JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The Arf GTPase-activating protein SMAP1 promotes transferrin receptor endocytosis and interacts with SMAP2.
Biochem. Biophys. Res. Commun.
PUBLISHED: 08-24-2014
Show Abstract
Hide Abstract
Arf GTPase-activating proteins (Arf GAP) play important roles in the formation of the membrane vesicles that traffic between subcellular membranous organelles. The small Arf GTPase-activating protein (SMAP) subfamily of Arf GAPs has two members, SMAP1 and SMAP2, in mammals. The present study investigated whether these two proteins may have an overlapping function in addition to their previously reported distinct functions. Results showed that the presence of either SMAP1 or SMAP2 was sufficient for endocytosis of the transferrin receptor, and that transferrin incorporation was impaired only by the absence of both SMAP1 and SMAP2. This suggests the involvement of both SMAP1 and SMAP2 in transferrin endocytosis. Results also demonstrated a physical association between SMAP1 and SMAP2, which might serve as a basis for a functional interaction, and identified the intramolecular domains responsible for this association.
Related JoVE Video
The association between biventricular pacing and cardiac resynchronization therapy-defibrillator efficacy when compared with implantable cardioverter defibrillator on outcomes and reverse remodelling.
Eur. Heart J.
PUBLISHED: 08-11-2014
Show Abstract
Hide Abstract
Previous studies on biventricular (BIV) pacing and cardiac resynchronization therapy-defibrillator (CRT-D) efficacy have used arbitrarily chosen BIV pacing percentages, and no study has employed implantable cardioverter defibrillator (ICD) patients as a control group.
Related JoVE Video
Clathrin assembly protein CALM plays a critical role in KIT signaling by regulating its cellular transport from early to late endosomes in hematopoietic cells.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
CALM is implicated in the formation of clathrin-coated vesicles, which mediate endocytosis and intracellular trafficking of growth factor receptors and nutrients. We previously found that CALM-deficient mice suffer from severe anemia due to the impaired clathrin-mediated endocytosis of transferrin receptor in immature erythroblast. However, CALM has been supposed to regulate the growth and survival of hematopoietic stem/progenitor cells. So, in this study, we focused on the function of CALM in these cells. We here show that the number of Linage-Sca-1+KIT+ (LSK) cells decreased in the fetal liver of CALM-/- mice. Also, colony forming activity was impaired in CALM-/- LSK cells. In addition, SCF, FLT3, and TPO-dependent growth was severely impaired in CALM-/- LSK cells, while they can normally proliferate in response to IL-3 and IL-6. We also examined the intracellular trafficking of KIT using CALM-/- murine embryonic fibroblasts (MEFs) engineered to express KIT. At first, we confirmed that endocytosis of SCF-bound KIT was not impaired in CALM-/- MEFs by the internalization assay. However, SCF-induced KIT trafficking from early to late endosome was severely impaired in CALM-/- MEFs. As a result, although intracellular KIT disappeared 30 min after SCF stimulation in wild-type (WT) MEFs, it was retained in CALM-/- MEFs. Furthermore, SCF-induced phosphorylation of cytosolic KIT was enhanced and prolonged in CALM-/- MEFs compared with that in WT MEFs, leading to the excessive activation of Akt. Similar hyperactivation of Akt was observed in CALM-/- KIT+ cells. These results indicate that CALM is essential for the intracellular trafficking of KIT and its normal functions. Also, our data demonstrate that KIT located in the early endosome can activate downstream molecules as a signaling endosome. Because KIT activation is involved in the pathogenesis of some malignancies, the manipulation of CALM function would be an attractive therapeutic strategy.
Related JoVE Video
The Arf GAP SMAP2 is necessary for organized vesicle budding from the trans-Golgi network and subsequent acrosome formation in spermiogenesis.
