JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Urocortin 2 stimulates nitric oxide production in ventricular myocytes via Akt- and PKA-mediated phosphorylation of eNOS at serine 1177.
Am. J. Physiol. Heart Circ. Physiol.
PUBLISHED: 07-11-2014
Show Abstract
Hide Abstract
Urocortin 2 (Ucn2) is a cardioactive peptide exhibiting beneficial effects in normal and failing heart. In cardiomyocytes, it elicits cAMP- and Ca(2+)-dependent positive inotropic and lusitropic effects. We tested the hypothesis that, in addition, Ucn2 activates cardiac nitric oxide (NO) signaling and elucidated the underlying signaling pathways and mechanisms. In isolated rabbit ventricular myocytes, Ucn2 caused concentration- and time-dependent increases in phosphorylation of Akt (Ser473, Thr308), endothelial NO synthase (eNOS) (Ser1177), and ERK1/2 (Thr202/Tyr204). ERK1/2 phosphorylation, but not Akt and eNOS phosphorylation, was suppressed by inhibition of MEK1/2. Increased Akt phosphorylation resulted in increased Akt kinase activity and was mediated by corticotropin-releasing factor 2 (CRF2) receptors (astressin-2B sensitive). Inhibition of phosphatidylinositol 3-kinase (PI3K) diminished both Akt as well as eNOS phosphorylation mediated by Ucn2. Inhibition of protein kinase A (PKA) reduced Ucn2-induced phosphorylation of eNOS but did not affect the increase in phosphorylation of Akt. Conversely, direct receptor-independent elevation of cAMP via forskolin increased phosphorylation of eNOS but not of Akt. Ucn2 increased intracellular NO concentration ([NO]i), [cGMP], [cAMP], and cell shortening. Inhibition of eNOS suppressed the increases in [NO]i and cell shortening. When both PI3K-Akt and cAMP-PKA signaling were inhibited, the Ucn2-induced increases in [NO]i and cell shortening were attenuated. Thus, in rabbit ventricular myocytes, Ucn2 causes activation of cAMP-PKA, PI3K-Akt, and MEK1/2-ERK1/2 signaling. The MEK1/2-ERK1/2 pathway is not required for stimulation of NO signaling in these cells. The other two pathways, cAMP-PKA and PI3K-Akt, converge on eNOS phosphorylation at Ser1177 and result in pronounced and sustained cellular NO production with subsequent stimulation of cGMP signaling.
Related JoVE Video
Contribution of TRPC3 to store-operated calcium entry and inflammatory transductions in primary nociceptors.
Mol Pain
PUBLISHED: 06-09-2014
Show Abstract
Hide Abstract
Prolonged intracellular calcium elevation contributes to sensitization of nociceptors and chronic pain in inflammatory conditions. The underlying molecular mechanisms remain unknown but store-operated calcium entry (SOCE) components participate in calcium homeostasis, potentially playing a significant role in chronic pain pathologies. Most G protein-coupled receptors activated by inflammatory mediators trigger calcium-dependent signaling pathways and stimulate SOCE in primary afferents. The aim of the present study was to investigate the role of TRPC3, a calcium-permeable non-selective cation channel coupled to phospholipase C and highly expressed in DRG, as a link between activation of pro-inflammatory metabotropic receptors and SOCE in nociceptive pathways.
Related JoVE Video
TRPC3: a multifunctional signaling molecule.
Handb Exp Pharmacol
PUBLISHED: 04-24-2014
Show Abstract
Hide Abstract
TRPC3 represents one of the first identified mammalian relative of the Drosophila trp gene product. Despite extensive biochemical and biophysical characterization as well as ambitious attempts to uncover its physiological role in native cell systems, the channel protein still represents a rather enigmatic member of the TRP superfamily. TRPC3 is significantly expressed in the brain and heart and appears of (patho)physiological importance in both non-excitable and excitable cells, being potentially involved in a wide spectrum of Ca(2+) signaling mechanisms. TRPC3 cation channels display unique gating and regulatory properties that allow for recognition and integration of multiple input stimuli including lipid mediators, cellular Ca(2+) gradients, as well as redox signals. Physiological/pathophysiological functions of this highly versatile cation channel protein are as yet incompletely understood. Its ability to associate in a dynamic manner with a variety of partner proteins enables TRPC3 to serve coordination of multiple downstream signaling pathways and control of divergent cellular functions. Here, we summarize current knowledge on ion channel features as well as possible signaling functions of TRPC3 and discuss the potential biological relevance of this signaling molecule.
Related JoVE Video
Localization of VE-cadherin in plasmalemmal cholesterol rich microdomains and the effects of cholesterol depletion on VE-cadherin mediated cell-cell adhesion.
