JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
More than 10 Million Steps in the Right Direction: Results from the First American Heart Association Scientific Sessions Walking Challenge.
Prog Cardiovasc Dis
PUBLISHED: 10-01-2014
Show Abstract
Hide Abstract
In 2013, the Global Congress theme at the American Heart Association (AHA) Annual Scientific Sessions was Physical Activity (PA). As a key component of the Congress, iHealth working in collaboration with AHA provided a Bluetooth-enabled wireless PA and sleep tracker to up to 2,000 Scientific Sessions attendees. Approximately 1,850 Scientific Sessions attendees registered for, received an PA tracker and participated in the Walking Challenge. More than 10 million steps were walked by participants (10,703,504) during the 2.5days of the Walking Challenge. This translates into almost 6000 miles walked (5976.3 miles) and 656,716 calories burned by participants during the Challenge. The Global Congress of PA held at Scientific Sessions 2013 not only extensively reviewed the science of PA as a powerful/independent and, most importantly, modifiable cardiovascular risk factor, but it also provided evidence from a fun and entertaining challenge that PA as a risk behavior can be assessed and targeted. We just took 10 million steps in the right direction. Join us and make your steps count!
Related JoVE Video
Specific activin receptor-like kinase 3 inhibitors enhance liver regeneration.
J. Pharmacol. Exp. Ther.
PUBLISHED: 09-30-2014
Show Abstract
Hide Abstract
Pharmacologic agents to enhance liver regeneration after injury would have wide therapeutic application. Based on previous work suggesting inhibition of bone morphogenetic protein (BMP) signaling stimulates liver regeneration, we tested known and novel BMP inhibitors for their ability to accelerate regeneration in a partial hepatectomy (PH) model. Compounds were produced based on the 3,6-disubstituted pyrazolo[1,5-a] pyrimidine core of the BMP antagonist dorsomorphin and evaluated for their ability to inhibit BMP signaling and enhance liver regeneration. Antagonists of the BMP receptor activin receptor-like kinase 3 (ALK3), including LDN-193189 (LDN; 4-[6-[4-(1-piperazinyl)phenyl]pyrazolo[1,5-a]pyrimidin-3-yl]-quinoline), DMH2 (4-(2-(4-(3-(quinolin-4-yl)pyrazolo[1,5-a]pyrimidin-6-yl)phenoxy)ethyl)morpholine; VU0364849), and the novel compound VU0465350 (7-(4-isopropoxyphenyl)-3-(1H-pyrazol-4-yl)imidazo[1,2-a]pyridine; VU5350), blocked SMAD phosphorylation in vitro and in vivo, and enhanced liver regeneration after PH. In contrast, an antagonist of the BMP receptor ALK2, VU0469381 (5-(6-(4-methoxyphenyl)pyrazolo[1,5-a]pyrimidin-3-yl)quinolone; 1LWY), did not affect liver regeneration. LDN did not affect liver synthetic or metabolic function. Mechanistically, LDN increased serum interleukin-6 levels and signal transducer and activator of transcription 3 phosphorylation in the liver, and modulated other factors known to be important for liver regeneration, including suppressor of cytokine signaling 3 and p53. These findings suggest that inhibition of ALK3 may be part of a therapeutic strategy for treating human liver disease.
Related JoVE Video
Autologous transfusion of stored red blood cells increases pulmonary artery pressure.
Am. J. Respir. Crit. Care Med.
PUBLISHED: 08-28-2014
Show Abstract
Hide Abstract
Transfusion of erythrocytes stored for prolonged periods is associated with increased mortality. Erythrocytes undergo hemolysis during storage and after transfusion. Plasma hemoglobin scavenges endogenous nitric oxide leading to systemic and pulmonary vasoconstriction.
Related JoVE Video
Identification of a Small Molecule that Increases Hemoglobin Oxygen Affinity and Reduces SS Erythrocyte Sickling.
ACS Chem. Biol.
PUBLISHED: 08-11-2014
Show Abstract
Hide Abstract
Small molecules that increase the oxygen affinity of human hemoglobin may reduce sickling of red blood cells in patients with sickle cell disease. We screened 38?700 compounds using small molecule microarrays and identified 427 molecules that bind to hemoglobin. We developed a high-throughput assay for evaluating the ability of the 427 small molecules to modulate the oxygen affinity of hemoglobin. We identified a novel allosteric effector of hemoglobin, di(5-(2,3-dihydro-1,4-benzodioxin-2-yl)-4H-1,2,4-triazol-3-yl)disulfide (TD-1). TD-1 induced a greater increase in oxygen affinity of human hemoglobin in solution and in red blood cells than did 5-hydroxymethyl-2-furfural (5-HMF), N-ethylmaleimide (NEM), or diformamidine disulfide. The three-dimensional structure of hemoglobin complexed with TD-1 revealed that monomeric units of TD-1 bound covalently to ?-Cys93 and ?-Cys112, as well as noncovalently to the central water cavity of the hemoglobin tetramer. The binding of TD-1 to hemoglobin stabilized the relaxed state (R3-state) of hemoglobin. TD-1 increased the oxygen affinity of sickle hemoglobin and inhibited in vitro hypoxia-induced sickling of red blood cells in patients with sickle cell disease without causing hemolysis. Our study indicates that TD-1 represents a novel lead molecule for the treatment of patients with sickle cell disease.
Related JoVE Video
BMP type II receptors have redundant roles in the regulation of hepatic hepcidin gene expression and iron metabolism.
Blood
PUBLISHED: 07-29-2014
Show Abstract
Hide Abstract
Expression of hepcidin, the hepatic hormone controlling iron homeostasis, is regulated by bone morphogenetic protein (BMP) signaling. We sought to identify which BMP type II receptor expressed in hepatocytes, ActR2a or BMPR2, is responsible for regulating hepcidin gene expression. We studied Bmpr2 heterozygous mice (Bmpr2(+/-)), mice with hepatocyte-specific deficiency of BMPR2, mice with global deficiency of ActR2a, and mice in which hepatocytes lacked both BMPR2 and ActR2a. Hepatic hepcidin messenger RNA (mRNA) levels, serum hepcidin and iron levels, and tissue iron levels did not differ in wild-type mice, Bmpr2(+/-) mice, and mice in which either BMPR2 or ActR2a was deficient. Deficiency of both BMP type II receptors markedly reduced hepatic hepcidin gene expression and serum hepcidin levels leading to severe iron overload. Iron injection increased hepatic hepcidin mRNA levels in mice deficient in either BMPR2 or ActR2a, but not in mice deficient in both BMP type II receptors. In addition, in mouse and human primary hepatocytes, deficiency of both BMPR2 and ActR2a profoundly decreased basal and BMP6-induced hepcidin gene expression. These results suggest that BMP type II receptors, BMPR2 and ActR2a, have redundant roles in the regulation of hepatic hepcidin gene expression and iron metabolism.
Related JoVE Video
Beneficial effects of nitric oxide on outcomes after cardiac arrest and cardiopulmonary resuscitation in hypothermia-treated mice.
Anesthesiology
PUBLISHED: 02-06-2014
Show Abstract
Hide Abstract
Therapeutic hypothermia (TH) improves neurological outcomes after cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). Although nitric oxide prevents organ injury induced by ischemia and reperfusion, role of nitric oxide during TH after CPR remains unclear. In this article, the authors examined the impact of endogenous nitric oxide synthesis on the beneficial effects of hypothermia after CA/CPR. The authors also examined whether or not inhaled nitric oxide during hypothermia further improves outcomes after CA/CPR in mice treated with TH.
Related JoVE Video
The type I BMP receptor Alk3 is required for the induction of hepatic hepcidin gene expression by interleukin-6.
