JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
End of inevitability: programming and reprogramming.
Stem Cell Rev
PUBLISHED: 07-30-2013
Show Abstract
Hide Abstract
Stem cell commitment and differentiation leading to functional cell types and organs has generally been considered unidirectional and deterministic. Starting first with a landmark study 50 years ago, and now with more recent observations, this paradigm has been challenged, necessitating a rethink of what constitutes both programming and reprogramming processes, and how we can use this new understanding for new approaches to drug discovery and regenerative medicine.
Related JoVE Video
Adult stem cells and cardiac regeneration.
Stem Cell Rev
PUBLISHED: 06-19-2013
Show Abstract
Hide Abstract
There is worldwide demand for therapies to promote the robust repair and regeneration with maximum regain of function of particular tissues and organs damaged by disease or injury. The potential role of adult stem cells has been highlighted by an increasing number of in vitro and in vivo studies. Nowhere is this more evident than in adult stem cell-based therapies being explored to promote cardiac regeneration. In spite of encouraging advances, significant challenges remain.
Related JoVE Video
Cartilage-Specific Overexpression of ERR? Results in Chondrodysplasia and Reduced Chondrocyte Proliferation.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
While the role of estrogen receptor-related receptor alpha (ERR?) in chondrogenesis has been investigated, the involvement of ERR gamma (ERR?) has not been determined. To assess the effect of increased ERR? activity on cartilage development in vivo, we generated two transgenic (Tg) lines overexpressing ERR?2 via a chondrocyte-specific promoter; the two lines exhibited ?3 and ?5 fold increased ERR?2 protein expression respectively in E14.5 Tg versus wild type (WT) limbs. On postnatal day seven (P7), we observed a 4-10% reduction in the size of the craniofacial, axial and appendicular skeletons in Tg versus WT mice. The reduction in bone length was already present at birth and did not appear to involve bones that are derived via intramembranous bone formation as the bones of the calvaria, clavicle, and the mandible developed normally. Histological analysis of P7 growth plates revealed a reduction in the length of the Tg versus WT growth plate, the majority of which was attributable to a reduced proliferative zone. The reduced proliferative zone paralleled a decrease in the number of Ki67-positive proliferating cells, with no significant change in apoptosis, and was accompanied by large cell-free swaths of cartilage matrix, which extended through multiple zones of the growth plate. Using a bioinformatics approach, we identified known chondrogenesis-associated genes with at least one predicted ERR binding site in their proximal promoters, as well as cell cycle regulators known to be regulated by ERR?. Of the genes identified, Col2al, Agg, Pth1r, and Cdkn1b (p27) were significantly upregulated, suggesting that ERR?2 negatively regulates chondrocyte proliferation and positively regulates matrix synthesis to coordinate growth plate height and organization.
Related JoVE Video
Claudins and cancer stem cells.
Stem Cell Rev
PUBLISHED: 04-29-2011
Show Abstract
Hide Abstract
It is now believed that most epithelial tumors are maintained by a subpopulation of cells called cancer stem cells (CSCs) or tumor initiating cells (TICs) with stem cell-like properties, including self-renewal and multilineage differentiation capacity. Recently new insights into this population have emerged in certain epithelial tumor types, including their Claudin(low) phenotype and its importance to the epithelial-mesenchymal transition (EMT) process. Taken together, CSCs, EMT and Claudins appear to constitute an axis-of-evil in cancer, for which better understanding may lead to new therapeutic platforms.
Related JoVE Video
Using high-throughput immunoblotting to identify proteins involved in the differentiation of ES cells along the hair follicle lineage in vitro.
Stem Cell Rev
PUBLISHED: 04-19-2011
Show Abstract
Hide Abstract
The hair follicles develop from a stem cell population in the surface ectoderm that feeds a complexe terminal differentiation pathway. We have developed a two-step high density culture scheme in which pluripotent mouse ES cells are induced first to ectoderm phenotype and then give rise to morphologically three dimensional nodule-like structures that express hair keratin in the center of them suggesting that they are progressing along the terminal differentiation program of the hair follicle in vitro. Using this model system we have now analyzed the protein expression profile using a high throughput western blotting method (BP Power Blot). This protocol provides an invaluable system in which to study both the mechanisms that direct stem cells along the hair follicle pathway as well as those that influence their subsequent epidermal differentiation in vitro.
Related JoVE Video
Re-assessing K15 as an epidermal stem cell marker.
