JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Suppression of neovascularization of donor corneas by transduction with equine infectious anemia virus-based lentiviral vectors expressing endostatin and angiostatin.
Hum. Gene Ther.
PUBLISHED: 03-21-2014
Show Abstract
Hide Abstract
Corneal transplantation is the oldest and one of the most successful transplant procedures with a success rate in many studies in excess of 90%. The high success rate is mainly attributable to the relatively immune-privileged status of the eye and the fact that the cornea is largely avascular. However, the success rate in patients with failed grafts is much lower such that regrafting is frequently the top indication for corneal transplantation in many centers. Neovascularization is the most important risk factor for rejection, as it allows access of the immune system to the donor tissue, compromising immune privilege of the graft/eye. We have developed a process to modify donor corneal tissue to prevent rejection by a single exposure to a gene therapy vector before surgery (EncorStat(®)). The vector used is based on clinically relevant equine infectious anemia virus (EIAV)-derived lentiviral platform and contains genes for two potently angiostatic genes, endostatin and angiostatin. We show that incubation of rabbit, primate, and human corneal tissue with the EIAV vector mediates strong, stable expression in the corneal endothelium. We have optimized this process to maximize transduction and, once this is complete, maximize the removal of free vector before transplant. Rabbit corneas treated with two different antiangiogenic expression vectors (EIAV-EndoAngio and to a lesser extent EIAV-Endo:k5) significantly suppressed neovascularization in a rabbit model of corneal rejection. As a result, corneal opacity, edema, and inflammatory infiltrates were reduced in these corneas. This study demonstrates that angiogenesis is a suitable target to prevent corneal rejection, and provides the first proof-of-concept data for the development of EncorStat, an ex vivo gene therapy treatment to prevent corneal rejection.
Related JoVE Video
Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson's disease: a dose escalation, open-label, phase 1/2 trial.
Lancet
PUBLISHED: 01-10-2014
Show Abstract
Hide Abstract
Parkinson's disease is typically treated with oral dopamine replacement therapies; however, long-term treatment leads to motor complications and, occasionally, impulse control disorders caused by intermittent stimulation of dopamine receptors and off-target effects, respectively. We aimed to assess the safety, tolerability, and efficacy of bilateral, intrastriatal delivery of ProSavin, a lentiviral vector-based gene therapy aimed at restoring local and continuous dopamine production in patients with advanced Parkinson's disease.
Related JoVE Video
EIAV-based retinal gene therapy in the shaker1 mouse model for usher syndrome type 1B: development of UshStat.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Usher syndrome type 1B is a combined deaf-blindness condition caused by mutations in the MYO7A gene. Loss of functional myosin VIIa in the retinal pigment epithelia (RPE) and/or photoreceptors leads to blindness. We evaluated the impact of subretinally delivered UshStat, a recombinant EIAV-based lentiviral vector expressing human MYO7A, on photoreceptor function in the shaker1 mouse model for Usher type 1B that lacks a functional Myo7A gene. Subretinal injections of EIAV-CMV-GFP, EIAV-RK-GFP (photoreceptor specific), EIAV-CMV-MYO7A (UshStat) or EIAV-CMV-Null (control) vectors were performed in shaker1 mice. GFP and myosin VIIa expression was evaluated histologically. Photoreceptor function in EIAV-CMV-MYO7A treated eyes was determined by evaluating ?-transducin translocation in photoreceptors in response to low light intensity levels, and protection from light induced photoreceptor degeneration was measured. The safety and tolerability of subretinally delivered UshStat was evaluated in macaques. Expression of GFP and myosin VIIa was confirmed in the RPE and photoreceptors in shaker1 mice following subretinal delivery of the EIAV-CMV-GFP/MYO7A vectors. The EIAV-CMV-MYO7A vector protected the shaker1 mouse photoreceptors from acute and chronic intensity light damage, indicated by a significant reduction in photoreceptor cell loss, and restoration of the ?-transducin translocation threshold in the photoreceptors. Safety studies in the macaques demonstrated that subretinal delivery of UshStat is safe and well-tolerated. Subretinal delivery of EIAV-CMV-MYO7A (UshStat) rescues photoreceptor phenotypes in the shaker1 mouse. In addition, subretinally delivered UshStat is safe and well-tolerated in macaque safety studies These data support the clinical development of UshStat to treat Usher type 1B syndrome.
Related JoVE Video
Transduction of photoreceptors with equine infectious anemia virus lentiviral vectors: safety and biodistribution of StarGen for Stargardt disease.
Invest. Ophthalmol. Vis. Sci.