Biochim. Biophys. Acta
PUBLISHED: 04-11-2014
Show Abstract
Hide Abstract
VE-cadherin is the predominant adhesion molecule in vascular endothelial cells being responsible for maintenance of the endothelial barrier function by forming adhesive contacts (adherens junctions) to neighbouring cells. We found by use of single molecule fluorescence microscopy that VE-cadherin is localised in preformed clusters when not inside adherens junctions. These clusters depend on the integrity of the actin cytoskeleton and are localised in cholesterol rich microdomains of mature endothelial cells as found by membrane fractionation. The ability to form and maintain VE-cadherin based junctions was probed using the laser tweezer technique, and we found that cholesterol depletion has dramatical effects on VE-cadherin mediated adhesion. While a 30% reduction of the cholesterol-level results in an increase of adhesion, excessive cholesterol depletion by about 60% leads to an almost complete loss of VE-cadherin function. Nevertheless, the cadherin concentration in the membrane and the single molecule kinetic parameters of the cadherin are not changed. Our results suggest that the actin cytoskeleton, junction-associated proteins and protein-lipid assemblies in cholesterol-rich microdomains mutually stabilise each other to form functional adhesion contacts.
Related JoVE Video
15-deoxy-?¹²,¹?-PGJ? promotes inflammation and apoptosis in cardiomyocytes via the DP2/MAPK/TNF? axis.
Int. J. Cardiol.
PUBLISHED: 02-14-2014
Show Abstract
Hide Abstract
Prostaglandins (PGs), lipid autacoids derived from arachidonic acid, play a pivotal role during inflammation. PGD? synthase is abundantly expressed in heart tissue and PGD? has recently been found to induce cardiomyocyte apoptosis. PGD? is an unstable prostanoid metabolite; therefore the objective of the present study was to elucidate whether its final dehydration product, 15-deoxy-?¹²,¹?-PGJ? (15d-PGJ?, present at high levels in ischemic myocardium) might cause cardiomyocyte damage.
Related JoVE Video
Inhibition of Orai1-mediated Ca2+ entry is a key mechanism of the antiproliferative action of sirolimus in human arterial smooth muscle.
Am. J. Physiol. Heart Circ. Physiol.
PUBLISHED: 09-20-2013
Show Abstract
Hide Abstract
Sirolimus (rapamycin) is used in drug-eluting stent strategies and proved clearly superior in this application compared with other immunomodulators such as pimecrolimus. The molecular basis of this action of sirolimus in the vascular system is still incompletely understood. Measurements of cell proliferation in human coronary artery smooth muscle cells (hCASM) demonstrated a higher antiproliferative activity of sirolimus compared with pimecrolimus. Although sirolimus lacks inhibitory effects on calcineurin, nuclear factor of activated T-cell activation in hCASM was suppressed to a similar extent by both drugs at 10 ?M. Sirolimus, but not pimecrolimus, inhibited agonist-induced and store-operated Ca(2+) entry as well as cAMP response element binding protein (CREB) phosphorylation in human arterial smooth muscle, suggesting the existence of an as-yet unrecognized inhibitory effect of sirolimus on Ca(2+) signaling and Ca(2+)-dependent gene transcription. Electrophysiological experiments revealed that only sirolimus but not pimecrolimus significantly blocked the classical stromal interaction molecule/Orai-mediated, store-operated Ca(2+) current reconstituted in human embryonic kidney cells (HEK293). A link between Orai function and proliferation was confirmed by dominant-negative knockout of Orai in hCASM. Analysis of the effects of sirolimus on cell proliferation and CREB activation in an in vitro model of arterial intervention using human aorta corroborated the ability of sirolimus to suppress stent implantation-induced CREB activation in human arteries. We suggest inhibition of store-operated Ca(2+) entry based on Orai channels and the resulting suppression of Ca(2+) transcription coupling as a key mechanism underlying the antiproliferative activity of sirolimus in human arteries. This mechanism of action is specific for sirolimus and not a general feature of drugs interacting with FK506-binding proteins.
Related JoVE Video
The extended transmembrane Orai1 N-terminal (ETON) region combines binding interface and gate for Orai1 activation by STIM1.
J. Biol. Chem.
PUBLISHED: 08-13-2013
Show Abstract
Hide Abstract
STIM1 and Orai1 represent the two molecular key components of the Ca(2+) release-activated Ca(2+) channels. Their activation involves STIM1 C terminus coupling to both the N terminus and the C terminus of Orai. Here we focused on the extended transmembrane Orai1 N-terminal (ETON, aa73-90) region, conserved among the Orai family forming an elongated helix of TM1 as recently shown by x-ray crystallography. To identify "hot spot" residues in the ETON binding interface for STIM1 interaction, numerous Orai1 constructs with N-terminal truncations or point mutations within the ETON region were generated. N-terminal truncations of the first four residues of the ETON region or beyond completely abolished STIM1-dependent Orai1 function. Loss of Orai1 function resulted from neither an impairment of plasma membrane targeting nor pore damage, but from a disruption of STIM1 interaction. In a complementary approach, we monitored STIM1-Orai interaction via Orai1 V102A by determining restored Ca(2+) selectivity as a consequence of STIM1 coupling. Orai1 N-terminal truncations that led to a loss of function consistently failed to restore Ca(2+) selectivity of Orai1 V102A in the presence of STIM1, demonstrating impairment of STIM1 binding. Hence, the major portion of the ETON region (aa76-90) is essential for STIM1 binding and Orai1 activation. Mutagenesis within the ETON region revealed several hydrophobic and basic hot spot residues that appear to control STIM1 coupling to Orai1 in a concerted manner. Moreover, we identified two basic residues, which protrude into the elongated pore to redound to Orai1 gating. We suggest that several hot spot residues in the ETON region contribute in aggregate to the binding of STIM1, which in turn is coupled to a conformational reorientation of the gate.
