JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
tRNA gene diversity in the three domains of life.
Front Genet
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Transfer RNA (tRNA) is widely known for its key role in decoding mRNA into protein. Despite their necessity and relatively short nucleotide sequences, a large diversity of gene structures and RNA secondary structures of pre-tRNAs and mature tRNAs have recently been discovered in the three domains of life. Growing evidences of disrupted tRNA genes in the genomes of Archaea reveals unique gene structures such as, intron-containing tRNA, split tRNA, and permuted tRNA. Coding sequence for these tRNAs are either separated with introns, fragmented, or permuted at the genome level. Although evolutionary scenario behind the tRNA gene disruption is still unclear, diversity of tRNA structure seems to be co-evolved with their processing enzyme, so-called RNA splicing endonuclease. Metazoan mitochondrial tRNAs (mtRNAs) are known for their unique lack of either one or two arms from the typical tRNA cloverleaf structure, while still maintaining functionality. Recently identified nematode-specific V-arm containing tRNAs (nev-tRNAs) possess long variable arms that are specific to eukaryotic class II tRNA(Ser) and tRNA(Leu) but also decode class I tRNA codons. Moreover, many tRNA-like sequences have been found in the genomes of different organisms and viruses. Thus, this review is aimed to cover the latest knowledge on tRNA gene diversity and further recapitulate the evolutionary and biological aspects that caused such uniqueness.
Related JoVE Video
Nematode-specific tRNAs that decode an alternative genetic code for leucine.
Nucleic Acids Res.
PUBLISHED: 12-19-2011
Show Abstract
Hide Abstract
Class II transfer RNAs (tRNAs), including tRNA(Leu) and tRNA(Ser), have an additional stem and loop structure, the long variable arm (V-arm). Here, we describe Class II tRNAs with a unique anticodon corresponding to neither leucine nor serine. Because these tRNAs are specifically conserved among the nematodes, we have called them nematode-specific V-arm-containing tRNAs (nev-tRNAs). The expression of nev-tRNA genes in Caenorhabditis elegans was confirmed experimentally. A comparative sequence analysis suggested that the nev-tRNAs derived phylogenetically from tRNA(Leu). In vitro aminoacylation assays showed that nev-tRNA(Gly) and nev-tRNA(Ile) are only charged with leucine, which is inconsistent with their anticodons. Furthermore, the deletion and mutation of crucial determinants for leucylation in nev-tRNA led to a marked loss of activity. An in vitro translation analysis showed that nev-tRNA(Gly) decodes GGG as leucine instead of the universal glycine code, indicating that nev-tRNAs can be incorporated into ribosomes and participate in protein biosynthesis. Our findings provide the first example of unexpected tRNAs that do not consistently obey the general translation rules for higher eukaryotes.
Related JoVE Video
Metatranscriptomic analysis of microbes in an Oceanfront deep-subsurface hot spring reveals novel small RNAs and type-specific tRNA degradation.
Appl. Environ. Microbiol.
PUBLISHED: 12-09-2011
Show Abstract
Hide Abstract
Studies of small noncoding RNAs (sRNAs) have been conducted predominantly using culturable organisms, and the acquisition of further information about sRNAs from global environments containing uncultured organisms now is very important. In this study, hot spring water (57°C, pH 8.1) was collected directly from the underground environment at depths of 250 to 1,000 m in Yunohama, Japan, and small RNA sequences obtained from the environment were analyzed. A phylogenetic analysis of both archaeal and bacterial 16S rRNA gene sequences was conducted, and the results suggested the presence of unique species in the environment, corresponding to the Archaeal Richmond Mine Acidophilic Nanoorganisms (ARMAN) group and three new Betaproteobacteria. A metatranscriptomic analysis identified 64,194 (20,057 nonredundant) cDNA sequences. Of these cDNAs, 90% were either tRNAs, tRNA fragments, rRNAs, or rRNA fragments, whereas 2,181 reads (10%) were classified as previously uncharacterized putative candidate sRNAs. Among these, 15 were particularly abundant, 14 of which showed no sequence similarity to any known noncoding RNA, and at least six of which form very stable RNA secondary structures. The analysis of a large number of tRNA fragments suggested that unique relationships exist between the anticodons of the tRNAs and the sites of tRNA degradation. Previous bacterial tRNA degradation studies have been limited to specific organisms, such as Escherichia coli and Streptomyces coelicolor, and the current results suggest that specific tRNA decay occurs more frequently than previously expected.