PUBLISHED: 04-27-2013
Show Abstract
Hide Abstract
StarGen is an equine infectious anemia virus (EIAV)-based lentiviral vector that expresses the photoreceptor-specific adenosine triphosphate (ATP)-binding cassette transporter (ABCA4) protein that is mutated in Stargardt disease (STGD1), a juvenile macular dystrophy. EIAV vectors are able to efficiently transduce rod and cone photoreceptors in addition to retinal pigment epithelium in the adult macaque and rabbit retina following subretinal delivery. The safety and biodistribution of StarGen following subretinal delivery in macaques and rabbits was assessed.
Related JoVE Video
Characterization of lentiviral vector production using microwell suspension cultures of HEK293T-derived producer cells.
Hum Gene Ther Methods
PUBLISHED: 03-07-2013
Show Abstract
Hide Abstract
ProSavin(®) is a lentiviral vector (LV)-based gene therapy for Parkinsons disease. ProSavin(®) is currently in a Phase I/II clinical trial using material that was generated by transient transfection of adherent human embryonic kidney (HEK)293T cells. For future large-scale productions of ProSavin(®), we have previously reported the development and characterization of two inducible producer cell lines, termed PS5.8 and PS46.2. PS46.2 has been successfully adapted to grow in suspension cultures. The present study describes the creation of a small-scale (<2 ml) microwell-based experimental platform for the parallel investigation of ProSavin(®) production using suspension-adapted PS46.2. This is combined with statistical design of experiments (DoE) techniques to enable rapid characterization of the process conditions that impact cell growth and LV production. The effects of postinduction period, microwell liquid fill volume, and concentration of inducer (doxycycline) on ProSavin(®) titer and the particle:infectivity (P:I) ratio was investigated using three rounds of DoE, in order to identify appropriate factor ranges and optimize production conditions. We identified an optimal "harvest window" between approximately 26-46 hr within which maximal titers of around 6×10(4) transducing units (TU)/ml were obtained (an approximately 30-fold improvement compared to starting microwell conditions), providing that the fill volume was maintained at or below 1 ml and the doxycycline concentration was at least 1.0 ?g/ml. Insights from the microwell studies were subsequently used to rapidly establish operating conditions for ProSavin(®) production in a 0.5-L wave bioreactor culture. The information presented herein thus aids the design and evaluation of scalable production processes for LVs.
Related JoVE Video
A stable producer cell line for the manufacture of a lentiviral vector for gene therapy of Parkinsons disease.
Hum. Gene Ther.
PUBLISHED: 02-10-2011
Show Abstract
Hide Abstract
ProSavin is an equine infectious anemia virus vector-based gene therapy for Parkinsons disease for which inducible HEK293T-based producer cell lines (PCLs) have been developed. These cell lines demonstrate stringent tetracycline-regulated expression of the packaging components and yield titers comparable to the established transient production system. A prerequisite for the use of PCL-derived lentiviral vectors (LVs) in clinical applications is the thorough characterization of both the LV and respective PCL with regard to identity and genetic stability. We describe the detailed characterization of two ProSavin PCLs (PS5.8 and PS46.2) and resultant ProSavin vector. The two cell lines demonstrate stable production of vector over a time period sufficient to allow generation of master and working cell banks, and subsequent large-scale vector production. ProSavin generated from the PCLs performs comparably in vivo to that produced by the standard transient transfection process with respect to transduction efficiency and immunogenicity. The development of ProSavin PCLs, and the detailed characterization described here, will aid the advancement of ProSavin for clinical application.
Related JoVE Video
Dopamine gene therapy for Parkinsons disease in a nonhuman primate without associated dyskinesia.
Sci Transl Med
PUBLISHED: 08-04-2009
Show Abstract
Hide Abstract
In Parkinsons disease, degeneration of specific neurons in the midbrain can cause severe motor deficits, including tremors and the inability to initiate movement. The standard treatment is administration of pharmacological agents that transiently increase concentrations of brain dopamine and thereby discontinuously modulate neuronal activity in the striatum, the primary target of dopaminergic neurons. The resulting intermittent dopamine alleviates parkinsonian symptoms but is also thought to cause abnormal involuntary movements, called dyskinesias. To investigate gene therapy for Parkinsons disease, we simulated the disease in macaque monkeys by treating them with the complex I mitochondrial inhibitor 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, which induces selective degeneration of dopamine-producing neurons. In this model, we demonstrated that injection of a tricistronic lentiviral vector encoding the critical genes for dopamine synthesis (tyrosine hydroxylase, aromatic L-amino acid decarboxylase, and guanosine 5-triphosphate cyclohydrolase 1) into the striatum safely restored extracellular concentrations of dopamine and corrected the motor deficits for 12 months without associated dyskinesias. Gene therapy-mediated dopamine replacement may be able to correct Parkinsonism in patients without the complications of dyskinesias.