Blood
PUBLISHED: 02-05-2014
Show Abstract
Hide Abstract
Increased IL-6 production induces, via STAT3 phosphorylation, hepatic transcription of the gene encoding the iron-regulatory hormone, hepcidin, leading to development of anemia of chronic disease (ACD). Inhibition of bone morphogenetic protein (BMP) signaling prevents the induction of hepcidin gene expression by IL-6 and ameliorates ACD. Using mice with hepatocyte-specific deficiency of Alk2 or Alk3, we sought to identify the BMP type I receptor that participates in IL-6-mediated induction of hepcidin gene expression. Mice were injected with adenovirus specifying IL-6 (Ad.IL-6) or control adenovirus. Seventy-two hours later, serum iron concentrations and hepatic levels of STAT3 phosphorylation and hepcidin messenger RNA were measured. Additional mice were injected with recombinant murine IL-6 (mIL-6) or vehicle, and hepatic hepcidin gene expression was measured 4 hours later. Deficiency of Alk2 or Alk3 did not alter the ability of Ad.IL-6 injection to induce hepatic STAT3 phosphorylation. Ad.IL-6 increased hepatic hepcidin messenger RNA levels and decreased serum iron concentrations in Alk2- but not Alk3-deficient mice. Similarly, administration of mIL-6 induced hepatic hepcidin gene expression in Alk2- but not Alk3-deficient mice. These results demonstrate that the ability of IL-6 to induce hepatic hepcidin gene expression and reduce serum iron concentrations is dependent on the BMP type I receptor Alk3.
Related JoVE Video
Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis.
Cell
PUBLISHED: 02-04-2014
Show Abstract
Hide Abstract
Lung stem cells are instructed to produce lineage-specific progeny through unknown factors in their microenvironment. We used clonal 3D cocultures of endothelial cells and distal lung stem cells, bronchioalveolar stem cells (BASCs), to probe the instructive mechanisms. Single BASCs had bronchiolar and alveolar differentiation potential in lung endothelial cell cocultures. Gain- and loss-of-function experiments showed that BMP4-Bmpr1a signaling triggers calcineurin/NFATc1-dependent expression of thrombospondin-1 (Tsp1) in lung endothelial cells to drive alveolar lineage-specific BASC differentiation. Tsp1 null mice exhibited defective alveolar injury repair, confirming a crucial role for the BMP4-NFATc1-TSP1 axis in lung epithelial differentiation and regeneration in vivo. Discovery of this pathway points to methods to direct the derivation of specific lung epithelial lineages from multipotent cells. These findings elucidate a pathway that may be a critical target in lung diseases and provide tools to understand the mechanisms of respiratory diseases at the single-cell level.
Related JoVE Video
Phosphomimetic modulation of eNOS improves myocardial reperfusion and mimics cardiac postconditioning in mice.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Myocardial infarction resulting from ischemia-reperfusion injury can be reduced by cardiac postconditioning, in which blood flow is restored intermittently prior to full reperfusion. Although key molecular mechanisms and prosurvival pathways involved in postconditioning have been identified, a direct role for eNOS-derived NO in improving regional myocardial perfusion has not been shown. The objective of this study is to measure, with high temporal and spatial resolution, regional myocardial perfusion during ischemia-reperfusion and postconditioning, in order to determine the contribution of regional blood flow effects of NO to infarct size and protection.
Related JoVE Video
Deletion of the Murine Cytochrome P450 Cyp2j Locus by Fused BAC-Mediated Recombination Identifies a Role for Cyp2j in the Pulmonary Vascular Response to Hypoxia.
PLoS Genet.
PUBLISHED: 11-01-2013
Show Abstract
Hide Abstract
Epoxyeicosatrienoic acids (EETs) confer vasoactive and cardioprotective functions. Genetic analysis of the contributions of these short-lived mediators to pathophysiology has been confounded to date by the allelic expansion in rodents of the portion of the genome syntenic to human CYP2J2, a gene encoding one of the principle cytochrome P450 epoxygenases responsible for the formation of EETs in humans. Mice have eight potentially functional genes that could direct the synthesis of epoxygenases with properties similar to those of CYP2J2. As an initial step towards understanding the role of the murine Cyp2j locus, we have created mice bearing a 626-kb deletion spanning the entire region syntenic to CYP2J2, using a combination of homologous and site-directed recombination strategies. A mouse strain in which the locus deletion was complemented by transgenic delivery of BAC sequences encoding human CYP2J2 was also created. Systemic and pulmonary hemodynamic measurements did not differ in wild-type, null, and complemented mice at baseline. However, hypoxic pulmonary vasoconstriction (HPV) during left mainstem bronchus occlusion was impaired and associated with reduced systemic oxygenation in null mice, but not in null mice bearing the human transgene. Administration of an epoxygenase inhibitor to wild-type mice also impaired HPV. These findings demonstrate that Cyp2j gene products regulate the pulmonary vascular response to hypoxia.
Related JoVE Video
Adverse effects of hemorrhagic shock resuscitation with stored blood are ameliorated by inhaled nitric oxide in lambs*.
Crit. Care Med.
PUBLISHED: 07-27-2013
Show Abstract
Hide Abstract
Transfusion of stored RBCs is associated with increased morbidity and mortality in trauma patients. Plasma hemoglobin scavenges nitric oxide, which can cause vasoconstriction, induce inflammation, and activate platelets. We hypothesized that transfusion of RBCs stored for prolonged periods would induce adverse effects (pulmonary vasoconstriction, tissue injury, inflammation, and platelet activation) in lambs subjected to severe hemorrhagic shock and that concurrent inhalation of nitric oxide would prevent these adverse effects.
Related JoVE Video
Pathophysiology of hypertension in the absence of nitric oxide/cyclic GMP signaling.
Curr. Hypertens. Rep.
PUBLISHED: 06-26-2013
Show Abstract
Hide Abstract
The nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signaling system is a well-characterized modulator of cardiovascular function, in general, and blood pressure, in particular. The availability of mice mutant for key enzymes in the NO-cGMP signaling system facilitated the identification of interactions with other blood pressure modifying pathways (e.g. the renin-angiotensin-aldosterone system) and of gender-specific effects of impaired NO-cGMP signaling. In addition, recent genome-wide association studies identified blood pressure-modifying genetic variants in genes that modulate NO and cGMP levels. Together, these findings have advanced our understanding of how NO-cGMP signaling regulates blood pressure. In this review, we will summarize the results obtained in mice with disrupted NO-cGMP signaling and highlight the relevance of this pathway as a potential therapeutic target for the treatment of hypertension.
Related JoVE Video
Atrial natriuretic peptide is negatively regulated by microRNA-425.
J. Clin. Invest.
PUBLISHED: 05-17-2013
Show Abstract
Hide Abstract
Numerous common genetic variants have been linked to blood pressure, but no underlying mechanism has been elucidated. Population studies have revealed that the variant rs5068 (A/G) in the 3 untranslated region of NPPA, the gene encoding atrial natriuretic peptide (ANP), is associated with blood pressure. We selected individuals on the basis of rs5068 genotype (AG vs. AA) and fed them a low- or high-salt diet for 1 week, after which they were challenged with an intravenous saline infusion. On both diets, before and after saline administration, ANP levels were up to 50% higher in AG individuals than in AA individuals, a difference comparable to the changes induced by high-salt diet or saline infusion. In contrast, B-type natriuretic peptide levels did not differ by rs5068 genotype. We identified a microRNA, miR-425, that is expressed in human atria and ventricles and is predicted to bind the sequence spanning rs5068 for the A, but not the G, allele. miR-425 silenced NPPA mRNA in an allele-specific manner, with the G allele conferring resistance to miR-425. This study identifies miR-425 as a regulator of ANP production, raising the possibility that miR-425 antagonists could be used to treat disorders of salt overload, including hypertension and heart failure.
Related JoVE Video
Brown adipose tissue blood flow and mass in obesity: a contrast ultrasound study in mice.
J Am Soc Echocardiogr
PUBLISHED: 04-01-2013
Show Abstract
Hide Abstract
When activated by the sympathetic nervous system, brown adipose tissue (BAT) increases energy expenditure to produce heat. Augmenting BAT mass or increasing BAT activation could potentially be used to decrease obesity. Noninvasive methods to detect and monitor BAT mass are needed. Contrast ultrasound can estimate BAT blood flow and is able to measure the perfused volume of an organ and thus its mass. The objective of this study was to evaluate whether contrast ultrasound could characterize BAT mass in two mouse models of obesity: wild-type mice fed a high-fat diet and mutant db/db mice.