Mol. Biol. Cell
PUBLISHED: 07-17-2013
Show Abstract
Hide Abstract
The trans-Golgi network (TGN) functions as a hub organelle in the exocytosis of clathrin-coated membrane vesicles, and SMAP2 is an Arf GTPase-activating protein that binds to both clathrin and the clathrin assembly protein (CALM). In the present study, SMAP2 is detected on the TGN in the pachytene spermatocyte to the round spermatid stages of spermatogenesis. Gene targeting reveals that SMAP2-deficient male mice are healthy and survive to adulthood but are infertile and exhibit globozoospermia. In SMAP2-deficient spermatids, the diameter of proacrosomal vesicles budding from TGN increases, TGN structures are distorted, acrosome formation is severely impaired, and reorganization of the nucleus does not proceed properly. CALM functions to regulate vesicle sizes, and this study shows that CALM is not recruited to the TGN in the absence of SMAP2. Furthermore, syntaxin2, a component of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, is not properly concentrated at the site of acrosome formation. Thus this study reveals a link between SMAP2 and CALM/syntaxin2 in clathrin-coated vesicle formation from the TGN and subsequent acrosome formation. SMAP2-deficient mice provide a model for globozoospermia in humans.
Related JoVE Video
Smap1 deficiency perturbs receptor trafficking and predisposes mice to myelodysplasia.
J. Clin. Invest.
PUBLISHED: 01-03-2013
Show Abstract
Hide Abstract
The formation of clathrin-coated vesicles is essential for intracellular membrane trafficking between subcellular compartments and is triggered by the ARF family of small GTPases. We previously identified SMAP1 as an ARF6 GTPase-activating protein that functions in clathrin-dependent endocytosis. Because abnormalities in clathrin-dependent trafficking are often associated with oncogenesis, we targeted Smap1 in mice to examine its physiological and pathological significance. Smap1-deficent mice exhibited healthy growth, but their erythroblasts showed enhanced transferrin endocytosis. In mast cells cultured in SCF, Smap1 deficiency did not affect the internalization of c-KIT but impaired the sorting of internalized c-KIT from multivesicular bodies to lysosomes, resulting in intracellular accumulation of undegraded c-KIT that was accompanied by enhanced activation of ERK and increased cell growth. Interestingly, approximately 50% of aged Smap1-deficient mice developed anemia associated with morphologically dysplastic cells of erythroid-myeloid lineage, which are hematological abnormalities similar to myelodysplastic syndrome (MDS) in humans. Furthermore, some Smap1-deficient mice developed acute myeloid leukemia (AML) of various subtypes. Collectively, to our knowledge these results provide the first evidence in a mouse model that the deregulation of clathrin-dependent membrane trafficking may be involved in the development of MDS and subsequent AML.
Related JoVE Video
SMAP2 regulates retrograde transport from recycling endosomes to the Golgi.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Retrograde transport is where proteins and lipids are transported back from the plasma membrane (PM) and endosomes to the Golgi, and crucial for a diverse range of cellular functions. Recycling endosomes (REs) serve as a sorting station for the retrograde transport and we recently identified evection-2, an RE protein with a pleckstrin homology (PH) domain, as an essential factor of this pathway. How evection-2 regulates retrograde transport from REs to the Golgi is not well understood. Here, we report that evection-2 binds to SMAP2, an Arf GTPase-activating protein. Endogenous SMAP2 localized mostly in REs and to a lesser extent, the trans-Golgi network (TGN). SMAP2 binds evection-2, and the RE localization of SMAP2 was abolished in cells depleted of evection-2. Knockdown of SMAP2, like that of evection-2, impaired the retrograde transport of cholera toxin B subunit (CTxB) from REs. These findings suggest that evection-2 recruits SMAP2 to REs, thereby regulating the retrograde transport of CTxB from REs to the Golgi.
Related JoVE Video
Receptor sorting and actin dynamics at early endosomes.
Commun Integr Biol
PUBLISHED: 10-17-2011
Show Abstract
Hide Abstract
The sorting machinery in early endosomes is crucial for intracellular homeostasis and signal transduction and its disruption leads to the development of various diseases. In spite of its significance, the molecular mechanism underlying this machinery remains largely unknown. Actin filaments are implicated in intracellular trafficking, including membrane fission at endocytosis, membrane stretching at the Golgi complex, and maturation of endosomes. We have recently found that actin is required for receptor sorting in early endosomes and identified cortactin as a candidate for actin regulation in early endosomes. Inhibition of actin dynamics leads to enlargement of early endosomes and impairment of the sorting; the latter is also observed in cortactin-depleted cells. The endosomal localization of cortactin was enhanced by dynasore, a dynamin inhibitor that effectively inhibits endosomal sorting, indicating that cortactin is involved in the sorting machinery in early endosomes. Here we discuss the role of actin filaments in early endosomes and other molecules implicated in endosomal trafficking.