Related JoVE Video
A novel three-unit tRNA splicing endonuclease found in ultrasmall Archaea possesses broad substrate specificity.
Nucleic Acids Res.
PUBLISHED: 08-31-2011
Show Abstract
Hide Abstract
tRNA splicing endonucleases, essential enzymes found in Archaea and Eukaryotes, are involved in the processing of pre-tRNA molecules. In Archaea, three types of splicing endonuclease [homotetrameric: ?(4), homodimeric: ?(2), and heterotetrameric: (??)(2)] have been identified, each representing different substrate specificity during the tRNA intron cleavage. Here, we discovered a fourth type of archaeal tRNA splicing endonuclease (?(2)) in the genome of the acidophilic archaeon Candidatus Micrarchaeum acidiphilum, referred to as ARMAN-2 and its closely related species, ARMAN-1. The enzyme consists of two duplicated catalytic units and one structural unit encoded on a single gene, representing a novel three-unit architecture. Homodimeric formation was confirmed by cross-linking assay, and site-directed mutagenesis determined that the conserved L10-pocket interaction between catalytic and structural unit is necessary for the assembly. A tRNA splicing assay reveal that ?(2) endonuclease cleaves both canonical and non-canonical bulge-helix-bulge motifs, similar to that of (??)(2) endonuclease. Unlike other ARMAN and Euryarchaeota, tRNAs found in ARMAN-2 are highly disrupted by introns at various positions, which again resemble the properties of archaeal species with (??)(2) endonuclease. Thus, the discovery of ?(2) endonuclease in an archaeon deeply branched within Euryarchaeota represents a new example of the coevolution of tRNA and their processing enzymes.
Related JoVE Video
A screening system for artificial small RNAs that inhibit the growth of Escherichia coli.
J. Biochem.
PUBLISHED: 05-04-2011
Show Abstract
Hide Abstract
We have developed a screening system for artificial small RNAs (sRNAs) that inhibit the growth of Escherichia coli. In this system, we used a plasmid library to express artificial sRNAs (approximately 200 bases long) containing 60 bases of random nucleotide sequence. The induced expression of the known rydB sRNA in the system reduced the amount of its possible target mRNA, rpoS, supporting the reliability of the method. To isolate clones of sRNAs that inhibited the growth of E. coli, we used two successive screening steps: (i) colony size selection on plates and (ii) monitoring E. coli growth in a 96-well plate format. As a result, 83 artificial sRNAs were identified that showed a range of inhibitory effects on bacterial growth. We also introduced nucleotide replacements into one of the highly inhibitory sRNA clones, H12, which partially abolished the inhibition of bacterial growth, suggesting that bacterial growth was inhibited in a sequence-specific manner.
Related JoVE Video
Large-scale tRNA intron transposition in the archaeal order Thermoproteales represents a novel mechanism of intron gain.
Mol. Biol. Evol.
PUBLISHED: 04-29-2010
Show Abstract
Hide Abstract
Recently, diverse arrangements of transfer RNA (tRNA) genes have been found in the domain Archaea, in which the tRNA is interrupted by a maximum of three introns or is even fragmented into two or three genes. Whereas most of the eukaryotic tRNA introns are inserted strictly at the canonical nucleotide position (37/38), archaeal intron-containing tRNAs have a wide diversity of small tRNA introns, which differ in their numbers and locations. This feature is especially pronounced in the archaeal order Thermoproteales. In this study, we performed a comprehensive sequence comparison of 286 tRNA introns and their genes in seven Thermoproteales species to clarify how these introns have emerged and diversified during tRNA gene evolution. We identified 46 intron groups containing sets of highly similar sequences (>70%) and showed that 16 of them contain sequences from evolutionarily distinct tRNA genes. The phylogeny of these 16 intron groups indicates that transposition events have occurred at least seven times throughout the evolution of Thermoproteales. These findings suggest that frequent intron transposition occurs among the tRNA genes of Thermoproteales. Further computational analysis revealed limited insertion positions and corresponding amino acid types of tRNA genes. This has arisen because the bulge-helix-bulge splicing motif is required at the newly transposed position if the pre-tRNA is to be correctly processed. These results clearly demonstrate a newly identified mechanism that facilitates the late gain of short introns at various noncanonical positions in archaeal tRNAs.