Related JoVE Video
Critical role of parathyroid hormone (PTH) receptor-1 phosphorylation in regulating acute responses to PTH.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 03-26-2013
Show Abstract
Hide Abstract
Agonist-induced phosphorylation of the parathyroid hormone (PTH) receptor 1 (PTHR1) regulates receptor signaling in vitro, but the role of this phosphorylation in vivo is uncertain. We investigated this role by injecting "knock-in" mice expressing a phosphorylation-deficient (PD) PTHR1 with PTH ligands and assessing acute biologic responses. Following injection with PTH (1-34), or with a unique, long-acting PTH analog, PD mice, compared with WT mice, exhibited enhanced increases in cAMP levels in the blood, as well as enhanced cAMP production and gene expression responses in bone and kidney tissue. Surprisingly, however, the hallmark hypercalcemic and hypophosphatemic responses were markedly absent in the PD mice, such that paradoxical hypocalcemic and hyperphosphatemic responses were observed, quite strikingly with the long-acting PTH analog. Spot urine analyses revealed a marked defect in the capacity of the PD mice to excrete phosphate, as well as cAMP, into the urine in response to PTH injection. This defect in renal excretion was associated with a severe, PTH-induced impairment in glomerular filtration, as assessed by the rate of FITC-inulin clearance from the blood, which, in turn, was explainable by an overly exuberant systemic hypotensive response. The overall findings demonstrate the importance in vivo of PTH-induced phosphorylation of the PTHR1 in regulating acute ligand responses, and they serve to focus attention on mechanisms that underlie the acute calcemic response to PTH and factors, such as blood phosphate levels, that influence it.
Related JoVE Video
Soluble guanylate cyclase ?1-deficient mice: a novel murine model for primary open angle glaucoma.
PLoS ONE
PUBLISHED: 02-21-2013
Show Abstract
Hide Abstract
Primary open angle glaucoma (POAG) is a leading cause of blindness worldwide. The molecular signaling involved in the pathogenesis of POAG remains unknown. Here, we report that mice lacking the ?1 subunit of the nitric oxide receptor soluble guanylate cyclase represent a novel and translatable animal model of POAG, characterized by thinning of the retinal nerve fiber layer and loss of optic nerve axons in the context of an open iridocorneal angle. The optic neuropathy associated with soluble guanylate cyclase ?1-deficiency was accompanied by modestly increased intraocular pressure and retinal vascular dysfunction. Moreover, data from a candidate gene association study suggests that a variant in the locus containing the genes encoding for the ?1 and ?1 subunits of soluble guanylate cyclase is associated with POAG in patients presenting with initial paracentral vision loss, a disease subtype thought to be associated with vascular dysregulation. These findings provide new insights into the pathogenesis and genetics of POAG and suggest new therapeutic strategies for POAG.
Related JoVE Video
Increased cardiac myocyte PDE5 levels in human and murine pressure overload hypertrophy contribute to adverse LV remodeling.
PLoS ONE
PUBLISHED: 02-07-2013
Show Abstract
Hide Abstract
The intracellular second messenger cGMP protects the heart under pathological conditions. We examined expression of phosphodiesterase 5 (PDE5), an enzyme that hydrolyzes cGMP, in human and mouse hearts subjected to sustained left ventricular (LV) pressure overload. We also determined the role of cardiac myocyte-specific PDE5 expression in adverse LV remodeling in mice after transverse aortic constriction (TAC).
Related JoVE Video
Hemoglobin infusion does not alter murine pulmonary vascular tone.
Nitric Oxide
PUBLISHED: 01-08-2013
Show Abstract
Hide Abstract
Plasma hemoglobin (Hb) scavenges endothelium-derived nitric oxide (NO), producing systemic and pulmonary vasoconstriction in many species. We hypothesized that i.v. administration of murine cell-free Hb would produce pulmonary vasoconstriction and enhance hypoxic pulmonary vasoconstriction (HPV) in mice. To assess the impact of plasma Hb on basal pulmonary vascular tone in anesthetized mice we measured left lung pulmonary vascular resistance (LPVRI) before and after infusion of Hb at thoracotomy. To confirm the findings obtained at thoracotomy, measurements of right ventricular systolic pressure (RVSP) and systemic arterial pressure (SAP) were obtained in closed-chest wild-type mice. To elucidate whether pretreatment with Hb augments HPV we assessed the increase in LPVRI before and during regional lung hypoxia produced by left mainstem bronchial occlusion (LMBO) in wild-type mice pretreated with Hb. Infusion of Hb increased SAP but did not change pulmonary arterial pressure (PAP), left lung pulmonary arterial flow (QLPA) or LPVRI in either wild-type or diabetic mice with endothelial dysfunction. Scavenging of NO by plasma Hb did not alter HPV in wild-type mice. Inhibition of NO synthase with l-NAME did not change the basal LPVRI, but augmented HPV during LMBO. Our data suggest that scavenging of NO by plasma Hb does not alter pulmonary vascular tone in mice. Therefore, generation of NO in the pulmonary circulation is unlikely to be responsible for the low basal pulmonary vascular tone of mice.
Related JoVE Video
Identification and characterization of a novel murine allele of Tmprss6.
Haematologica
PUBLISHED: 01-08-2013
Show Abstract
Hide Abstract
Mutagenesis screens can establish mouse models of utility for the study of critical biological processes such as iron metabolism. Such screens can produce mutations in novel genes or establish novel alleles of known genes, both of which can be useful tools for study. In order to identify genes of relevance to hematologic as well as other phenotypes, we performed N-ethyl-N-nitrosourea mutagenesis in C57BL/6J mice. An anemic mouse was identified and a putative mutation was characterized by mapping, sequencing and in vitro activity analysis. The mouse strain was backcrossed for ten generations then phenotypically characterized with respect to a previously established null mouse strain. Potential modifying loci were identified by quantitative trait locus analysis. Mapping and sequencing in an anemic mouse termed hem8 identified an I286F substitution in Tmprss6, a serine protease essential for iron metabolism; this substitution impaired in vitro protease activity. After backcrossing to C57BL6/J for ten generations, the hem8(-/-) strain exhibited a phenotype similar in some but not all aspects to that of Tmprss6(-/-) mice. The hem8 and Tmprss6-null mutations were allelic. Both hem8(-/-) and Tmprss6(-/-) mice responded similarly to pharmacological modulators of bone morphogenetic protein signaling, a key regulator of iron metabolism. Quantitative trait locus analysis in the hem8 strain identified potential modifying loci on chromosomes 2, 4, 7 and 10. In conclusion, the hem8 mouse model carries a novel allele of Tmprss6. Potential uses for this strain in the study of iron metabolism are discussed.
Related JoVE Video
Deletion of the Sequence Encoding the Tail Domain of the Bone Morphogenetic Protein type 2 Receptor Reveals a Bone Morphogenetic Protein 7-Specific Gain of Function.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The bone morphogenetic protein (BMP) type II receptor (BMPR2) has a long cytoplasmic tail domain whose function is incompletely elucidated. Mutations in the tail domain of BMPR2 are found in familial cases of pulmonary arterial hypertension. To investigate the role of the tail domain of BMPR2 in BMP signaling, we generated a mouse carrying a Bmpr2 allele encoding a non-sense mediated decay-resistant mutant receptor lacking the tail domain of Bmpr2. We found that homozygous mutant mice died during gastrulation, whereas heterozygous mice grew normally without developing pulmonary arterial hypertension. Using pulmonary artery smooth muscle cells (PaSMC) from heterozygous mice, we determined that the mutant receptor was expressed and retained its ability to transduce BMP signaling. Heterozygous PaSMCs exhibited a BMP7?specific gain of function, which was transduced via the mutant receptor. Using siRNA knockdown and cells from conditional knockout mice to selectively deplete BMP receptors, we observed that the tail domain of Bmpr2 inhibits Alk2?mediated BMP7 signaling. These findings suggest that the tail domain of Bmpr2 is essential for normal embryogenesis and inhibits Alk2?mediated BMP7 signaling in PaSMCs.