Related JoVE Video
Disruption of microtubule network rescues aberrant actin comets in dynamin2-depleted cells.
PLoS ONE
PUBLISHED: 04-19-2011
Show Abstract
Hide Abstract
A large GTPase dynamin, which is required for endocytic vesicle formation, regulates the actin cytoskeleton through its interaction with cortactin. Dynamin2 mutants impair the formation of actin comets, which are induced by Listeria monocytogenes or phosphatidylinositol-4-phosphate 5-kinase. However, the role of dynamin2 in the regulation of the actin comet is still unclear. Here we show that aberrant actin comets in dynamin2-depleted cells were rescued by disrupting of microtubule networks. Depletion of dynamin2, but not cortactin, significantly reduced the length and the speed of actin comets induced by Listeria. This implies that dynamin2 may regulate the actin comet in a cortactin-independent manner. As dynamin regulates microtubules, we investigated whether perturbation of microtubules would rescue actin comet formation in dynamin2-depleted cells. Treatment with taxol or colchicine created a microtubule-free space in the cytoplasm, and made no difference between control and dynamin2 siRNA cells. This suggests that the alteration of microtubules by dynamin2 depletion reduced the length and the speed of the actin comet.
Related JoVE Video
Fission of tubular endosomes triggers endosomal acidification and movement.
PLoS ONE
PUBLISHED: 04-04-2011
Show Abstract
Hide Abstract
The early endosome acts as a sorting station for internalized molecules destined for recycling or degradation. While recycled molecules are sorted and delivered to tubular endosomes, residual compartments containing molecules to be degraded undergo "maturation" before final degradation in the lysosome. This maturation involves acidification, microtubule-dependent motility, and perinuclear localization. It is currently unknown how sorting and the processes of maturation cooperate with each other. Here, we show that fission of a tubular endosome triggers the maturation of the residual endosome, leading to degradation. Use of the dynamin inhibitor dynasore to block tubular endosome fission inhibited acidification, endosomal motility along microtubules, perinuclear localization, and degradation. However, tubular endosome fission was not affected by inhibiting endosomal acidification or by depolymerizing the microtubules. These results demonstrate that the fission of recycling tubules is the first important step in endosomal maturation and degradation in the lysosome. We believe this to be the first evidence of a cascade from sorting to degradation.
Related JoVE Video
Localization of SMAP2 to the TGN and its function in the regulation of TGN protein transport.
Cell Struct. Funct.
PUBLISHED: 02-26-2011
Show Abstract
Hide Abstract
SMAP2 is an Arf GTPase-activating protein that is located and functions on early endosome membranes. In the present study, the trans-Golgi network (TGN) was verified as an additional site of SMAP2 localization based on its co-localization with various TGN-marker proteins. Mutation of specific stretches of basic amino acid residues abolished the TGN-localization of SMAP2. Over-expression of wild-type SMAP2, but not of the mutated SMAP2, inhibited the transport of vesicular stomatitis virus-G protein from the TGN to the plasma membrane. In contrast, this transport was enhanced in SMAP2 (-/-) cells characterized by increased levels of the activated form of Arf. SMAP2 therefore belongs to an ArfGAP subtype that resides on the TGN and functions as a negative regulator of vesicle budding from the organelle.
Related JoVE Video
Receptor sorting within endosomal trafficking pathway is facilitated by dynamic actin filaments.
PLoS ONE
PUBLISHED: 02-08-2011
Show Abstract
Hide Abstract
Early endosomes (EEs) are known to be a sorting station for internalized molecules destined for degradation, recycling, or other intracellular organelles. Segregation is an essential step in such sorting, but the molecular mechanism of this process remains to be elucidated. Here, we show that actin is required for efficient recycling and endosomal maturation by producing a motile force. Perturbation of actin dynamics by drugs induced a few enlarged EEs containing several degradative vacuoles and also interfered with their transporting ability. Actin repolymerization induced by washout of the drug caused the vacuoles to dissociate and individually translocate toward the perinuclear region. We further elucidated that cortactin, an actin-nucleating factor, was required for transporting contents from within EEs. Actin filaments regulated by cortactin may provide a motile force for efficient sorting within early endosomes. These data suggest that actin filaments coordinate with microtubules to mediate segregation in EEs.