Related JoVE Video
Bile acids induce arrhythmias in human atrial myocardium--implications for altered serum bile acid composition in patients with atrial fibrillation.
Heart
PUBLISHED: 07-26-2013
Show Abstract
Hide Abstract
High bile acid serum concentrations have been implicated in cardiac disease, particularly in arrhythmias. Most data originate from in vitro studies and animal models. We tested the hypotheses that (1) high bile acid concentrations are arrhythmogenic in adult human myocardium, (2) serum bile acid concentrations and composition are altered in patients with atrial fibrillation (AF) and (3) the therapeutically used ursodeoxycholic acid has different effects than other potentially toxic bile acids.
Related JoVE Video
A novel homology model of TRPC3 reveals allosteric coupling between gate and selectivity filter.
Cell Calcium
PUBLISHED: 05-15-2013
Show Abstract
Hide Abstract
Utilizing a novel molecular model of TRPC3, based on the voltage-gated sodium channel from Arcobacter butzleri (Na(V)AB) as template, we performed structure-guided mutagenesis experiments to identify amino acid residues involved in divalent permeation and gating. Substituted cysteine accessibility screening within the predicted selectivity filter uncovered amino acids 629-631 as the narrowest part of the permeation pathway with an estimated pore diameter of < 5.8?. E630 was found to govern not only divalent permeability but also sensitivity of the channel to block by ruthenium red. Mutations in a hydrophobic cluster at the cytosolic termini of transmembrane segment 6, corresponding to the S6 bundle crossing structure in Na(V)AB, distorted channel gating. Removal of a large hydrophobic residue (I667A or I667E) generated channels with approximately 60% constitutive activity, suggesting I667 as part of the dynamic structure occluding the permeation path. Destabilization of the gate was associated with reduced Ca2+ permeability, altered cysteine cross-linking in the selectivity filter and promoted channel block by ruthenium red. Collectively, we present a structural model of the TRPC3 permeation pathway and localize the channels selectivity filter and the occluding gate. Moreover, we provide evidence for allosteric coupling between the gate and the selectivity filter in TRPC3.
Related JoVE Video
A cardiac pathway of cyclic GMP-independent signaling of guanylyl cyclase A, the receptor for atrial natriuretic peptide.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-25-2011
Show Abstract
Hide Abstract
Cardiac atrial natriuretic peptide (ANP) regulates arterial blood pressure, moderates cardiomyocyte growth, and stimulates angiogenesis and metabolism. ANP binds to the transmembrane guanylyl cyclase (GC) receptor, GC-A, to exert its diverse functions. This process involves a cGMP-dependent signaling pathway preventing pathological [Ca(2+)](i) increases in myocytes. In chronic cardiac hypertrophy, however, ANP levels are markedly increased and GC-A/cGMP responses to ANP are blunted due to receptor desensitization. Here we show that, in this situation, ANP binding to GC-A stimulates a unique cGMP-independent signaling pathway in cardiac myocytes, resulting in pathologically elevated intracellular Ca(2+) levels. This pathway involves the activation of Ca(2+)-permeable transient receptor potential canonical 3/6 (TRPC3/C6) cation channels by GC-A, which forms a stable complex with TRPC3/C6 channels. Our results indicate that the resulting cation influx activates voltage-dependent L-type Ca(2+) channels and ultimately increases myocyte Ca(2)(+)(i) levels. These observations reveal a dual role of the ANP/GC-A-signaling pathway in the regulation of cardiac myocyte Ca(2+)(i) homeostasis. Under physiological conditions, activation of a cGMP-dependent pathway moderates the Ca(2+)(i)-enhancing action of hypertrophic factors such as angiotensin II. By contrast, a cGMP-independent pathway predominates under pathophysiological conditions when GC-A is desensitized by high ANP levels. The concomitant rise in [Ca(2+)](i) might increase the propensity to cardiac hypertrophy and arrhythmias.
Related JoVE Video
Molecular determinants within N terminus of Orai3 protein that control channel activation and gating.