Related JoVE Video
Computational prediction and experimental validation of evolutionarily conserved microRNA target genes in bilaterian animals.
BMC Genomics
PUBLISHED: 02-09-2010
Show Abstract
Hide Abstract
In many eukaryotes, microRNAs (miRNAs) bind to complementary sites in the 3-untranslated regions (3-UTRs) of target messenger RNAs (mRNAs) and regulate their expression at the stage of translation. Recent studies have revealed that many miRNAs are evolutionarily conserved; however, the evolution of their target genes has yet to be systematically characterized. We sought to elucidate a set of conserved miRNA/target-gene pairs and to analyse the mechanism underlying miRNA-mediated gene regulation in the early stage of bilaterian evolution.
Related JoVE Video
Characterization of RNase HII substrate recognition using RNase HII-argonaute chimaeric enzymes from Pyrococcus furiosus.
Biochem. J.
PUBLISHED: 01-06-2010
Show Abstract
Hide Abstract
RNase H (ribonuclease H) is an endonuclease that cleaves the RNA strand of RNA-DNA duplexes. It has been reported that the three-dimensional structure of RNase H is similar to that of the PIWI domain of the Pyrococcus furiosus Ago (argonaute) protein, although the two enzymes share almost no similarity in their amino acid sequences. Eukaryotic Ago proteins are key components of the RNA-induced silencing complex and are involved in microRNA or siRNA (small interfering RNA) recognition. In contrast, prokaryotic Ago proteins show greater affinity for RNA-DNA hybrids than for RNA-RNA hybrids. Interestingly, we found that wild-type Pf-RNase HII (P. furiosus, RNase HII) digests RNA-RNA duplexes in the presence of Mn2+ ions. To characterize the substrate specificity of Pf-RNase HII, we aligned the amino acid sequences of Pf-RNase HII and Pf-Ago, based on their protein secondary structures. We found that one of the conserved secondary structural regions (the fourth beta-sheet and the fifth alpha-helix of Pf-RNase HII) contains family-specific amino acid residues. Using a series of Pf-RNase HII-Pf-Ago chimaeric mutants of the region, we discovered that residues Asp110, Arg113 and Phe114 are responsible for the dsRNA (double-stranded RNA) digestion activity of Pf-RNase HII. On the basis of the reported three-dimensional structure of Ph-RNase HII from Pyrococcus horikoshii, we built a three-dimensional structural model of RNase HII complexed with its substrate, which suggests that these amino acids are located in the region that discriminates DNA from RNA in the non-substrate strand of the duplexes.
Related JoVE Video
Disrupted tRNA gene diversity and possible evolutionary scenarios.
J. Mol. Evol.
PUBLISHED: 06-30-2009
Show Abstract
Hide Abstract
The following unusual tRNAs have recently been discovered in the genomes of Archaea and primitive Eukaryota: multiple-intron-containing tRNAs, which have more than one intron; split tRNAs, which are produced from two pieces of RNA transcribed from separate genes; tri-split tRNAs, which are produced from three separate genes; and permuted tRNA, in which the 5 and 3 halves are encoded with permuted orientations within a single gene. All these disrupted tRNA genes can form mature contiguous tRNA, which is aminoacylated after processing by cis or trans splicing. The discovery of such tRNA disruptions has raised the question of when and why these complex tRNA processing pathways emerged during the evolution of life. Many previous reports have noted that tRNA genes contain a single intron in the anticodon loop region, a feature common throughout all three domains of life, suggesting an ancient trait of the last universal common ancestor. In this context, these unique tRNA disruptions recently found only in Archaea and primitive Eukaryota provide new insight into the origin and evolution of tRNA genes, encouraging further research in this field. In this paper, we summarize the phylogeny, structure, and processing machinery of all known types of disrupted tRNAs and discuss possible evolutionary scenarios for these tRNA genes.