Related JoVE Video
Dynamin 2 associates with microtubules at mitosis and regulates cell cycle progression.
Cell Struct. Funct.
PUBLISHED: 12-08-2010
Show Abstract
Hide Abstract
Dynamin, a ~100 kDa large GTPase, is known as a key player for membrane traffic. Recent evidence shows that dynamin also regulates the dynamic instability of microtubules by a mechanism independent of membrane traffic. As microtubules are highly dynamic during mitosis, we investigated whether the regulation of microtubules by dynamin is essential for cell cycle progression. Dynamin 2 intensely localized at the mitotic spindle, and the localization depended on its proline-rich domain (PRD), which is required for microtubule association. The deletion of PRD resulted in the impairment of cytokinesis, whereby the mutant had less effect on endocytosis. Interestingly, dominant-negative dynamin (K44A), which blocks membrane traffic but has no effect on microtubules, also blocked cytokinesis. On the other hand, the deletion of the middle domain, which binds to ?-tubulin, impaired the entry into mitosis. As both deletion mutants had no significant effect on endocytosis, dynamin 2 may participate in cell cycle progression by regulating the microtubules. These data suggest that dynamin may play a key role for cell cycle progression by two distinct pathways, membrane traffic and cytoskeleton.
Related JoVE Video
The carboxy-terminal region of SMAP2 directs subcellular localization as well as Arf protein specificity.
Biochem. Biophys. Res. Commun.
PUBLISHED: 12-04-2010
Show Abstract
Hide Abstract
Small G proteins play a central role in the organization of secretory and endocytotic pathways. The recruitment of some effectors, including vesicle coat proteins, is mediated by the ADP-ribosylation factor (Arf) family. Arf proteins have distinct subcellular localizations. ArfGAPs (Arf GTPase-activating proteins) regulate Arf GTPase activity. Thus, each ArfGAP is distinctly localized to allow it to maintain a specific interaction with its target Arf(s). However, the domains that regulate the subcellular localization of ArfGAPs and the way in which these subcellular localizations affect the target specificities of ArfGAPs remain unclear. Recently, we identified two novel ArfGAPs, SMAP1 (Small ArfGAP protein 1) and SMAP2. In the current study, we identified sequences in the carboxy-terminal region of SMAP2 that are critical for its specific subcellular localization and its specificity for Arf proteins.
Related JoVE Video
Pollen density on the stigma affects endogenous gibberellin metabolism, seed and fruit set, and fruit quality in Pyrus pyrifolia.
J. Exp. Bot.
PUBLISHED: 08-16-2010
Show Abstract
Hide Abstract
To clarify the relationship between pollen density and gametophytic competition in Pyrus pyrifolia, gametophytic performance, gibberellin metabolism, fruit set, and fruit quality were investigated by modifying P. pyrifolia pollen grain number and density with Lycopodium spores. Higher levels of pollen density improved seed viability, fruit set, and fruit quality. Treatments with the highest pollen density showed a significantly increased fruit growth rate and larger fruit at harvest. High pollen density increased germination rate and gave a faster pollen tube growth, both in vivo and in vitro. Endogenous gibberellin (GA) concentrations increased in pollen tubes soon after germination and the concentration of two growth-active GAs, GA(3), and GA(4), was positively correlated to final fruit size, cell numbers in the mesocarp, and pollen tube growth rate. These two GAs appear to be biosynthesized de novo in pollen tube and are the main pollen-derived bioactive GAs found after pollen germination. GA(1) levels in the pollen tube appear to be related to a pollen-style interaction that occurred after the pollen grains landed on the stigma.
Related JoVE Video
Dynamic instability of microtubules requires dynamin 2 and is impaired in a Charcot-Marie-Tooth mutant.