J. Biol. Chem.
PUBLISHED: 07-01-2011
Show Abstract
Hide Abstract
STIM1 and Orai represent the key components of Ca(2+) release-activated Ca(2+) channels. Activation of Orai channels requires coupling of the C terminus of STIM1 to the N and C termini of Orai. Although the latter appears to be central in the interaction with STIM1, the role of the N terminus and particularly of the conserved region close to the first transmembrane sequence is less well understood. Here, we investigated in detail the functional role of this conserved region in Orai3 by stepwise deletions. Molecular determinants were mapped for the two modes of Orai3 activation via STIM1 or 2-aminoethoxydiphenyl borate (2-APB) and for current gating characteristics. Increasing N-terminal truncations revealed a progressive decrease of the specific fast inactivation of Orai3 concomitant with diminished binding to calmodulin. STIM1-dependent activation of Orai3 was maintained as long as the second half of this conserved N-terminal domain was present. Further truncations abolished it, whereas Orai3 stimulation via 2-APB was partially retained. In aggregate, the N-terminal conserved region plays a multifaceted role in Orai3 current gating with distinct structural requirements for STIM1- and 2-APB-stimulated activation.
Related JoVE Video
PKC-dependent coupling of calcium permeation through transient receptor potential canonical 3 (TRPC3) to calcineurin signaling in HL-1 myocytes.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 06-08-2011
Show Abstract
Hide Abstract
Cardiac transient receptor potential canonical (TRPC) channels are crucial upstream components of Ca(2+)/calcineurin/nuclear factor of activated T cells (NFAT) signaling, thereby controlling cardiac transcriptional programs. The linkage between TRPC-mediated Ca(2+) signals and NFAT activity is still incompletely understood. TRPC conductances may govern calcineurin activity and NFAT translocation by supplying Ca(2+) either directly through the TRPC pore into a regulatory microdomain or indirectly via promotion of voltage-dependent Ca(2+) entry. Here, we show that a point mutation in the TRPC3 selectivity filter (E630Q), which disrupts Ca(2+) permeability but preserves monovalent permeation, abrogates agonist-induced NFAT signaling in HEK293 cells as well as in murine HL-1 atrial myocytes. The E630Q mutation fully retains the ability to convert phospholipase C-linked stimuli into L-type (Ca(V)1.2) channel-mediated Ca(2+) entry in HL-1 cells, thereby generating a dihydropyridine-sensitive Ca(2+) signal that is isolated from the NFAT pathway. Prevention of PKC-dependent modulation of TRPC3 by either inhibition of cellular kinase activity or mutation of a critical phosphorylation site in TRPC3 (T573A), which disrupts targeting of calcineurin into the channel complex, converts cardiac TRPC3-mediated Ca(2+) signaling into a transcriptionally silent mode. Thus, we demonstrate a dichotomy of TRPC-mediated Ca(2+) signaling in the heart constituting two distinct pathways that are differentially linked to gene transcription. Coupling of TRPC3 activity to NFAT translocation requires microdomain Ca(2+) signaling by PKC-modified TRPC3 complexes. Our results identify TRPC3 as a pivotal signaling gateway in Ca(2+)-dependent control of cardiac gene expression.
Related JoVE Video
STIM1 couples to ORAI1 via an intramolecular transition into an extended conformation.
EMBO J.
PUBLISHED: 02-25-2011
Show Abstract
Hide Abstract
Stromal interaction molecule (STIM1) and ORAI1 are key components of the Ca(2+) release-activated Ca(2+) (CRAC) current having an important role in T-cell activation and mast cell degranulation. CRAC channel activation occurs via physical interaction of ORAI1 with STIM1 when endoplasmic reticulum Ca(2+) stores are depleted. Here we show, utilizing a novel STIM1-derived Förster resonance energy transfer sensor, that the ORAI1 activating small fragment (OASF) undergoes a C-terminal, intramolecular transition into an extended conformation when activating ORAI1. The C-terminal rearrangement of STIM1 does not require a functional CRAC channel, suggesting interaction with ORAI1 as sufficient for this conformational switch. Extended conformations were also engineered by mutations within the first and third coiled-coil domains in the cytosolic portion of STIM1 revealing the involvement of hydrophobic residues in the intramolecular transition. Corresponding full-length STIM1 mutants exhibited enhanced interaction with ORAI1 inducing constitutive CRAC currents, even in the absence of store depletion. We suggest that these mutant STIM1 proteins imitate a physiological activated state, which mimics the intramolecular transition that occurs in native STIM1 upon store depletion.
Related JoVE Video
Cooperativeness of Orai cytosolic domains tunes subtype-specific gating.
