Woon Yu, Wai Haung Yu, Zhi-Min Yuan, Zhenyu Yue, Cheol-Heui Yun, Michisuke Yuzaki, Olga Zabirnyk, Elaine Silva-Zacarin, David Zacks, Eldad Zacksenhaus, Nadia Zaffaroni, Zahra Zakeri, Herbert J Zeh, Scott O Zeitlin, Hong Zhang, Hui-Ling Zhang, Jianhua Zhang, Jing-Pu Zhang, Lin Zhang, Long Zhang, Ming-Yong Zhang, Xu Dong Zhang, Mantong Zhao, Yi-Fang Zhao, Ying Zhao, Zhizhuang J Zhao, Xiaoxiang Zheng, Boris Zhivotovsky, Qing Zhong, Cong-Zhao Zhou, Changlian Zhu, Wei-Guo Zhu, Xiao-feng Zhu, Xiongwei Zhu, Yuangang Zhu, Teresa Zoladek, Wei-Xing Zong, Antonio Zorzano, Jürgen Zschocke, Brian Zuckerbraun.
Autophagy
Show Abstract
Hide Abstract
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
Related JoVE Video
Atg16L1 deficiency confers protection from uropathogenic Escherichia coli infection in vivo.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
Urinary tract infection (UTI), a frequent and important disease in humans, is primarily caused by uropathogenic Escherichia coli (UPEC). UPEC forms acute cytoplasmic biofilms within superficial urothelial cells and can persist by establishing membrane-enclosed latent reservoirs to seed recurrent UTI. The host responds with an influx of innate immune cells and shedding of infected epithelial cells. The autophagy gene ATG16L1 has a commonly occurring mutation that is associated with inflammatory disease and intestinal cell abnormalities in mice and humans. Here, we show that Atg16L1-deficient mice (Atg16L1(HM)) cleared bacteriuria more rapidly and thoroughly than controls and showed rapid epithelial recovery. Atg16L1 deficiency was associated with a potent proinflammatory cytokine response with increased recruitment of monocytes and neutrophils to infected bladders. Chimeric and genetic studies showed that Atg16L1(HM) hematopoietic cells alone could increase clearance and that Atg16L1-deficient innate immune cells were required and sufficient for enhanced bacteriuric clearance. We also show that Atg16L1-deficient mice exhibit cell-autonomous architectural aberrations of superficial urothelial cells, including increases in multivesicular bodies, lysosomes, and expression of the UPEC receptor Up1a. Finally, we show that Atg16L1(HM) epithelial cells contained a significantly reduced number of latent reservoirs. Together, our results show that Atg16L1 deficiency confers protection in vivo to the host against both acute and latent UPEC infection, suggest that deficiency in a key autophagy protein can be protective against infection in an animal model of one of the most common diseases of women worldwide, and may have significant clinical implications for understanding the etiology of recurrent UTIs.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.