J. Cell Biol.
PUBLISHED: 06-17-2009
Show Abstract
Hide Abstract
Dynamin is a fission protein that participates in endocytic vesicle formation. Although dynamin was originally identified as a microtubule-binding protein, the physiological relevance of this function was unclear. Recently, mutations in the ubiquitously expressed dynamin 2 (dyn2) protein were found in patients with Charcot-Marie-Tooth (CMT) disease, which is an inherited peripheral neuropathy. In this study, we show that one of these mutations, 551Delta3, induces prominent decoration of microtubules with the mutant dyn2. Dyn2 was required for proper dynamic instability of microtubules, and this was impaired in cells expressing the 551Delta3 mutant, which showed a remarkable increase in microtubule acetylation, a marker of stable microtubules. Depletion of endogenous dyn2 with a small interfering RNA also resulted in the accumulation of stable microtubules. Furthermore, the formation of mature Golgi complexes, which depends on microtubule-dependent membrane transport, was impaired in both dyn2 knockdown cells and cells expressing the 551Delta3 mutant. Collectively, our results suggest that dyn2 regulates dynamic instability of microtubules, which is essential for organelle motility, and that this function may be impaired in CMT disease.
Related JoVE Video
Nitrous oxide emission and microbial community in the rhizosphere of nodulated soybeans during the late growth period.
Microbes Environ.
PUBLISHED: 01-01-2009
Show Abstract
Hide Abstract
We examined N(2)O emissions from the rhizosphere of field-grown soybeans during the late growth stage (99-117 days after sowing). Marked emissions were detected from the nodulated root systems of field-grown soybeans, whereas a non-nodulating soybean mutant showed no emission. Degraded nodules exclusively generated the N(2)O. A culture-independent analysis of microbial communities showed Bradyrhizobium sp., Acidvorax facilis, Salmonella enterica, Xanthomonas sp., Enterobacter cloacae, Pseudomonas putida, Fusarium sp., nematodes, and other protozoans to be more abundant in the degraded nodules, suggesting that some of these organisms participate in the N(2)O emission process in the soybean rhizosphere.
Related JoVE Video
Dynamin 2 in Charcot-Marie-Tooth disease.
Acta Med. Okayama
Show Abstract
Hide Abstract
Charcot-Marie-Tooth disease (CMT) is an inherited neuronal disorder, and is induced by mutations of various genes associated with intracellular membrane traffic and cytoskeleton. A large GTPase, dynamin, which is known as a fission protein for endocytic vesicles, was identified as a gene responsible for dominant-intermediate CMT type 2B (DI-CMT2B). Of these mutants, the PH domain, which is required for interaction with phosphoinositides, was mutated in several families. Interestingly, the expression of a deletion mutant, 551?3, did not impair endocytosis, but induced abnormal accumulation of microtubules. Recent evidence has shown that dynamin 2 regulates the dynamic instability of microtubules, and 551?3 lacks this function. We propose a model for the regulation of the dynamic instability of microtubules by dynamin 2 and discuss the relationship between dynamin 2 and CMT.
Related JoVE Video
The clathrin assembly protein PICALM is required for erythroid maturation and transferrin internalization in mice.
PLoS ONE
Show Abstract
Hide Abstract
Phosphatidylinositol binding clathrin assembly protein (PICALM), also known as clathrin assembly lymphoid myeloid leukemia protein (CALM), was originally isolated as part of the fusion gene CALM/AF10, which results from the chromosomal translocation t(10;11)(p13;q14). CALM is sufficient to drive clathrin assembly in vitro on lipid monolayers and regulates clathrin-coated budding and the size and shape of the vesicles at the plasma membrane. However, the physiological role of CALM has yet to be elucidated. Here, the role of CALM in vivo was investigated using CALM-deficient mice. CALM-deficient mice exhibited retarded growth in utero and were dwarfed throughout their shortened life-spans. Moreover, CALM-deficient mice suffered from severe anemia, and the maturation and iron content in erythroid precursors were severely impaired. CALM-deficient erythroid cells and embryonic fibroblasts exhibited impaired clathrin-mediated endocytosis of transferrin. These results indicate that CALM is required for erythroid maturation and transferrin internalization in mice.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.