JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Exposure of epitope residues on the outer face of the chikungunya virus envelope trimer determines antibody neutralizing efficacy.
J. Virol.
PUBLISHED: 10-01-2014
Show Abstract
Hide Abstract
Chikungunya virus (CHIKV) is a re-emerging alphavirus that causes a debilitating arthritic disease, infects millions of people, and has no specific treatment. Like many alphaviruses, the structural targets on CHIKV that elicit a protective humoral immune response in humans are poorly defined. Here we used phage display against virus-like particles (VLPs) to isolate seven human monoclonal antibodies (MAbs) against the CHIKV envelope glycoproteins E2 and E1. One MAb, IM-CKV063, was highly neutralizing (IC50 7.4 ng/ml), demonstrated high-affinity binding (320 pM), and was capable of therapeutic and prophylactic protection in multiple animal models, up to 24 h post-exposure. Epitope mapping using a comprehensive shotgun mutagenesis library of 910 E2/E1 alanine mutations demonstrated that IM-CKV063 binds to an inter-subunit conformational epitope on domain A, a functionally important region of E2. MAbs against the highly conserved fusion loop have not previously been reported, but were also isolated in our studies. Fusion loop MAbs were broadly cross-reactive against diverse alphaviruses, but were non-neutralizing. Fusion loop MAb reactivity was affected by temperature and reactivity conditions, suggesting that the fusion loop is hidden in infectious virions. Visualizing the binding sites of 15 different MAbs on the structure of E2/E1 reveals that all epitopes are located at the membrane distal region of the E2/E1 spike. Interestingly, epitopes on the exposed top-most and outer surfaces of the E2/E1 trimer structure are neutralizing whereas epitopes facing the interior of the trimer are not, providing a rationale for vaccine design and therapeutic MAb development using the intact CHIKV E2/E1 trimer.
Related JoVE Video
HCV E2 core structures and mAbs: something is still missing.
Drug Discov. Today
PUBLISHED: 08-27-2014
Show Abstract
Hide Abstract
The lack of structural information on hepatitis C virus (HCV) surface proteins has so far hampered the development of effective vaccines. Recently, two crystallographic structures have described the core portion (E2c) of E2 surface glycoprotein, the primary mediator of HCV entry. Despite the importance of these studies, the E2 overall structure is still unknown and, most importantly, several biochemical and functional studies are in disagreement with E2c structures. Here, the main literature will be discussed and an alternative disulfide bridge pattern will be proposed, based on unpublished human monoclonal antibody reactivity. A modeling strategy aiming at recapitulating the available structural and functional studies of E2 will also be proposed.
Related JoVE Video
Dengue virus envelope protein domain I/II hinge determines long-lived serotype-specific dengue immunity.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 01-02-2014
Show Abstract
Hide Abstract
The four dengue virus (DENV) serotypes, DENV-1, -2, -3, and -4, are endemic throughout tropical and subtropical regions of the world, with an estimated 390 million acute infections annually. Infection confers long-term protective immunity against the infecting serotype, but secondary infection with a different serotype carries a greater risk of potentially fatal severe dengue disease, including dengue hemorrhagic fever and dengue shock syndrome. The single most effective measure to control this threat to global health is a tetravalent DENV vaccine. To date, attempts to develop a protective vaccine have progressed slowly, partly because the targets of type-specific human neutralizing antibodies (NAbs), which are critical for long-term protection, remain poorly defined, impeding our understanding of natural immunity and hindering effective vaccine development. Here, we show that the envelope glycoprotein domain I/II hinge of DENV-3 and DENV-4 is the primary target of the long-term type-specific NAb response in humans. Transplantation of a DENV-4 hinge into a recombinant DENV-3 virus showed that the hinge determines the serotype-specific neutralizing potency of primary human and nonhuman primate DENV immune sera and that the hinge region both induces NAbs and is targeted by protective NAbs in rhesus macaques. These results suggest that the success of live dengue vaccines may depend on their ability to stimulate NAbs that target the envelope glycoprotein domain I/II hinge region. More broadly, this study shows that complex conformational antibody epitopes can be transplanted between live viruses, opening up similar possibilities for improving the breadth and specificity of vaccines for influenza, HIV, hepatitis C virus, and other clinically important viral pathogens.
Related JoVE Video
The potent and broadly neutralizing human dengue virus-specific monoclonal antibody 1C19 reveals a unique cross-reactive epitope on the bc loop of domain II of the envelope protein.