Related JoVE Video
Assessment of Integration-defective HIV-1 and EIAV Vectors In Vitro and In Vivo.
Mol Ther Nucleic Acids
Show Abstract
Hide Abstract
The interest in integrase-defective lentiviral vectors (IDLVs) stems from their potential advantage of large cloning capacity and broad cell tropism while avoiding the possibility of insertional mutagenesis. Here, we directly compared the transducing potential of IDLVs based on the equine infectious anemia virus (EIAV) to the more commonly described HIV-1 IDLVs. IDLVs were constructed by introducing equivalent single/triple mutations into the integrase catalytic triad. We show that both the single and the triple mutant HIV-1 IDLVs transduce the PC12 cells, but not the C2C12 cells, with similar efficiency to their parental HIV-1 vector. In contrast, the single and triple EIAV IDLVs did not efficiently transduce either differentiated cell line. Moreover, this HIV-1 IDLV-mediated expression was independent of any residual integration activity because reporter expression was lost when cell cycling was restored. Four weeks following stereotactic administration into adult rat brains, only the single HIV-1 IDLV mutant displayed a comparable transduction profile to the parental HIV-1 vector. In contrast, neither EIAV IDLV mutants showed significant reporter gene expression. This work indicates that the transducing potential of IDLVs appears to depend not only on the choice of integrase mutation and type of target cell, but also on the nature of the lentiviral vector.Molecular Therapy - Nucleic Acids (2012) 1, e60; doi:10.1038/mtna.2012.53; published online 11 December 2012.
Related JoVE Video
Development of an equine-tropic replication-competent lentivirus assay for equine infectious anemia virus-based lentiviral vectors.
Hum Gene Ther Methods
Show Abstract
Hide Abstract
The release of lentiviral vectors for clinical use requires the testing of vector material, production cells, and, if applicable, ex vivo-transduced cells for the presence of replication-competent lentivirus (RCL). Vectors derived from the nonprimate lentivirus equine infectious anemia virus (EIAV) have been directly administered to patients in several clinical trials, with no toxicity observed to date. Because EIAV does not replicate in human cells, and because putative RCLs derived from vector components within human vector production cells would most likely be human cell-tropic, we previously developed an RCL assay using amphotropic murine leukemia virus (MLV) as a surrogate positive control and human cells as RCL amplification/indicator cells. Here we report an additional RCL assay that tests for the presence of theoretical "equine-tropic" RCLs. This approach provides further assurance of safety by detecting putative RCLs with an equine cell-specific tropism that might not be efficiently amplified by the human cell-based RCL assay. We tested the ability of accessory gene-deficient EIAV mutant viruses to replicate in a highly permissive equine cell line to direct our choice of a suitable EIAV-derived positive control. In addition, we report for the first time the mathematical rationale for use of the Poisson distribution to calculate minimal infectious dose of positive control virus and for use in monitoring assay positive/spike control failures in accumulating data sets. No RCLs have been detected in Good Manufacturing Practice (GMP)-compliant RCL assays to date, further demonstrating that RCL formation is highly unlikely in contemporary minimal lentiviral vector systems.
Related JoVE Video
Safety and biodistribution of an equine infectious anemia virus-based gene therapy, RetinoStat(®), for age-related macular degeneration.
Hum. Gene Ther.
Show Abstract
Hide Abstract
RetinoStat(®) is an equine infectious anemia virus-based lentiviral gene therapy vector that expresses the angiostatic proteins endostatin and angiostatin that is delivered via a subretinal injection for the treatment of the wet form of age-related macular degeneration. We initiated 6-month safety and biodistribution studies in two species; rhesus macaques and Dutch belted rabbits. After subretinal administration of RetinoStat the level of human endostatin and angiostatin proteins in the vitreous of treated rabbit eyes peaked at ?1 month after dosing and remained elevated for the duration of the study. Regular ocular examinations revealed a mild to moderate transient ocular inflammation that resolved within 1 month of dosing in both species. There were no significant long-term changes in the electroretinograms or intraocular pressure measurements in either rabbits or macaques postdosing compared with the baseline reading in RetinoStat-treated eyes. Histological evaluation did not reveal any structural changes in the eye although there was an infiltration of mononuclear cells in the vitreous, retina, and choroid. No antibodies to any of the RetinoStat vector components or the transgenes could be detected in the serum from either species, and biodistribution analysis demonstrated that the RetinoStat vector was maintained within the ocular compartment. In summary, these studies found RetinoStat to be well tolerated, localized, and capable of persistent expression after subretinal delivery.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.