Related JoVE Video
Vasoreactivity to inhaled nitric oxide with oxygen predicts long-term survival in pulmonary arterial hypertension.
Pulm Circ
PUBLISHED: 10-25-2011
Show Abstract
Hide Abstract
Pulmonary vasodilator testing is currently used to guide management of patients with pulmonary arterial hypertension (PAH). However, the utility of the pulmonary vascular response to inhaled nitric oxide (NO) and oxygen in predicting survival has not been established. Eighty patients with WHO Group I PAH underwent vasodilator testing with inhaled NO (80 ppm with 90% O(2) for 10 minutes) at the time of diagnosis. Changes in right atrial (RA) pressure, mean pulmonary artery pressure (mPAP), pulmonary capillary wedge pressure, Fick cardiac output, and pulmonary vascular resistance (PVR) were tested for associations to long-term survival (median follow-up 2.4 years). Five-year survival was 56%. Baseline PVR (mean±SD 850±580 dyne-sec/cm(5)) and mPAP (49±14 mmHg) did not predict survival, whereas the change in either PVR or mPAP while breathing NO and O(2) was predictive. Patients with a ?30% reduction in PVR with inhaled NO and O(2) had a 53% relative reduction in mortality (Cox hazard ratio 0.47, 95% confidence interval (CI) 0.23-0.99, P=0.047), and those with a ?12% reduction in mPAP with inhaled NO and O(2) had a 55% relative reduction in mortality (hazard ratio 0.45, 95% CI 0.22-0.96, P=0.038). The same vasoreactive thresholds predicted survival in the subset of patients who never were treated with calcium channel antagonists (n=66). Multivariate analysis showed that decreases in PVR and mPAP with inhaled NO and O(2) were independent predictors of survival. Reduction in PVR or mPAP during short-term administration of inhaled NO and O(2) predicts survival in PAH patients.
Related JoVE Video
Cysteinyl leukotrienes impair hypoxic pulmonary vasoconstriction in endotoxemic mice.
Anesthesiology
PUBLISHED: 09-22-2011
Show Abstract
Hide Abstract
Sepsis impairs hypoxic pulmonary vasoconstriction (HPV) in patients and animal models, contributing to systemic hypoxemia. Concentrations of cysteinyl leukotrienes are increased in the bronchoalveolar lavage fluid of patients with sepsis, but the contribution of cysteinyl leukotrienes to the impairment of HPV is unknown.
Related JoVE Video
Inhaled nitric oxide improves outcomes after successful cardiopulmonary resuscitation in mice.
Circulation
PUBLISHED: 09-19-2011
Show Abstract
Hide Abstract
Sudden cardiac arrest (CA) is a leading cause of death worldwide. Breathing nitric oxide (NO) reduces ischemia/reperfusion injury in animal models and in patients. The objective of this study was to learn whether inhaled NO improves outcomes after CA and cardiopulmonary resuscitation (CPR).
Related JoVE Video
Protective and Detrimental Effects of Sodium Sulfide and Hydrogen Sulfide in Murine Ventilator-induced Lung Injury.
Anesthesiology
PUBLISHED: 09-14-2011
Show Abstract
Hide Abstract
The antiinflammatory effects of hydrogen sulfide (H2S) and sodium sulfide (Na2S) treatment may prevent acute lung injury induced by high tidal volume (HVT) ventilation. However, lung protection may be limited by direct pulmonary toxicity associated with H2S inhalation. Therefore, the authors tested whether the inhalation of H2S or intravascular Na2S treatment can protect against ventilator-induced lung injury in mice.
Related JoVE Video
Nitric oxide synthase 3 deficiency limits adverse ventricular remodeling after pressure overload in insulin resistance.
Am. J. Physiol. Heart Circ. Physiol.
PUBLISHED: 08-19-2011
Show Abstract
Hide Abstract
Insulin resistance (IR) and systemic hypertension are independently associated with heart failure. We reported previously that nitric oxide synthase 3 (NOS3) has a beneficial effect on left ventricular (LV) remodeling and function after pressure-overload in mice. The aim of our study was to investigate the interaction of IR and NOS3 in pressure-overload-induced LV remodeling and dysfunction. Wild-type (WT) and NOS3-deficient (NOS3(-/-)) mice were fed either a standard diet (SD) or a high-fat diet (HFD) to induce IR. After 9 days of diet, mice underwent transverse aortic constriction (TAC). LV structure and function were assessed serially using echocardiography. Cardiomyocytes were isolated, and levels of oxidative stress were evaluated using 2,7-dichlorodihydrofluorescein diacetate. Cardiac mitochondria were isolated, and mitochondrial respiration and ATP production were measured. TAC induced LV remodeling and dysfunction in all mice. The TAC-induced decrease in LV function was greater in SD-fed NOS3(-/-) mice than in SD-fed WT mice. In contrast, HFD-fed NOS3(-/-) developed less LV remodeling and dysfunction and had better survival than did HFD-fed WT mice. Seven days after TAC, oxidative stress levels were lower in cardiomyocytes from HFD-fed NOS3(-/-) than in those from HFD-fed WT. N(?)-nitro-L-arginine methyl ester and mitochondrial inhibitors (rotenone and 2-thenoyltrifluoroacetone) decreased oxidative stress levels in cardiomyocytes from HFD-fed WT mice. Mitochondrial respiration was altered in NOS3(-/-) mice but did not worsen after HFD and TAC. In contrast with its protective role in SD, NOS3 increases LV adverse remodeling after pressure overload in HFD-fed, insulin resistant mice. Interactions between NOS3 and mitochondria may be responsible for increased oxidative stress levels in HFD-fed WT mice hearts.
Related JoVE Video
Perturbation of hepcidin expression by BMP type I receptor deletion induces iron overload in mice.
Blood
PUBLISHED: 08-12-2011
Show Abstract
Hide Abstract
Bone morphogenetic protein (BMP) signaling induces hepatic expression of the peptide hormone hepcidin. Hepcidin reduces serum iron levels by promoting degradation of the iron exporter ferroportin. A relative deficiency of hepcidin underlies the pathophysiology of many of the genetically distinct iron overload disorders, collectively termed hereditary hemochromatosis. Conversely, chronic inflammatory conditions and neoplastic diseases can induce high hepcidin levels, leading to impaired mobilization of iron stores and the anemia of chronic disease. Two BMP type I receptors, Alk2 (Acvr1) and Alk3 (Bmpr1a), are expressed in murine hepatocytes. We report that liver-specific deletion of either Alk2 or Alk3 causes iron overload in mice. The iron overload phenotype was more marked in Alk3- than in Alk2-deficient mice, and Alk3 deficiency was associated with a nearly complete ablation of basal BMP signaling and hepcidin expression. Both Alk2 and Alk3 were required for induction of hepcidin gene expression by BMP2 in cultured hepatocytes or by iron challenge in vivo. These observations demonstrate that one type I BMP receptor, Alk3, is critically responsible for basal hepcidin expression, whereas 2 type I BMP receptors, Alk2 and Alk3, are required for regulation of hepcidin gene expression in response to iron and BMP signaling.
Related JoVE Video
Effects of transdermal testosterone on natriuretic peptide levels in women: a randomized placebo-controlled pilot study.
Fertil. Steril.
PUBLISHED: 07-25-2011
Show Abstract
Hide Abstract
To investigate whether testosterone administration alters natriuretic peptide levels in women.
Related JoVE Video
sGC{alpha}1 mediates the negative inotropic effects of NO in cardiac myocytes independent of changes in calcium handling.
Am. J. Physiol. Heart Circ. Physiol.