MBio
PUBLISHED: 11-21-2013
Show Abstract
Hide Abstract
Following natural dengue virus (DENV) infection, humans produce some antibodies that recognize only the serotype of infection (type specific) and others that cross-react with all four serotypes (cross-reactive). Recent studies with human antibodies indicate that type-specific antibodies at high concentrations are often strongly neutralizing in vitro and protective in animal models. In general, cross-reactive antibodies are poorly neutralizing and can enhance the ability of DENV to infect Fc receptor-bearing cells under some conditions. Type-specific antibodies at low concentrations also may enhance infection. There is an urgent need to determine whether there are conserved antigenic sites that can be recognized by cross-reactive potently neutralizing antibodies. Here, we describe the isolation of a large panel of naturally occurring human monoclonal antibodies (MAbs) directed to the DENV domain II fusion loop (FL) envelope protein region from subjects following vaccination or natural infection. Most of the FL-specific antibodies exhibited a conventional phenotype, characterized by low-potency neutralizing function and antibody-dependent enhancing activity. One clone, however, recognized the bc loop of domain II adjacent to the FL and exhibited a unique phenotype of ultrahigh potency, neutralizing all four serotypes better than any other previously described MAb recognizing this region. This antibody not only neutralized DENV effectively but also competed for binding against the more prevalent poor-quality antibodies whose binding was focused on the FL. The 1C19 human antibody could be a promising component of a preventative or therapeutic intervention. Furthermore, the unique epitope revealed by 1C19 suggests a focus for rational vaccine design based on novel immunogens presenting cross-reactive neutralizing determinants.
Related JoVE Video
Atomic-level functional model of dengue virus Envelope protein infectivity.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 10-24-2013
Show Abstract
Hide Abstract
A number of structures have been solved for the Envelope (E) protein from dengue virus and closely related flaviviruses, providing detailed pictures of the conformational states of the protein at different stages of infectivity. However, the key functional residues responsible for mediating the dynamic changes between these structures remain largely unknown. Using a comprehensive library of functional point mutations covering all 390 residues of the dengue virus E protein ectodomain, we identified residues that are critical for virus infectivity, but that do not affect E protein expression, folding, virion assembly, or budding. The locations and atomic interactions of these critical residues within different structures representing distinct fusogenic conformations help to explain how E protein (i) regulates fusion-loop exposure by shielding, tethering, and triggering its release; (ii) enables hinge movements between E domain interfaces during triggered structural transformations; and (iii) drives membrane fusion through late-stage zipper contacts with stem. These results provide structural targets for drug and vaccine development and integrate the findings from structural studies and isolated mutagenesis efforts into a cohesive model that explains how specific residues in this class II viral fusion protein enable virus infectivity.
Related JoVE Video
A neutralizing monoclonal antibody targeting the acid-sensitive region in chikungunya virus E2 protects from disease.
PLoS Negl Trop Dis
PUBLISHED: 09-01-2013
Show Abstract
Hide Abstract
The mosquito-borne alphavirus, chikungunya virus (CHIKV), has recently reemerged, producing the largest epidemic ever recorded for this virus, with up to 6.5 million cases of acute and chronic rheumatic disease. There are currently no licensed vaccines for CHIKV and current anti-inflammatory drug treatment is often inadequate. Here we describe the isolation and characterization of two human monoclonal antibodies, C9 and E8, from CHIKV infected and recovered individuals. C9 was determined to be a potent virus neutralizing antibody and a biosensor antibody binding study demonstrated it recognized residues on intact CHIKV VLPs. Shotgun mutagenesis alanine scanning of 98 percent of the residues in the E1 and E2 glycoproteins of CHIKV envelope showed that the epitope bound by C9 included amino-acid 162 in the acid-sensitive region (ASR) of the CHIKV E2 glycoprotein. The ASR is critical for the rearrangement of CHIKV E2 during fusion and viral entry into host cells, and we predict that C9 prevents these events from occurring. When used prophylactically in a CHIKV mouse model, C9 completely protected against CHIKV viremia and arthritis. We also observed that when administered therapeutically at 8 or 18 hours post-CHIKV challenge, C9 gave 100% protection in a pathogenic mouse model. Given that targeting this novel neutralizing epitope in E2 can potently protect both in vitro and in vivo, it is likely to be an important region both for future antibody and vaccine-based interventions against CHIKV.
Related JoVE Video
Functional analysis of antibodies against dengue virus type 4 reveals strain-dependent epitope exposure that impacts neutralization and protection.