Related JoVE Video
Tri-split tRNA is a transfer RNA made from 3 transcripts that provides insight into the evolution of fragmented tRNAs in archaea.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 02-03-2009
Show Abstract
Hide Abstract
Transfer RNA (tRNA) is essential for decoding the genome sequence into proteins. In Archaea, previous studies have revealed unique multiple intron-containing tRNAs and tRNAs that are encoded on 2 separate genes, so-called split tRNAs. Here, we discovered 10 fragmented tRNA genes in the complete genome of the hyperthermoacidophilic Archaeon Caldivirga maquilingensis that are individually transcribed and further trans-spliced to generate all of the missing tRNAs encoding glycine, alanine, and glutamate. Notably, the 3 mature tRNA(Gly)s with synonymous codons are created from 1 constitutive 3 half transcript and 4 alternatively switching transcripts, representing tRNA made from a total of 3 transcripts named a "tri-split tRNA." Expression and nucleotide sequences of 10 split tRNA genes and their joined tRNA products were experimentally verified. The intervening sequences of split tRNA have high identity to tRNA intron sequences located at the same positions in intron-containing tRNAs in related Thermoproteales species. This suggests that an evolutionary relationship between intron-containing and split tRNAs exists. Our findings demonstrate the first example of split tRNA genes in a free-living organism and a unique tri-split tRNA gene that provides further insight into the evolution of fragmented tRNAs.
Related JoVE Video
X-ray structure of the fourth type of archaeal tRNA splicing endonuclease: insights into the evolution of a novel three-unit composition and a unique loop involved in broad substrate specificity.
Nucleic Acids Res.
Show Abstract
Hide Abstract
Cleavage of introns from precursor transfer RNAs (tRNAs) by tRNA splicing endonuclease (EndA) is essential for tRNA maturation in Archaea and Eukarya. In the past, archaeal EndAs were classified into three types (?2, ?4 and ?2?2) according to subunit composition. Recently, we have identified a fourth type of archaeal EndA from an uncultivated archaeon Candidatus Micrarchaeum acidiphilum, referred to as ARMAN-2, which is deeply branched within Euryarchaea. The ARMAN-2 EndA forms an ?2 homodimer and has broad substrate specificity like the ?2?2 type EndAs found in Crenarchaea and Nanoarchaea. However, the precise architecture of ARMAN-2 EndA was unknown. Here, we report the crystal structure of the ?2 homodimer of ARMAN-2 EndA. The structure reveals that the ? protomer is separated into three novel units (?N, ? and ?C) fused by two distinct linkers, although the overall structure of ARMAN-2 EndA is similar to those of the other three types of archaeal EndAs. Structural comparison and mutational analyses reveal that an ARMAN-2 type-specific loop (ASL) is involved in the broad substrate specificity and that K161 in the ASL functions as the RNA recognition site. These findings suggest that the broad substrate specificities of ?2 and ?2?2 EndAs were separately acquired through different evolutionary processes.
Related JoVE Video
Genomic heterogeneity in a natural archaeal population suggests a model of tRNA gene disruption.
PLoS ONE
Show Abstract
Hide Abstract
Understanding the mechanistic basis of the disruption of tRNA genes, as manifested in the intron-containing and split tRNAs found in Archaea, will provide considerable insight into the evolution of the tRNA molecule. However, the evolutionary processes underlying these disruptions have not yet been identified. Previously, a composite genome of the deep-branching archaeon Caldiarchaeum subterraneum was reconstructed from a community genomic library prepared from a C. subterraneum-dominated microbial mat. Here, exploration of tRNA genes from the library reveals that there are at least three types of heterogeneity at the tRNA(Thr)(GGU) gene locus in the Caldiarchaeum population. All three involve intronic gain and splitting of the tRNA gene. Of two fosmid clones found that encode tRNA(Thr)(GGU), one (tRNA(Thr-I)) contains a single intron, whereas another (tRNA(Thr-II)) contains two introns. Notably, in the clone possessing tRNA(Thr-II), a 5 fragment of the tRNA(Thr-I) (tRNA(Thr-F)) gene was observed 1.8-kb upstream of tRNA(Thr-II). The composite genome contains both tRNA(Thr-II) and tRNA(Thr-F), although the loci are >500 kb apart. Given that the 1.8-kb sequence flanked by tRNA(Thr-F) and tRNA(Thr-II) is predicted to encode a DNA recombinase and occurs in six regions of the composite genome, it may be a transposable element. Furthermore, its dinucleotide composition is most similar to that of the pNOB8-type plasmid, which is known to integrate into archaeal tRNA genes. Based on these results, we propose that the gain of the tRNA intron and the scattering of the tRNA fragment occurred within a short time frame via the integration and recombination of a mobile genetic element.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.