PUBLISHED: 05-02-2011
Show Abstract
Hide Abstract
In the heart, nitric oxide (NO) modulates contractile function; however, the mechanisms responsible for this effect are incompletely understood. NO can elicit effects via a variety of mechanisms including S-nitrosylation and stimulation of cGMP synthesis by soluble guanylate cyclase (sGC). sGC is a heterodimer comprised of a ?(1)- and an ?(1)- or ?(2)-subunit. sGC?(1)?(1) is the predominant isoform in the heart. To characterize the role of sGC in the regulation of cardiac contractile function by NO, we compared left ventricular cardiac myocytes (CM) isolated from adult mice deficient in the sGC ?(1)-subunit (sGC?(1)(-/-)) and from wild-type (WT) mice. Sarcomere shortening under basal conditions was less in sGC?(1)(-/-) CM than in WT CM. To activate endogenous NO synthesis from NO synthase 3, CM were incubated with the ?(3)-adrenergic receptor (?(3)-AR) agonist BRL 37344. BRL 37344 decreased cardiac contractility in WT CM but not in sGC?(1)(-/-) myocytes. Administration of spermine NONOate, an NO donor compound, did not affect sarcomeric shortening in CM of either genotype; however, in the presence of isoproterenol, addition of spermine NONOate reduced sarcomere shortening in WT but not in sGC?(1)(-/-) CM. Neither BRL 37344 nor spermine NONOate altered calcium handling in CM of either genotype. These findings suggest that sGC?(1) exerts a positive inotropic effect under basal conditions, as well as mediates the negative inotropic effect of ?(3)-AR signaling. Additionally, our work demonstrates that sGC?(1)?(1) is required for NO to depress ?(1)/?(2)-AR-stimulated cardiac contractility and that this modulation is independent of changes in calcium handling.
Related JoVE Video
Protein kinase G signaling disrupts Rac1-dependent focal adhesion assembly in liver specific pericytes.
Am. J. Physiol., Cell Physiol.
PUBLISHED: 03-30-2011
Show Abstract
Hide Abstract
Nitric oxide (NO) regulates the function of perivascular cells (pericytes), including hepatic stellate cells (HSC), mainly by activating cGMP and cGMP-dependent kinase (PKG) via NO/cGMP paracrine signaling. Although PKG is implicated in integrin-mediated cell adhesion to extracellular matrix, whether or how PKG signaling regulates the assembly of focal adhesion complexes (FA) and migration of HSC is not known. With the help of complementary molecular and cell biological approaches, we demonstrate here that activation of PKG signaling in HSC inhibits vascular tubulogenesis, migration/chemotaxis, and assembly of mature FA plaques, as assessed by vascular tubulogenesis assays and immunofluorescence localization of FA markers such as vinculin and vasodilator-stimulated phosphoprotein (VASP). To determine whether PKG inhibits FA assembly by phosphorylation of VASP at Ser-157, Ser-239, and Thr-278, we mutated these putative phosphorylation sites to alanine (VASP3A, phosphoresistant mutant) or aspartic acid (VASP3D, phosphomimetic), respectively. Data generated from these two mutants suggest that the effect of PKG on FA is independent of these three phosphorylation sites. In contrast, activation of PKG inhibits the activity of small GTPase Rac1 and its association with the effector protein IQGAP1. Moreover, PKG activation inhibits the formation of a trimeric protein complex containing Rac1, IQGAP1, and VASP. Finally, we found that expression of a constitutively active Rac1 mutant abolishes the inhibitory effects of PKG on FA formation. In summary, our data suggest that activation of PKG signaling in pericytes inhibits FA formation by inhibiting Rac1.
Related JoVE Video
Inhibition of bone morphogenetic protein signaling attenuates anemia associated with inflammation.
Blood
PUBLISHED: 03-10-2011
Show Abstract
Hide Abstract
Anemia of inflammation develops in settings of chronic inflammatory, infectious, or neoplastic disease. In this highly prevalent form of anemia, inflammatory cytokines, including IL-6, stimulate hepatic expression of hepcidin, which negatively regulates iron bioavailability by inactivating ferroportin. Hepcidin is transcriptionally regulated by IL-6 and bone morphogenetic protein (BMP) signaling. We hypothesized that inhibiting BMP signaling can reduce hepcidin expression and ameliorate hypoferremia and anemia associated with inflammation. In human hepatoma cells, IL-6-induced hepcidin expression, an effect that was inhibited by treatment with a BMP type I receptor inhibitor, LDN-193189, or BMP ligand antagonists noggin and ALK3-Fc. In zebrafish, the induction of hepcidin expression by transgenic expression of IL-6 was also reduced by LDN-193189. In mice, treatment with IL-6 or turpentine increased hepcidin expression and reduced serum iron, effects that were inhibited by LDN-193189 or ALK3-Fc. Chronic turpentine treatment led to microcytic anemia, which was prevented by concurrent administration of LDN-193189 or attenuated when LDN-193189 was administered after anemia was established. Our studies support the concept that BMP and IL-6 act together to regulate iron homeostasis and suggest that inhibition of BMP signaling may be an effective strategy for the treatment of anemia of inflammation.
Related JoVE Video
Pulmonary vascular response patterns during exercise in left ventricular systolic dysfunction predict exercise capacity and outcomes.
Circ Heart Fail
PUBLISHED: 02-03-2011
Show Abstract
Hide Abstract
Elevated resting pulmonary arterial pressure (PAP) in patients with left ventricular systolic dysfunction (LVSD) purports a poor prognosis. However, PAP response patterns to exercise in LVSD and their relationship to functional capacity and outcomes have not been characterized.
Related JoVE Video
Soluble guanylate cyclase-?1 is required for the cardioprotective effects of inhaled nitric oxide.
Am. J. Physiol. Heart Circ. Physiol.
PUBLISHED: 01-21-2011
Show Abstract
Hide Abstract
Reperfusion injury limits the benefits of revascularization in the treatment of myocardial infarction (MI). Breathing nitric oxide (NO) reduces cardiac ischemia-reperfusion injury in animal models; however, the signaling pathways by which inhaled NO confers cardioprotection remain uncertain. The objective of this study was to learn whether inhaled NO reduces cardiac ischemia-reperfusion injury by activating the cGMP-generating enzyme, soluble guanylate cyclase (sGC), and to investigate whether bone marrow (BM)-derived cells participate in the sGC-mediated cardioprotective effects of inhaled NO. Wild-type (WT) mice and mice deficient in the sGC ?(1)-subunit (sGC?(1)(-/-) mice) were subjected to cardiac ischemia for 1 h, followed by 24 h of reperfusion. During ischemia and for the first 10 min of reperfusion, mice were ventilated with oxygen or with oxygen supplemented with NO (80 parts per million). The ratio of MI size to area at risk (MI/AAR) did not differ in WT and sGC?(1)(-/-) mice that did not breathe NO. Breathing NO decreased MI/AAR in WT mice (41%, P = 0.002) but not in sGC?(1)(-/-) mice (7%, P = not significant). BM transplantation was performed to restore WT BM-derived cells to sGC?(1)(-/-) mice. Breathing NO decreased MI/AAR in sGC?(1)(-/-) mice carrying WT BM (39%, P = 0.031). In conclusion, these results demonstrate that a global deficiency of sGC?(1) does not alter the degree of cardiac ischemia-reperfusion injury in mice. The cardioprotective effects of inhaled NO require the presence of sGC?(1). Moreover, our studies suggest that BM-derived cells are key mediators of the ability of NO to reduce cardiac ischemia-reperfusion injury.
Related JoVE Video
Nitric oxide regulates pulmonary vascular smooth muscle cell expression of the inducible cAMP early repressor gene.
Nitric Oxide
PUBLISHED: 01-13-2011
Show Abstract
Hide Abstract
Nitric oxide (NO) regulates vascular smooth muscle cell (VSMC) structure and function, in part by activating soluble guanylate cyclase (sGC) to synthesize cGMP. The objective of this study was to further characterize the signaling mechanisms by which NO regulates VSMC gene expression using transcription profiling. DNA microarrays were hybridized with RNA extracted from rat pulmonary artery smooth muscle cells (RPaSMC) exposed to the NO donor compound, S-nitroso-glutathione (GSNO). Many of the genes, whose expression was induced by GSNO, contain a cAMP-response element (CRE), of which one encoded the inducible cAMP early repressor (ICER). sGC and cAMP-dependent protein kinase, but not cGMP-dependent protein kinase, were required for NO-mediated phosphorylation of CRE-binding protein (CREB) and induction of ICER gene expression. Expression of a dominant-negative CREB in RPaSMC prevented the NO-mediated induction of CRE-dependent gene transcription and ICER gene expression. Pre-treatment of RPaSMC with the intracellular calcium (Ca(2+)) chelator, BAPTA-AM, blocked the induction of ICER gene expression by GSNO. The store-operated Ca(2+) channel inhibitors, 2-ABP, and SKF-96365, reduced the GSNO-mediated increase in ICER mRNA levels, while 2-ABP did not inhibit GSNO-induced CREB phosphorylation. Our results suggest that induction of ICER gene expression by NO requires both CREB phosphorylation and Ca(2+) signaling. Transcription profiling of RPaSMC exposed to GSNO revealed important roles for sGC, PKA, CREB, and Ca(2+) in the regulation of gene expression by NO. The induction of ICER in GSNO-treated RPaSMC highlights a novel cross-talk mechanism between cGMP and cAMP signaling pathways.
