JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Reducing auditory hypersensitivities in autistic spectrum disorder: preliminary findings evaluating the listening project protocol.
Front Pediatr
PUBLISHED: 08-01-2014
Show Abstract
Hide Abstract
Auditory hypersensitivities are a common feature of autism spectrum disorder (ASD). In the present study, the effectiveness of a novel intervention, the listening project protocol (LPP), was evaluated in two trials conducted with children diagnosed with ASD. LPP was developed to reduce auditory hypersensitivities. LPP is based on a theoretical "neural exercise" model that uses computer altered acoustic stimulation to recruit the neural regulation of middle ear muscles. Features of the intervention stimuli were informed by basic research in speech and hearing sciences that has identified the specific acoustic frequencies necessary to understand speech, which must pass through middle ear structures before being processed by other components of the auditory system. LPP was hypothesized to reduce auditory hypersensitivities by increasing the neural tone to the middle ear muscles to functionally dampen competing sounds in frequencies lower than human speech. The trials demonstrated that LPP, when contrasted to control conditions, selectively reduced auditory hypersensitivities. These findings are consistent with the polyvagal theory, which emphasizes the role of the middle ear muscles in social communication.
Related JoVE Video
The covariation of acoustic features of infant cries and autonomic state.
Physiol. Behav.
PUBLISHED: 06-19-2013
Show Abstract
Hide Abstract
The evolution of the autonomic nervous system provides an organizing principle to interpret the adaptive significance of physiological systems in promoting social behavior and responding to social challenges. This phylogenetic shift in neural regulation of the autonomic nervous system in mammals has produced a neuroanatomically integrated social engagement system, including neural mechanisms that regulate both cardiac vagal tone and muscles involved in vocalization. Mammalian vocalizations are part of a conspecific social communication system, with several mammalian species modulating acoustic features of vocalizations to signal affective state. Prosody, defined by variations in rhythm and pitch, is a feature of mammalian vocalizations that communicate emotion and affective state. While the covariation between physiological state and the acoustic frequencies of vocalizations is neurophysiologically based, few studies have investigated the covariation between vocal prosody and autonomic state. In response to this paucity of scientific evidence, the current study explored the utility of vocal prosody as a sensitive index of autonomic activity in human infants during the Still Face challenge. Overall, significant correlations were observed between several acoustic features of the infant vocalizations and autonomic state, demonstrating an association between shorter heart period and reductions in heart period and respiratory sinus arrhythmia following the challenge with the dampening of the modulation of acoustic features (fundamental frequency, variance, 50% bandwidth, and duration) that are perceived as prosody.
Related JoVE Video
Multiscale analysis of heart rate variability in non-stationary environments.
Front Physiol
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Heart rate variability (HRV) is highly non-stationary, even if no perturbing influences can be identified during the recording of the data. The non-stationarity becomes more profound when HRV data are measured in intrinsically non-stationary environments, such as social stress. In general, HRV data measured in such situations are more difficult to analyze than those measured in constant environments. In this paper, we analyze HRV data measured during a social stress test using two multiscale approaches, the adaptive fractal analysis (AFA) and scale-dependent Lyapunov exponent (SDLE), for the purpose of uncovering differences in HRV between chronic fatigue syndrome (CFS) patients and their matched-controls. CFS is a debilitating, heterogeneous illness with no known biomarker. HRV has shown some promise recently as a non-invasive measure of subtle physiological disturbances and trauma that are otherwise difficult to assess. If the HRV in persons with CFS are significantly different from their healthy controls, then certain cardiac irregularities may constitute good candidate biomarkers for CFS. Our multiscale analyses show that there are notable differences in HRV between CFS and their matched controls before a social stress test, but these differences seem to diminish during the test. These analyses illustrate that the two employed multiscale approaches could be useful for the analysis of HRV measured in various environments, both stationary and non-stationary.
Related JoVE Video
Autonomic regulation in fragile X syndrome.
Dev Psychobiol
PUBLISHED: 04-02-2011
Show Abstract
Hide Abstract
Autonomic reactivity was studied in individuals with fragile X syndrome (FXS), a genetic disorder partially characterized by abnormal social behavior. Relative to age-matched controls, the FXS group had faster baseline heart rate and lower amplitude respiratory sinus arrhythmia (RSA). In contrast to the typically developing controls, there was a decrease in RSA with age within the FXS group. Moreover, within the FXS group heart rate did not slow with age. The FXS group also responded with an atypical increase in RSA to the social challenge, while the control group reduced RSA. In a subset of the FXS group, the autonomic profile did not change following 2 months and 1 year of lithium treatment. The observed indices of atypical autonomic regulation, consistent with the Polyvagal Theory, may contribute to the deficits in social behavior and social communication observed in FXS.
Related JoVE Video
Respiratory sinus arrhythmia and auditory processing in autism: modifiable deficits of an integrated social engagement system?
Int J Psychophysiol
Show Abstract
Hide Abstract
The current study evaluated processes underlying two common symptoms (i.e., state regulation problems and deficits in auditory processing) associated with a diagnosis of autism spectrum disorders. Although these symptoms have been treated in the literature as unrelated, when informed by the Polyvagal Theory, these symptoms may be viewed as the predictable consequences of depressed neural regulation of an integrated social engagement system, in which there is down regulation of neural influences to the heart (i.e., via the vagus) and to the middle ear muscles (i.e., via the facial and trigeminal cranial nerves). Respiratory sinus arrhythmia (RSA) and heart period were monitored to evaluate state regulation during a baseline and two auditory processing tasks (i.e., the SCAN tests for Filtered Words and Competing Words), which were used to evaluate auditory processing performance. Children with a diagnosis of autism spectrum disorders (ASD) were contrasted with aged matched typically developing children. The current study identified three features that distinguished the ASD group from a group of typically developing children: 1) baseline RSA, 2) direction of RSA reactivity, and 3) auditory processing performance. In the ASD group, the pattern of change in RSA during the attention demanding SCAN tests moderated the relation between performance on the Competing Words test and IQ. In addition, in a subset of ASD participants, auditory processing performance improved and RSA increased following an intervention designed to improve auditory processing.
Related JoVE Video
Sluggish vagal brake reactivity to physical exercise challenge in children with selective mutism.
Dev. Psychopathol.
Show Abstract
Hide Abstract
Cardiovascular response patterns to laboratory-based social and physical exercise challenges were evaluated in 69 children and adolescents, 20 with selective mutism (SM), to identify possible neurophysiological mechanisms that may mediate the behavioral features of SM. Results suggest that SM is associated with a dampened response of the vagal brake to physical exercise that is manifested as reduced reactivity in heart rate and respiration. Polyvagal theory proposes that the regulation of the vagal brake is a neurophysiological component of an integrated social engagement system that includes the neural regulation of the laryngeal and pharyngeal muscles. Within this theoretical framework, sluggish vagal brake reactivity may parallel an inability to recruit efficiently the structures involved in speech. Thus, the findings suggest that dampened autonomic reactivity during mobilization behaviors may be a biomarker of SM that can be assessed independent of the social stimuli that elicit mutism.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.