J. Biol. Chem.
PUBLISHED: 01-10-2011
Show Abstract
Hide Abstract
Activation of immune cells is triggered by the Ca(2+) release-activated Ca(2+) current, which is mediated via channels of the Orai protein family. A key gating process of the three Orai channel isoforms to prevent Ca(2+) overload is fast inactivation, most pronounced in Orai3. A subsequent reactivation is a unique gating characteristic of Orai1 channels, whereas Orai2 and Orai3 currents display a second, slow inactivation phase. Employing a chimeric approach by sequential swapping of respective intra- and extracellular regions between Orai1 and Orai3, we show here that Orai1 specific proline/arginine-rich domains in the N terminus mediate reactivation, whereas the second, intracellular loop modulates fast and slow gating processes. Swapping C-terminal strands lacks a significant impact. However, simultaneous transfer of Orai3 N terminus and its second loop or C terminus in an Orai1 chimera substantially increases fast inactivation centered between wild-type channels. Concomitant swap of all three cytosolic strands from Orai3 onto Orai1 fully conveys Orai3-like gating characteristics, in a strongly cooperative manner. In conclusion, Orai subtype-specific gating requires a cooperative interplay of all three cytosolic domains.
Related JoVE Video
Polymodal TRPC signaling: Emerging role in phenotype switching and tissue remodeling.
Commun Integr Biol
PUBLISHED: 04-21-2010
Show Abstract
Hide Abstract
TRPC proteins have been implicated in a large array of Ca(2+) signaling processes and are considered as pore-forming subunits of unique polymodal channel sensors. The mechanisms of TRPC activation are so far incompletely understood but appear to involve a concert of signals that are generated typically downstream of receptor-mediated activation of phospholipase C. Specifically for the TRPC1/4/5 subfamily the activating scenario is ill-defined and appears enigmatic due to the observation of multiple modes of activation. TRPC4 was initially described as a store-operated cation channel and was repeatedly proposed as a pivotal element of the store-operated signaling pathways of various tissues. However, classical reconstitution of TRPC4 complexes in expression systems as well as recent knock-down strategies provided evidence against store-dependent regulation of this channel and raised considerable doubt in its proposed prominent role agonist-induced Ca(2+) signaling. Recent analysis of the function of TRPC4 in vascular endothelial cells of divergent phenotype revealed a novel aspect of TRPC signaling, extending the current concept of TRPC regulation by a phenotype-dependent switch between Ca(2+) transport and a potential intracellular scaffold function of the TRPC protein.
Related JoVE Video
Age-dependent associations of smoking and drinking with non-high-density lipoprotein cholesterol.
Metab. Clin. Exp.
PUBLISHED: 01-05-2010
Show Abstract
Hide Abstract
Serum high-density lipoprotein (HDL) cholesterol levels are influenced by habitual smoking and drinking. Non-HDL cholesterol is known to be a potent predictor of cardiovascular disease. However, it remains to be determined whether the associations of non-HDL cholesterol with smoking and drinking differ with age. The objectives of this study were to investigate relationships among smoking, drinking, and non-HDL cholesterol and to investigate interactions of age with smoking and drinking regarding serum non-HDL cholesterol levels. Subjects (54,020 Japanese men aged 20-69 years) were divided into drinkers and nondrinkers or into smokers and nonsmokers and were further divided into 5 age groups with 10-year intervals. Subjects in each age group were divided into 3 subgroups according to alcohol or cigarette consumption. The mean levels of serum non-HDL cholesterol calculated after adjustment for age and body mass index were compared among the groups. In nondrinkers, non-HDL cholesterol levels of subjects in their 40s or older were significantly higher in heavy smokers than in nonsmokers, whereas non-HDL cholesterol levels of subjects in their 20s and 30s were not significantly different among non-, light, and heavy smokers. In drinkers, non-HDL cholesterol levels of subjects in all age groups were not higher in light and heavy smokers than in nonsmokers. In nonsmokers, non-HDL cholesterol in subjects in their 30s or older was significantly lower in light and heavy drinkers than in nondrinkers, whereas this difference was not observed in subjects in their 20s. In smokers, non-HDL cholesterol levels of subjects in all age groups were significantly lower in light and heavy drinkers than in nondrinkers, and the differences in non-HDL cholesterol between drinkers and nondrinkers tended to increase with advance of age. The difference in non-HDL cholesterol between drinkers and nondrinkers tended to be greater in smokers than in nonsmokers. Thus, the associations of non-HDL cholesterol with smoking and drinking were modified by drinking and smoking, respectively. Smoking is associated with high non-HDL cholesterol in nondrinkers, and drinking is associated with low non-HDL cholesterol in nonsmokers; these associations are shown at middle and elderly ages but not at young ages.
Related JoVE Video
Cell-cell contact formation governs Ca2+ signaling by TRPC4 in the vascular endothelium: evidence for a regulatory TRPC4-beta-catenin interaction.