Related JoVE Video
Adiponectin decreases pulmonary arterial remodeling in murine models of pulmonary hypertension.
Am. J. Respir. Cell Mol. Biol.
PUBLISHED: 11-12-2010
Show Abstract
Hide Abstract
Remodeling of the pulmonary arteries is a common feature among the heterogeneous disorders that cause pulmonary hypertension. In these disorders, the remodeled pulmonary arteries often demonstrate inflammation and an accumulation of pulmonary artery smooth muscle cells (PASMCs) within the vessels. Adipose tissue secretes multiple bioactive mediators (adipokines) that can influence both inflammation and remodeling, suggesting that adipokines may contribute to the development of pulmonary hypertension. We recently reported on a model of pulmonary hypertension induced by vascular inflammation, in which a deficiency of the adipokine adiponectin (APN) was associated with the extensive proliferation of PASMCs and increased pulmonary artery pressures. Based on these data, we hypothesize that APN can suppress pulmonary hypertension by directly inhibiting the proliferation of PASMCs. Here, we tested the effects of APN overexpression on pulmonary arterial remodeling by using APN-overexpressing mice in a model of pulmonary hypertension induced by inflammation. Consistent with our hypothesis, mice that overexpressed APN manfiested reduced pulmonary hypertension and remodeling compared with wild-type mice, despite developing similar levels of pulmonary vascular inflammation in the model. The overexpression of APN was also protective in a hypoxic model of pulmonary hypertension. Furthermore, APN suppressed the proliferation of PASMCs, and reduced the activity of the serum response factor-serum response element pathway, which is a critical signaling pathway for smooth muscle cell proliferation. Overall, these data suggest that APN can regulate pulmonary hypertension and pulmonary arterial remodeling through its direct effects on PASMCs. Hence, the activation of APN-like activity in the pulmonary vasculature may be beneficial in pulmonary hypertension.
Related JoVE Video
Focal adhesion assembly in myofibroblasts fosters a microenvironment that promotes tumor growth.
Am. J. Pathol.
PUBLISHED: 08-27-2010
Show Abstract
Hide Abstract
Cells within the tumor microenvironment influence tumor growth through multiple mechanisms. Pericytes such as hepatic stellate cells are an important cell within the tumor microenvironment; their transformation into highly motile myofibroblasts leads to angiogenesis, stromal cell recruitment, matrix deposition, and ensuing tumor growth. Thus, a better understanding of mechanisms that regulate motility of pericytes is required. Focal adhesions (FAs) form a physical link between the extracellular environment and the actin cytoskeleton, a requisite step for cell motility. FAs contain a collection of proteins including the Ena/VASP family member, vasodilator-stimulated phosphoprotein (VASP); however, a role for VASP in FA development has been elusive. Using a comprehensive siRNA knockdown approach and a variety of VASP mutants coupled with complementary cell imaging methodologies, we demonstrate a requirement of VASP for optimal development of FAs and cell spreading in LX2 liver myofibroblasts, which express high levels of endogenous VASP. Rac1, a binding partner of VASP, acts in tandem with VASP to regulate FAs. In vivo, perturbation of Ena/VASP function in tumor myofibroblast precursor cells significantly reduces pericyte recruitment to tumor vasculature, myofibroblastic transformation, tumor angiogenesis, and tumor growth, providing in vivo pathobiologic relevance to these findings. Taken together, our results identify Ena/VASP as a significant modifier of tumor growth through regulation of FA dynamics and ensuing pericyte/myofibroblast function within the tumor microenvironment.
Related JoVE Video
Soluble guanylate cyclase alpha1beta1 limits stroke size and attenuates neurological injury.
Stroke
PUBLISHED: 07-01-2010
Show Abstract
Hide Abstract
Nitric oxide mediates endothelium-dependent vasodilation, modulates cerebral blood flow, and determines stroke outcome. Nitric oxide signals in part by stimulating soluble guanylate cyclase (sGC) to synthesize cGMP. To study the role of sGC in stroke injury, we compared the outcome of cerebral ischemia and reperfusion in mice deficient in the alpha(1) subunit of sGC (sGCalpha(1)(-/-)) with that in wild-type mice.
Related JoVE Video
Nitric oxide synthase 3 contributes to ventilator-induced lung injury.
Am. J. Physiol. Lung Cell Mol. Physiol.
PUBLISHED: 05-07-2010
Show Abstract
Hide Abstract
Nitric oxide synthase (NOS) depletion or inhibition reduces ventilator-induced lung injury (VILI), but the responsible mechanisms remain incompletely defined. The aim of this study was to elucidate the role of endothelial NOS, NOS3, in the pathogenesis of VILI in an in vivo mouse model. Wild-type and NOS3-deficient mice were ventilated with high-tidal volume (HV(T); 40 ml/kg) for 4 h, with and without adding NO to the inhaled gas. Additional wild-type mice were pretreated with tetrahydrobiopterin and ascorbic acid, agents that can prevent NOS-generated superoxide production. Arterial blood gas tensions, histology, and lung mechanics were evaluated after 4 h of HV(T) ventilation. The concentration of protein, IgM, cytokines, malondialdehyde, and 8-isoprostane were measured in bronchoalveolar lavage fluid (BALF). Myeloperoxidase activity, total and oxidized glutathione levels, and NOS-derived superoxide production were measured in lung tissue homogenates. HV(T) ventilation induced VILI in wild-type mice, as reflected by decreased lung compliance, increased concentrations of protein and cytokines in BALF, and oxidative stress. All indices of VILI were ameliorated in NOS3-deficient mice. Augmenting pulmonary NO levels by breathing NO during mechanical ventilation did not increase lung injury in NOS3-deficient mice. HV(T) ventilation increased NOS-inhibitable superoxide production in lung extracts from wild-type mice but not in those from NOS3-deficient mice. Administration of tetrahydrobiopterin and ascorbic acid ameliorated VILI in wild-type mice. Our results indicate that NOS3 contributes to ventilator-induced lung injury via increased production of superoxide.
Related JoVE Video
Endothelial dysfunction enhances vasoconstriction due to scavenging of nitric oxide by a hemoglobin-based oxygen carrier.
Anesthesiology
PUBLISHED: 02-25-2010
Show Abstract
Hide Abstract
To date, there is no safe and effective hemoglobin-based oxygen carrier (HBOC) to substitute for erythrocyte transfusion. It is uncertain whether a deficiency of endothelial nitric oxide bioavailability (endothelial dysfunction) prevents or augments HBOC-induced vasoconstriction.
Related JoVE Video
Noninvasive assessment of murine pulmonary arterial pressure: validation and application to models of pulmonary hypertension.
Circ Cardiovasc Imaging
PUBLISHED: 01-02-2010
Show Abstract
Hide Abstract
Genetically modified mice offer the unique opportunity to gain insight into the pathophysiology of pulmonary arterial hypertension. In mice, right heart catheterization is the only available technique to measure right ventricular systolic pressure (RVSP). However, it is a terminal procedure and does not allow for serial measurements. Our objective was to validate a noninvasive technique to assess RVSP in mice.
Related JoVE Video
Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice.
Circulation
PUBLISHED: 08-24-2009
Show Abstract
Hide Abstract
Sudden cardiac arrest (CA) is one of the leading causes of death worldwide. We sought to evaluate the impact of hydrogen sulfide (H(2)S) on the outcome after CA and cardiopulmonary resuscitation (CPR) in mouse.