Stem Cell Rev
PUBLISHED: 03-05-2011
Show Abstract
Hide Abstract
The intermediate filament keratin 15 (K15) is present in variable amounts in various stratified epithelia, but has also been reported to be a stem cell marker in the hair follicle. Using peptide specific antibodies, we evaluated the temporal and spatial distribution pattern of K15 expression/localization during normal epidermal development and initiation of hair follicle formation, and in the injured mature epidermis (e.g., during acute injury and repair and in tumorigenesis). During development, K15 expression is first localized to a subset of epidermal basal cells and the overlying periderm at E12.5, but its expression is seen throughout the basal layer by E15.5 and beyond. In hair follicle morphogenesis, initial peg formation occurs in a K15-null area at E14.5 and as peg elongation proceeds through to the mature hair follicle, K15 expression follows the leading edge with positive cells restricted to the outer root sheath. In an epidermal injury model, K15 is first up-regulated and associated with both the basal and suprabasal layers of the interfollicular epidermis then expression becomes sporadic and down-regulated before a basal layer-specific association is re-established in the repaired epidermis. During tumorigenesis, K15 is first mis-expressed, and is ultimately down-regulated. Our data suggest that K15 protein expression may reflect not only expression in a stem or progenitor cell subpopulation, but also reflects the activity and responsiveness of basal-like cells to loss of homeostasis of the epidermal differentiation program. Thus, the data suggest caution in using K15 alone to delineate epidermal stem cells, and underscore the need for further investigation of K15 and other markers in epidermal cell subpopulations.
Related JoVE Video
Junctions gone bad: claudins and loss of the barrier in cancer.
Biochim. Biophys. Acta
PUBLISHED: 02-14-2011
Show Abstract
Hide Abstract
The tight junctions (TJs) of epithelia are responsible for regulating the "fence and gate" function of polarized epithelial cells. It is now well-established that dysregulation of these functions contributes to initiation and progression of cancer. Recently, it has become clear that the Claudins, members of a large family of 27 closely related transmembrane proteins, play a crucial role in formation, integrity and function of TJs, the epithelial permeability barrier and epithelial polarization. A growing body of data indicates that Claudin expression is altered in numerous epithelial cancers in a stage- and tumor-specific manner. While a single universal mechanism is still lacking, accumulating evidence supports a role for epigenetic regulation of Claudin expression in tumorgenesis, with concomitant alterations in barrier function. We review here new insights and challenges in understanding Claudin function in normal physiology and cancer.
Related JoVE Video
Probing stemness and neural commitment in human amniotic fluid cells.
Stem Cell Rev
PUBLISHED: 03-12-2010
Show Abstract
Hide Abstract
Recently, human amniotic fluid (AF) cells have attracted a great deal of attention as an alternative cell source for transplantation and tissue engineering. AF contains a variety of cell types derived from fetal tissues, of which a small percentage is believed to represent stem cell sub-population(s). In contrast to human embryonic stem (ES) cells, AF cells are not subject to extensive legal or ethical considerations; nor are they limited by lineage commitment characteristic of adult stem cells. However, to become therapeutically valuable, better protocols for the isolation of AF stem cell sub-populations need to be developed. This study was designed to examine the molecular components involved in self-renewal, neural commitment and differentiation of AF cells obtained at different gestational ages. Our results showed that, although morphologically heterogeneous, AF cells derived from early gestational periods ubiquitously expressed KERATIN 8 (K8), suggesting that the majority of these cells may have an epithelial origin. In addition, AF cells expressed various components of NOTCH signaling (ligands, receptors and target genes), a pathway involved in stem cell maintenance, determination and differentiation. A sub-population of K8 positive cells (<10%) co-expressed NESTIN, a marker detected in the neuroepithelium, neural stem cells and neural progenitors. Throughout the gestational periods, a much smaller AF cell sub-population (<1%) expressed pluripotency markers, OCT4a, NANOG and SOX2, from which SOX2 positive AF cells could be isolated through single cell cloning. The SOX2 expressing AF clones showed the capacity to give rise to a neuron-like phenotype in culture, expressing neuronal markers such as MAP2, NFL and NSE. Taken together, our findings demonstrated the presence of fetal cells with stem cell characteristics in the amniotic fluid, highlighting the need for further research on their biology and clinical applications.
Related JoVE Video
Involucrin-claudin-6 tail deletion mutant (CDelta206) transgenic mice: a model of delayed epidermal permeability barrier formation and repair.