J. Biol. Chem.
PUBLISHED: 12-08-2009
Show Abstract
Hide Abstract
TRPC4 is well recognized as a prominent cation channel in the vascular endothelium, but its contribution to agonist-induced endothelial Ca(2+) entry is still a matter of controversy. Here we report that the cellular targeting and Ca(2+) signaling function of TRPC4 is determined by the state of cell-cell adhesions during endothelial phenotype transitions. TRPC4 surface expression in human microvascular endothelial cells (HMEC-1) increased with the formation of cell-cell contacts. Epidermal growth factor recruited TRPC4 into the plasma membrane of proliferating cells but initiated retrieval of TRPC4 from the plasma membrane in quiescent, barrier-forming cells. Epidermal growth factor-induced Ca(2+) entry was strongly promoted by the formation of cell-cell contacts, and both siRNA and dominant negative knockdown experiments revealed that TRPC4 mediates stimulated Ca(2+) entry exclusively in proliferating clusters that form immature cell-cell contacts. TRPC4 co-precipitated with the junctional proteins beta-catenin and VE-cadherin. Analysis of cellular localization of fluorescent fusion proteins provided further evidence for recruitment of TRPC4 into junctional complexes. Analysis of TRPC4 function in the HEK293 expression system identified beta-catenin as a signaling molecule that enables cell-cell contact-dependent promotion of TRPC4 function. Our results place TRPC4 as a Ca(2+) entry channel that is regulated by cell-cell contact formation and interaction with beta-catenin. TRPC4 is suggested to serve stimulated Ca(2+) entry in a specific endothelial state during the transition from a proliferating to a quiescent phenotype. Thus, TRPC4 may adopt divergent, as yet unappreciated functions in endothelial Ca(2+) homeostasis and emerges as a potential key player in endothelial phenotype switching and tuning of cellular growth factor signaling.
Related JoVE Video
Plasticity in Ca2+ selectivity of Orai1/Orai3 heteromeric channel.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 11-03-2009
Show Abstract
Hide Abstract
A general cellular response following depletion of intracellular calcium stores involves activation of store-operated channels (SOCs). While Orai1 forms the native Ca(2+) release-activated Ca(2+) (CRAC) channel in mast and T cells, the molecular architecture of less Ca(2+) selective SOCs is insufficiently defined. Here we present evidence that diminished Ca(2+) selectivity and robust Cs(+) permeation together with a reduced fast inactivation are characteristics of heteromeric Orai1 and Orai3 channels in contrast to their homomeric forms. The first extracellular loop of these Orai isoforms differs by two aspartates replacing glutamates that affect the selectivity. Co-expression of an Orai3 mutant that mimicked the first loop of Orai1 with either Orai1 or Orai3 recovered or decreased Ca(2+) selectivity, respectively. Heteromeric Orai1/3 protein assembly provides a concept for less Ca(2+)-selective SOCs.
Related JoVE Video
A Ca2(+ )release-activated Ca2(+) (CRAC) modulatory domain (CMD) within STIM1 mediates fast Ca2(+)-dependent inactivation of ORAI1 channels.
J. Biol. Chem.
PUBLISHED: 07-21-2009
Show Abstract
Hide Abstract
STIM1 and ORAI1, the two limiting components in the Ca(2+) release-activated Ca(2+) (CRAC) signaling cascade, have been reported to interact upon store depletion, culminating in CRAC current activation. We have recently identified a modulatory domain between amino acids 474 and 485 in the cytosolic part of STIM1 that comprises 7 negatively charged residues. A STIM1 C-terminal fragment lacking this domain exhibits enhanced interaction with ORAI1 and 2-3-fold higher ORAI1/CRAC current densities. Here we focused on the role of this CRAC modulatory domain (CMD) in the fast inactivation of ORAI1/CRAC channels, utilizing the whole-cell patch clamp technique. STIM1 mutants either with C-terminal deletions including CMD or with 7 alanines replacing the negative amino acids within CMD gave rise to ORAI1 currents that displayed significantly reduced or even abolished inactivation when compared with STIM1 mutants with preserved CMD. Consistent results were obtained with cytosolic C-terminal fragments of STIM1, both in ORAI1-expressing HEK 293 cells and in RBL-2H3 mast cells containing endogenous CRAC channels. Inactivation of the latter, however, was much more pronounced than that of ORAI1. The extent of inactivation of ORAI3 channels, which is also considerably more prominent than that of ORAI1, was also substantially reduced by co-expression of STIM1 constructs missing CMD. Regarding the dependence of inactivation on Ca(2+), a decrease in intracellular Ca(2+) chelator concentrations promoted ORAI1 current fast inactivation, whereas Ba(2+) substitution for extracellular Ca(2+) completely abrogated it. In summary, CMD within the STIM1 cytosolic part provides a negative feedback signal to Ca(2+) entry by triggering fast Ca(2+)-dependent inactivation of ORAI/CRAC channels.
Related JoVE Video
Molecular determinants of the coupling between STIM1 and Orai channels: differential activation of Orai1-3 channels by a STIM1 coiled-coil mutant.