Related JoVE Video
Hemoglobin-based red blood cell substitutes and nitric oxide.
Trends Cardiovasc. Med.
PUBLISHED: 08-15-2009
Show Abstract
Hide Abstract
Hemoglobin-based oxygen carriers (HBOCs) have been studied for decades as red blood cell substitutes. Profound vasoconstrictor effects have limited the clinical utility of HBOCs and are attributable to avid scavenging of nitric oxide (NO). Inhaling NO can charge the bodys stores of NO metabolites without producing hypotension and can prevent systemic hypertension induced when HBOCs are subsequently infused. Concurrent breathing of low NO doses can prevent pulmonary vasoconstriction after HBOC infusion without augmenting plasma methemoglobinemia.
Related JoVE Video
Gender-specific modulation of the response to arterial injury by soluble guanylate cyclase ?1.
Open Cardiovasc Med J
PUBLISHED: 07-13-2009
Show Abstract
Hide Abstract
Soluble guanylate cyclase (sGC), a heterodimer composed of alpha and beta subunits, synthesizes cGMP in response to nitric oxide (NO). NO modulates vascular tone and structure but the relative contributions of cGMP-dependent versus cGMP-independent mechanisms remain uncertain. We studied the response to vascular injury in male (M) and female (F) mice with targeted deletion of exon 6 of the sGC?1 subunit (sGC?1(-/-)), resulting in a non-functional heterodimer.
Related JoVE Video
sGC(alpha)1(beta)1 attenuates cardiac dysfunction and mortality in murine inflammatory shock models.
Am. J. Physiol. Heart Circ. Physiol.
PUBLISHED: 06-05-2009
Show Abstract
Hide Abstract
Altered cGMP signaling has been implicated in myocardial depression, morbidity, and mortality associated with sepsis. Previous studies, using inhibitors of soluble guanylate cyclase (sGC), suggested that cGMP generated by sGC contributed to the cardiac dysfunction and mortality associated with sepsis. We used sGC(alpha)(1)-deficient (sGC(alpha)(1)(-/-)) mice to unequivocally determine the role of sGC(alpha)(1)beta(1) in the development of cardiac dysfunction and death associated with two models of inflammatory shock: endotoxin- and TNF-induced shock. At baseline, echocardiographic assessment and invasive hemodynamic measurements of left ventricular (LV) dimensions and function did not differ between wild-type (WT) mice and sGC(alpha)(1)(-/-) mice on the C57BL/6 background (sGC(alpha)(1)(-/-B6) mice). At 14 h after endotoxin challenge, cardiac dysfunction was more pronounced in sGC(alpha)(1)(-/-B6) than WT mice, as assessed using echocardiographic and hemodynamic indexes of LV function. Similarly, Ca(2+) handling and cell shortening were impaired to a greater extent in cardiomyocytes isolated from sGC(alpha)(1)(-/-B6) than WT mice after endotoxin challenge. Importantly, morbidity and mortality associated with inflammatory shock induced by endotoxin or TNF were increased in sGC(alpha)(1)(-/-B6) compared with WT mice. Together, these findings suggest that cGMP generated by sGC(alpha)(1)beta(1) protects against cardiac dysfunction and mortality in murine inflammatory shock models.
Related JoVE Video
BMP type II receptor regulates positioning of outflow tract and remodeling of atrioventricular cushion during cardiogenesis.
Dev. Biol.
PUBLISHED: 03-20-2009
Show Abstract
Hide Abstract
Signaling of bone morphogenetic protein (BMP) via type I and type II receptors is involved in multiple processes contributing to cardiogenesis. To investigate the role of the BMP type II receptor (BMPRII) in heart development, the BMPRII gene was deleted throughout the embryo during gastrulation using a Mox2-Cre transgene. BMPRII(flox/-);Mox2-Cre mice exhibited cardiac defects including double-outlet right ventricle, ventricular septal defect (VSD), atrioventricular (AV) cushion defects, and thickened valve leaflets. To characterize the tissue-specific functions of BMPRII in cardiogenesis, a series of Cre transgenes (alphaMHC-, Tie2-, Wnt1-, and SM22alpha-Cre) was employed. Interestingly, myocardial development was normal when the BMPRII gene was deleted in myocardial cells using Mox2-Cre, alphaMHC-Cre, or SM22alpha-Cre transgenes, suggesting that signaling by other BMP type II receptors may compensate for the absence of BMPRII in the myocardial cells. AV cushion defects including atrial septal defect, membranous VSD, and thickened valve leaflets were found in BMPRII(flox/-);Tie2-Cre mice. Abnormal positioning of the aorta was observed in BMPRII(flox/-);Wnt1-Cre and BMPRII(flox/-);SM22alpha-Cre mice. Taken together, these results demonstrate that endocardial BMPRII expression is required for septal formation and valvulogenesis. Moreover, mesenchymal BMPRII expression in the outflow tract cushion is required for proper positioning of the aorta.
Related JoVE Video
Protective effects of nitric oxide synthase 3 and soluble guanylate cyclase on the outcome of cardiac arrest and cardiopulmonary resuscitation in mice.
Crit. Care Med.
PUBLISHED: 02-10-2009
Show Abstract
Hide Abstract
Despite advances in resuscitation methods, survival after out-of-hospital cardiac arrest remains low, at least in part, due to postcardiac arrest circulatory and neurologic failure. To elucidate the role of nitric oxide (NO) in the recovery from cardiac arrest and cardiopulmonary resuscitation (CPR), we studied the impact of NO synthase (NOS3)/cGMP signaling on cardiac and neurologic outcomes after cardiac arrest and CPR.
Related JoVE Video
Adiponectin deficiency increases allergic airway inflammation and pulmonary vascular remodeling.
Am. J. Respir. Cell Mol. Biol.
PUBLISHED: 01-23-2009
Show Abstract
Hide Abstract
Obesity is associated with an increased incidence and severity of asthma, as well as other lung disorders, such as pulmonary hypertension. Adiponectin (APN), an antiinflammatory adipocytokine, circulates at lower levels in the obese, which is thought to contribute to obesity-related inflammatory diseases. We sought to determine the effects of APN deficiency in a murine model of chronic asthma. Allergic airway inflammation was induced in APN-deficient mice (APN(-/-)) using sensitization without adjuvant followed by airway challenge with ovalbumin. The mice were then analyzed for changes in inflammation and lung remodeling. APN(-/-) mice in this model develop increased allergic airway inflammation compared with wild-type mice, with greater accumulation of eosinophils and monocytes in the airways associated with elevated lung chemokine levels. Surprisingly, APN(-/-) mice developed severe pulmonary arterial muscularization and pulmonary arterial hypertension in this model, whereas wild-type mice had only mild vascular remodeling and comparatively less pulmonary arterial hypertension. Our findings demonstrate that APN modulates allergic inflammation and pulmonary vascular remodeling in a model of chronic asthma. These data provide a possible mechanism for the association between obesity and asthma, and suggest a potential novel link between obesity, inflammatory lung disease, and pulmonary hypertension.
Related JoVE Video
Prevention of the pulmonary vasoconstrictor effects of HBOC-201 in awake lambs by continuously breathing nitric oxide.
Anesthesiology
PUBLISHED: 01-23-2009
Show Abstract
Hide Abstract
Hemoglobin-based oxygen-carrying solutions (HBOC) provide emergency alternatives to blood transfusion to carry oxygen to tissues without the risks of disease transmission or transfusion reaction. Two primary concerns hampering the clinical acceptance of acellular HBOC are the occurrence of systemic and pulmonary vasoconstriction and the maintenance of the heme-iron in the reduced state (Fe2+). We recently demonstrated that pretreatment with inhaled nitric oxide prevents the systemic hypertension induced by HBOC-201 (polymerized bovine hemoglobin) infusion in awake mice and sheep without causing methemoglobinemia. However, the impact of HBOC-201 infusion with or without inhaled nitric oxide on pulmonary vascular tone has not yet been examined.
Related JoVE Video
Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure.
Nat. Genet.