J. Virol.
PUBLISHED: 06-19-2013
Show Abstract
Hide Abstract
Although prior studies have characterized the neutralizing activities of monoclonal antibodies (MAbs) against dengue virus (DENV) serotypes 1, 2, and 3 (DENV-1, DENV-2, and DENV-3), few reports have assessed the activity of MAbs against DENV-4. Here, we evaluated the inhibitory activity of 81 new mouse anti-DENV-4 MAbs. We observed strain- and genotype-dependent differences in neutralization of DENV-4 by MAbs mapping to epitopes on domain II (DII) and DIII of the envelope (E) protein. Several anti-DENV-4 MAbs inefficiently inhibited at least one strain and/or genotype, suggesting that the exposure or sequence of neutralizing epitopes varies within isolates of this serotype. Remarkably, flavivirus cross-reactive MAbs, which bound to the highly conserved fusion loop in DII and inhibited infection of DENV-1, DENV-2, and DENV-3, more weakly neutralized five different DENV-4 strains encompassing the genetic diversity of the serotype after preincubation at 37°C. However, increasing the time of preincubation at 37°C or raising the temperature to 40°C enhanced the potency of DII fusion loop-specific MAbs and some DIII-specific MAbs against DENV-4 strains. Prophylaxis studies in two new DENV-4 mouse models showed that neutralization titers of MAbs after preincubation at 37°C correlated with activity in vivo. Our studies establish the complexity of MAb recognition against DENV-4 and suggest that differences in epitope exposure relative to other DENV serotypes affect antibody neutralization and protective activity.
Related JoVE Video
Asymmetric deactivation of HIV-1 gp41 following fusion inhibitor binding.
PLoS Pathog.
PUBLISHED: 04-20-2009
Show Abstract
Hide Abstract
Both equilibrium and nonequilibrium factors influence the efficacy of pharmaceutical agents that target intermediate states of biochemical reactions. We explored the intermediate state inhibition of gp41, part of the HIV-1 envelope glycoprotein complex (Env) that promotes viral entry through membrane fusion. This process involves a series of gp41 conformational changes coordinated by Env interactions with cellular CD4 and a chemokine receptor. In a kinetic window between CD4 binding and membrane fusion, the N- and C-terminal regions of the gp41 ectodomain become transiently susceptible to inhibitors that disrupt Env structural transitions. In this study, we sought to identify kinetic parameters that influence the antiviral potency of two such gp41 inhibitors, C37 and 5-Helix. Employing a series of C37 and 5-Helix variants, we investigated the physical properties of gp41 inhibition, including the ability of inhibitor-bound gp41 to recover its fusion activity once inhibitor was removed from solution. Our results indicated that antiviral activity critically depended upon irreversible deactivation of inhibitor-bound gp41. For C37, which targets the N-terminal region of the gp41 ectodomain, deactivation was a slow process that depended on chemokine receptor binding to Env. For 5-Helix, which targets the C-terminal region of the gp41 ectodomain, deactivation occurred rapidly following inhibitor binding and was independent of chemokine receptor levels. Due to this kinetic disparity, C37 inhibition was largely reversible, while 5-Helix inhibition was functionally irreversible. The fundamental difference in deactivation mechanism points to an unappreciated asymmetry in gp41 following inhibitor binding and impacts the development of improved fusion inhibitors and HIV-1 vaccines. The results also demonstrate how the activities of intermediate state inhibitors critically depend upon the final disposition of inhibitor-bound states.
Related JoVE Video
Mechanistic study of broadly neutralizing human monoclonal antibodies against dengue virus that target the fusion loop.
J. Virol.
Show Abstract
Hide Abstract
There are no available vaccines for dengue, the most important mosquito-transmitted viral disease. Mechanistic studies with anti-dengue virus (DENV) human monoclonal antibodies (hMAbs) provide a rational approach to identify and characterize neutralizing epitopes on DENV structural proteins that can serve to inform vaccine strategies. Here, we report a class of hMAbs that is likely to be an important determinant in the human humoral response to DENV infection. In this study, we identified and characterized three broadly neutralizing anti-DENV hMAbs: 4.8A, D11C, and 1.6D. These antibodies were isolated from three different convalescent patients with distinct histories of DENV infection yet demonstrated remarkable similarities. All three hMAbs recognized the E glycoprotein with high affinity, neutralized all four serotypes of DENV, and mediated antibody-dependent enhancement of infection in Fc receptor-bearing cells at subneutralizing concentrations. The neutralization activities of these hMAbs correlated with a strong inhibition of virus-liposome and intracellular fusion, not virus-cell binding. We mapped epitopes of these antibodies to the highly conserved fusion loop region of E domain II. Mutations at fusion loop residues W101, L107, and/or G109 significantly reduced the binding of the hMAbs to E protein. The results show that hMAbs directed against the highly conserved E protein fusion loop block viral entry downstream of virus-cell binding by inhibiting E protein-mediated fusion. Characterization of hMAbs targeting this region may provide new insights into DENV vaccine and therapeutic strategies.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.