J. Biol. Chem.
PUBLISHED: 06-08-2009
Show Abstract
Hide Abstract
STIM1 and Orai1 have been reported to interact upon store depletion culminating in Ca(2+) release-activated Ca(2+) current activation. Recently, the essential region has been identified within the STIM1 C terminus that includes the second coiled-coil domain C-terminally extended by approximately 50 amino acids and exhibits a strong binding to the Orai1 C terminus. Based on the homology within the Orai family, an analogous scenario might be assumed for Orai2 as well as Orai3 channels as both are activated in a similar STIM1-dependent manner. A combined approach of electrophysiology and Foerster resonance energy transfer microscopy uncovered a general mechanism in the communication of STIM1 with Orai proteins that involved the conserved putative coiled-coil domains in the respective Orai C terminus and the second coiled-coil motif in the STIM1 C terminus. A coiled-coil single mutation in the Orai1 C terminus abrogated communication with the STIM1 C terminus, whereas an analogous mutation in Orai2 and Orai3 still allowed for their moderate activation. However, increasing coiled-coil probability by a gain of function deletion in Orai1 or by generating an Orai1-Orai3 chimera containing the Orai3 C terminus recovered stimulation to a similar extent as with Orai2/3. At the level of STIM1, decreasing probability of the second coiled-coil domain by a single mutation within the STIM1 C terminus abolished activation of Orai1 but still enabled partial stimulation of Orai2/3 channels. A double mutation within the second coiled-coil motif of the STIM1 C terminus fully disrupted communication with all three Orai channels. In aggregate, the impairment in the overall communication between STIM1 and Orai channels upon decreasing probabilities of either one of the putative coiled-coil domains in the C termini might be compatible with the concept of their functional, heteromeric interaction.
Related JoVE Video
Modification of the association between alcohol drinking and non-HDL cholesterol by gender.
Clin. Chim. Acta
PUBLISHED: 02-03-2009
Show Abstract
Hide Abstract
Serum non-HDL cholesterol is a strong predictor of cardiovascular diseases. We studied the relationship between habitual alcohol drinking and non-HDL cholesterol.
Related JoVE Video
A Cytosolic Homomerization and a Modulatory Domain within STIM1 C Terminus Determine Coupling to ORAI1 Channels.
J. Biol. Chem.
PUBLISHED: 02-03-2009
Show Abstract
Hide Abstract
In immune cells, generation of sustained Ca(2+) levels is mediated by the Ca(2+) release-activated Ca(2+) (CRAC) current. Molecular key players in this process comprise the stromal interaction molecule 1 (STIM1) that functions as a Ca(2+) sensor in the endoplasmic reticulum and ORAI1 located in the plasma membrane. Depletion of endoplasmic reticulum Ca(2+) stores leads to STIM1 multimerization into discrete puncta, which co-cluster with ORAI1 to couple to and activate ORAI1 channels. The cytosolic C terminus of STIM1 is sufficient to activate ORAI1 currents independent of store depletion. Here we identified an ORAI1-activating small fragment (OASF, amino acids 233-450/474) within STIM1 C terminus comprising the two coiled-coil domains and additional 50-74 amino acids that exhibited enhanced interaction with ORAI1, resulting in 3-fold increased Ca(2+) currents. This OASF, similar to the complete STIM1 C terminus, displayed the ability to homomerize by a novel assembly domain that occurred subsequent to the coiled-coil domains. A smaller fragment (amino acids 233-420) generated by a further deletion of 30 amino acids substantially reduced the ability to homomerize concomitant to a loss of coupling to as well as activation of ORAI1. Extending OASF by 35 amino acids (233-485) did not alter homomerization but substantially decreased efficiency in coupling to and activation of ORAI1. Expressing OASF in rat basophilic leukemia (RBL) mast cells demonstrated its enhanced plasma membrane targeting associated with 2.5-fold larger CRAC currents in comparison with the complete STIM1 C terminus. In aggregate, we have identified two cytosolic key regions within STIM1 C terminus that control ORAI1/CRAC activation: a homomerization domain indispensable for coupling to ORAI1 and a modulatory domain that controls the extent of coupling to ORAI1.
Related JoVE Video
A TRPC3 blocker, ethyl-1-(4-(2,3,3-trichloroacrylamide)phenyl)-5-(trifluoromethyl)-1H-pyrazole-4-carboxylate (Pyr3), prevents stent-induced arterial remodeling.