Dis Model Mech
PUBLISHED: 01-27-2010
Show Abstract
Hide Abstract
Preterm birth is a major global health problem that results in a large number of infant deaths, many of which are attributable to the complications of an immature epidermal permeability barrier (EPB), for which there is currently no effective therapeutic option. The mammalian EPB is formed during development and is essential for survival as it maintains thermoregulation and hydration, and provides a defense against infection. Using transgenic mouse technology, we have demonstrated the importance of claudin (Cldn)-containing tight junctions (TJs) in epidermal differentiation and, in particular, that epidermal suprabasal overexpression of Cldn6 results in an EPB-deficient phenotype that phenocopies the dysfunctional EPB of premature human infants. In this study, we used the same approach to target a Cldn6 tail deletion mutant to the epidermis of mice [involucrin (Inv)-Cldn6-CDelta206 transgenic mice]. The Inv-Cldn6-CDelta206 transgenic mice displayed a developmental delay in EPB formation, as shown by the expression of keratins and Cldns, and by X-Gal penetration assays. Trans-epidermal water loss measurements and immunolocalization studies indicated that the epidermal differentiation program was also perturbed in postnatal Inv-Cldn6-CDelta206 transgenic mice resulting in a delayed maturation. Notably, however, expression/localization of epidermal differentiation and maturation markers, including Cldns, indicated that the transgenic epidermis matured and normalized by postnatal day 10, which is 3 days after the wild-type epidermis. Our results suggest that activation of the extracellular signal-regulated kinase 1/2 (Erk1/2) pathway and Cldn1 phosphorylation are associated with the repair and maturation of the skin barrier processes. These studies provide additional support for the crucial role of Cldns in epidermal differentiation, maturation and the formation of the EPB, and describe a novel animal model for evaluating postnatal epidermal maturation and therapies that may accelerate the process.
Related JoVE Video
Dermatitis and aging-related barrier dysfunction in transgenic mice overexpressing an epidermal-targeted claudin 6 tail deletion mutant.
PLoS ONE
PUBLISHED: 08-05-2009
Show Abstract
Hide Abstract
The barrier function of the skin protects the mammalian body against infection, dehydration, UV irradiation and temperature fluctuation. Barrier function is reduced with the skins intrinsic aging process, however the molecular mechanisms involved are unknown. We previously demonstrated that Claudin (Cldn)-containing tight junctions (TJs) are essential in the development of the epidermis and that transgenic mice overexpressing Cldn6 in the suprabasal layers of the epidermis undergo a perturbed terminal differentiation program characterized in part by reduced barrier function. To dissect further the mechanisms by which Cldn6 acts during epithelial differentiation, we overexpressed a Cldn6 cytoplasmic tail deletion mutant in the suprabasal compartment of the transgenic mouse epidermis. Although there were no gross phenotypic abnormalities at birth, subtle epidermal anomalies were present that disappeared by one month of age, indicative of a robust injury response. However, with aging, epidermal changes with eventual chronic dermatitis appeared with a concomitant barrier dysfunction manifested in increased trans-epidermal water loss. Immunohistochemical analysis revealed aberrant suprabasal Cldn localization with marked down-regulation of Cldn1. Both the proliferative and terminal differentiation compartments were perturbed as evidenced by mislocalization of multiple epidermal markers. These results suggest that the normally robust injury response mechanism of the epidermis is lost in the aging Involucrin-Cldn6-CDelta196 transgenic epidermis, and provide a model for evaluation of aging-related skin changes.
Related JoVE Video
Insights into the role of the calcium sensing receptor in epidermal differentiation in vivo.
Mol. Biotechnol.
PUBLISHED: 06-05-2009
Show Abstract
Hide Abstract
While the important role of calcium (Ca(++)) signaling is fundamental in epidermal cell physiology, a detailed knowledge of precisely how epidermal cells respond to Ca(++) levels is not clear. Using peptide-specific antibodies that we generated, we set out to evaluate the temporal and spatial distribution pattern of the Ca(++)-sensing receptor (CaSR) during epidermogenesis and to assess its involvement in the mature epidermis (e.g., in acute injury and tumorigenesis). Our data indicate a developmentally regulated expression of CaSR: up-regulation occurs in specific epidermal cells and cell layers in normal development or in response to injury when epidermal cells are induced to undergo commitment and early differentiation events, and down-regulation occurs in terminal differentiation stages. These results provide a new perspective on the role of the CaSR in these processes and describe a novel tool for evaluating Ca(++)-mediated epidermal differentiation.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.