PUBLISHED: 01-15-2009
Show Abstract
Hide Abstract
We examined the association of common variants at the NPPA-NPPB locus with circulating concentrations of the natriuretic peptides, which have blood pressure-lowering properties. We genotyped SNPs at the NPPA-NPPB locus in 14,743 individuals of European ancestry, and identified associations of plasma atrial natriuretic peptide with rs5068 (P = 8 x 10(-70)), rs198358 (P = 8 x 10(-30)) and rs632793 (P = 2 x 10(-10)), and of plasma B-type natriuretic peptide with rs5068 (P = 3 x 10(-12)), rs198358 (P = 1 x 10(-25)) and rs632793 (P = 2 x 10(-68)). In 29,717 individuals, the alleles of rs5068 and rs198358 that showed association with increased circulating natriuretic peptide concentrations were also found to be associated with lower systolic (P = 2 x 10(-6) and 6 x 10(-5), respectively) and diastolic blood pressure (P = 1 x 10(-6) and 5 x 10(-5)), as well as reduced odds of hypertension (OR = 0.85, 95% CI = 0.79-0.92, P = 4 x 10(-5); OR = 0.90, 95% CI = 0.85-0.95, P = 2 x 10(-4), respectively). Common genetic variants at the NPPA-NPPB locus found to be associated with circulating natriuretic peptide concentrations contribute to interindividual variation in blood pressure and hypertension.
Related JoVE Video
Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice.
Circulation
PUBLISHED: 01-12-2009
Show Abstract
Hide Abstract
Ventricular expression of phosphodiesterase-5 (PDE5), an enzyme responsible for cGMP catabolism, is increased in human right ventricular hypertrophy, but its role in left ventricular (LV) failure remains incompletely understood. We therefore measured LV PDE5 expression in patients with advanced systolic heart failure and characterized LV remodeling after myocardial infarction in transgenic mice with cardiomyocyte-specific overexpression of PDE5 (PDE5-TG).
Related JoVE Video
Inhaled nitric oxide attenuates the adverse effects of transfusing stored syngeneic erythrocytes in mice with endothelial dysfunction after hemorrhagic shock.
Anesthesiology
Show Abstract
Hide Abstract
The authors investigated whether transfusion with stored erythrocytes would increase tissue injury, inflammation, oxidative stress, and mortality (adverse effects of transfusing stored erythrocytes) in a murine model of hemorrhagic shock. They tested whether the adverse effects associated with transfusing stored erythrocytes were exacerbated by endothelial dysfunction and ameliorated by inhaling nitric oxide.
Related JoVE Video
In vivo noninvasive characterization of brown adipose tissue blood flow by contrast ultrasound in mice.
Circ Cardiovasc Imaging
Show Abstract
Hide Abstract
Interventions to increase brown adipose tissue (BAT) volume and activation are being extensively investigated as therapies to decrease the body weight in obese subjects. Noninvasive methods to monitor these therapies in animal models and humans are rare. We investigated whether contrast ultrasound (CU) performed in mice could detect BAT and measure its activation by monitoring BAT blood flow. After validation, CU was used to study the role of uncoupling protein 1 and nitric oxide synthases in the acute regulation of BAT blood flow.
Related JoVE Video
Pulmonary microRNA profiling in a mouse model of ventilator-induced lung injury.
Am. J. Physiol. Lung Cell Mol. Physiol.
Show Abstract
Hide Abstract
The aim of this study was to investigate the changes induced by high tidal volume ventilation (HVTV) in pulmonary expression of micro-RNAs (miRNAs) and identify potential target genes and corresponding miRNA-gene networks. Using a real-time RT-PCR-based array in RNA samples from lungs of mice subjected to HVTV for 1 or 4 h and control mice, we identified 65 miRNAs whose expression changed more than twofold upon HVTV. An inflammatory and a TGF-?-signaling miRNA-gene network were identified by in silico pathway analysis being at highest statistical significance (P = 10(-43) and P = 10(-28), respectively). In the inflammatory network, IL-6 and SOCS-1, regulated by miRNAs let-7 and miR-155, respectively, appeared as central nodes. In TGF-?-signaling network, SMAD-4, regulated by miR-146, appeared as a central node. The contribution of miRNAs to the development of lung injury was evaluated in mice subjected to HVTV treated with a precursor or antagonist of miR-21, a miRNA highly upregulated by HVTV. Lung compliance was preserved only in mice treated with anti-miR-21 but not in mice treated with pre-miR-21 or negative-control miRNA. Both alveolar-arterial oxygen difference and protein levels in bronchoalveolar lavage were lower in mice treated with anti-miR-21 than in mice treated with pre-miR-21 or negative-control miRNA (D(A-a): 66 ± 27 vs. 131 ± 22, 144 ± 10 mmHg, respectively, P < 0.001; protein concentration: 1.1 ± 0.2 vs. 2.3 ± 1, 2.1 ± 0.4 mg/ml, respectively, P < 0.01). Our results show that HVTV induces changes in miRNA expression in mouse lungs. Modulation of miRNA expression can affect the development of HVTV-induced lung injury.
Related JoVE Video
Genetic modifiers of hypertension in soluble guanylate cyclase ?1-deficient mice.
J. Clin. Invest.
Show Abstract
Hide Abstract
Nitric oxide (NO) plays an essential role in regulating hypertension and blood flow by inducing relaxation of vascular smooth muscle. Male mice deficient in a NO receptor component, the ?1 subunit of soluble guanylate cyclase (sGC?1), are prone to hypertension in some, but not all, mouse strains, suggesting that additional genetic factors contribute to the onset of hypertension. Using linkage analyses, we discovered a quantitative trait locus (QTL) on chromosome 1 that was linked to mean arterial pressure (MAP) in the context of sGC?1 deficiency. This region is syntenic with previously identified blood pressure-related QTLs in the human and rat genome and contains the genes coding for renin. Hypertension was associated with increased activity of the renin-angiotensin-aldosterone system (RAAS). Further, we found that RAAS inhibition normalized MAP and improved endothelium-dependent vasorelaxation in sGC?1-deficient mice. These data identify the RAAS as a blood pressure-modifying mechanism in a setting of impaired NO/cGMP signaling.
Related JoVE Video
Transfusion of stored autologous blood does not alter reactive hyperemia index in healthy volunteers.
Anesthesiology
Show Abstract
Hide Abstract
Transfusion of human blood stored for more than 2 weeks is associated with increased mortality and morbidity. During storage, packed erythrocytes progressively release hemoglobin, which avidly binds nitric oxide. We hypothesized that the nitric oxide mediated hyperemic response after ischemia would be reduced after transfusion of packed erythrocytes stored for 40 days.
Related JoVE Video
Pulmonary hypertension in lambs transfused with stored blood is prevented by breathing nitric oxide.
Anesthesiology
Show Abstract
Hide Abstract
During extended storage, erythrocytes undergo functional changes. These changes reduce the viability of erythrocytes leading to release of oxyhemoglobin, a potent scavenger of nitric oxide. We hypothesized that transfusion of ovine packed erythrocytes (PRBC) stored for prolonged periods would induce pulmonary vasoconstriction in lambs, and that reduced vascular nitric oxide concentrations would increase this vasoconstrictor effect.
Related JoVE Video
Diabetes augments and inhaled nitric oxide prevents the adverse hemodynamic effects of transfusing syngeneic stored blood in mice.
Transfusion
Show Abstract
Hide Abstract
Stored red blood cells (RBCs) undergo progressive deleterious functional, biochemical, and structural changes. The mechanisms responsible for the adverse effects of transfusing stored RBCs remain incompletely elucidated.
Related JoVE Video
Inhibition of bone morphogenetic protein signaling reduces vascular calcification and atherosclerosis.
Arterioscler. Thromb. Vasc. Biol.
Show Abstract
Hide Abstract
The expression of bone morphogenetic proteins (BMPs) is enhanced in human atherosclerotic and calcific vascular lesions. Although genetic gain- and loss-of-function experiments in mice have supported a causal role of BMP signaling in atherosclerosis and vascular calcification, it remains uncertain whether BMP signaling might be targeted pharmacologically to ameliorate both of these processes.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.