J. Pharmacol. Exp. Ther.
Show Abstract
Hide Abstract
TRPC-mediated Ca(2+) entry has been implicated in the control of smooth muscle proliferation and might represent a pivotal mechanism underlying in-stent restenosis. As we have observed significant expression of TRPC3 in human smooth muscle from the coronary artery as well as the aorta, we tested the efficiency of a recently discovered TRPC3 selective Ca(2+) entry blocker Pyr3 to prevent vascular smooth muscle proliferation and stent implantation-induced hyperplasia of human aorta. The effect of Pyr3 on proliferation was measured by detection of BrdU incorporation and PCNA expression in human coronary smooth muscle and microvascular endothelium, which displays significantly smaller expression levels of TRPC3 as compared with smooth muscle. Pyr3 inhibited smooth muscle proliferation but lacked detectable effects on endothelial proliferation. Measurements of ATP-induced Ca(2+) signals revealed that Pyr3 suppressed agonist-induced Ca(2+) entry more effectively in vascular smooth muscle than in endothelial cells. Inhibitory effects of Pyr3 on stent implantation-induced arterial injury was tested using a novel in vitro model of in-stent hyperplasia in human arteries based on organ typical culture of human aortic constructs. Pyr3 effectively prevented increases in tissue levels of PCNA and Ki-67 at 2 weeks after stent implantation into human aortae. Similarly, proliferation markers were significantly suppressed when implanting a Pyr3-releasing stent prototype as compared with a bare metal stent (BMS) control. Our results suggest TRPC3 as a potential target for pharmacological control of smooth muscle proliferation. Selectively inhibition of TRPC Ca(2+) entry channels in vascular smooth muscle is suggested as a promising strategy for in-stent restenosis prevention.
Related JoVE Video
Canonical transient receptor potential (TRPC) 1 acts as a negative regulator for vanilloid TRPV6-mediated Ca2+ influx.
J. Biol. Chem.
Show Abstract
Hide Abstract
TRP proteins mostly assemble to homomeric channels but can also heteromerize, preferentially within their subfamilies. The TRPC1 protein is the most versatile member and forms various TRPC channel combinations but also unique channels with the distantly related TRPP2 and TRPV4. We show here a novel cross-family interaction between TRPC1 and TRPV6, a Ca(2+) selective member of the vanilloid TRP subfamily. TRPV6 exhibited substantial co-localization and in vivo interaction with TRPC1 in HEK293 cells, however, no interaction was observed with TRPC3, TRPC4, or TRPC5. Ca(2+) and Na(+) currents of TRPV6-overexpressing HEK293 cells are significantly reduced by co-expression of TRPC1, correlating with a dramatically suppressed plasma membrane targeting of TRPV6. In line with their intracellular retention, remaining currents of TRPC1 and TRPV6 co-expression resemble in current-voltage relationship that of TRPV6. Studying the N-terminal ankyrin like repeat domain, structurally similar in the two proteins, we have found that these cytosolic segments were sufficient to mediate a direct heteromeric interaction. Moreover, the inhibitory role of TRPC1 on TRPV6 influx was also maintained by expression of only its N-terminal ankyrin-like repeat domain. Our experiments provide evidence for a functional interaction of TRPC1 with TRPV6 that negatively regulates Ca(2+) influx in HEK293 cells.
Related JoVE Video
Nanopatterned polymer substrates promote endothelial proliferation by initiation of ?-catenin transcriptional signaling.
Acta Biomater
Show Abstract
Hide Abstract
Control of endothelial phenotype involves a variety of signaling pathways and transcriptional regulators, including the junctional protein ?-catenin. This multifunctional signaling molecule is part of adhesion contacts in the endothelium and is able to translocate into the nucleus to activate genetic programs and control proliferation and the fate of the cells. We investigated the influence of laser-generated nanopatterns on polymeric cell culture substrates on endothelial tissue architecture, proliferation and ?-catenin signaling. For our experiments human microvascular endothelial cells or CD34(+) endothelial progenitor cells, isolated from human adipose tissue, were cultured on polyethylene terephthalate (PET) substrates with oriented nanostructures with lateral periodicities of 1.5 ?m and 300 nm, respectively. The surface topography and chemistry of the PET substrates were characterized by electron microscopy, atomic force microscopy, water contact angle measurement and X-ray photoelectron spectroscopy. Analysis of cell phenotype markers as well as ?-catenin signaling revealed that short-term culture of endothelial cells on nanostructured substrates generates a proliferative cell phenotype associated with nuclear accumulation of ?-catenin and activation of specific ?-catenin target genes. The effects of the nanostructures were not directly correlated with nanostructure-induced alignment of cells and were also clearly distinguishable from the effects of altered PET surface chemistry due to photomodification. In summary, we present a novel mechanism of surface topology-dependent control of transcriptional programs in mature endothelium and endothelial progenitor cells.
Related JoVE Video
Sunitinib causes dose-dependent negative functional effects on myocardium and cardiomyocytes.
BJU Int.
Show Abstract
Hide Abstract
To examine the acute effects of sunitinib on inotropic function, intracellular Ca(2+) transients, myofilament Ca(2+) sensitivity and generation of reactive oxygen species (ROS) in human multicellular myocardium and isolated mouse cardiomyocytes. To search for microRNAs as suitable biomarkers for indicating toxic cardiac effects.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.