JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Single-Layer MnO2 Nanosheets Suppressed Fluorescence of 7-Hydroxycoumarin: Mechanistic Study and Application for Sensitive Sensing of Ascorbic Acid In Vivo.
Anal. Chem.
PUBLISHED: 11-14-2014
Show Abstract
Hide Abstract
In this study, we systematically investigate the mechanism of single-layer MnO2 nanosheets suppressed fluorescence of 7-hydroxycoumarin and, based on this, demonstrate a new fluorescent method for in vivo sensing of ascorbic acid (AA) in rat brain. The mechanism for the fluorescence suppression is attributed to a combination of inner filter effect (IFE) and static quenching effect (SQE), which is different from those reported for the traditional two-dimensional nanosheets, and Förster resonant energy transfer (FRET) mechanism reported for MnO2 nanosheets. The combination of IFE and SQE leads to an exponential decay in fluorescence intensity of 7-hydroxycoumarin with increasing concentration of MnO2 nanosheets in solution. Such a property allows optimization of the concentration of MnO2 nanosheets in such a way that the addition of reductive analyte (e.g., AA) will to the greatest extent restore the MnO2 nanosheets-suppressed fluorescence of 7-hydroxycoumarin through the redox reaction between AA and MnO2 nanosheets. Based on this feature, we demonstrate a fluorescent method for in vivo sensing of AA in the cerebral systems with an improved sensitivity. Compared with the turn-on fluorescent method through first decreasing the fluorescence to the lowest level by adding concentrated MnO2 nanosheets, the method demonstrated here possesses a higher sensitivity, lower limit of detection, and wider linear range. Upon the use of ascorbate oxidase to achieve the selectivity for AA, the turn-on fluorescence method demonstrated here can be used for in vivo sensing of AA in a simple but reliable way.
Related JoVE Video
Nanoparticles: visualization and quantification of neurochemicals with gold nanoparticles: opportunities and challenges (adv. Mater. 40/2014).
Adv. Mater. Weinheim
PUBLISHED: 10-24-2014
Show Abstract
Hide Abstract
By taking full advantage of both the designable and thus tunable surface chemistry and the high extinction coefficient of gold nanoparticles, neurochemical changes during brain functions can be quantified and visualized simply through the development of new analytical principles and methods. This offers a straightforward route to a better understanding of the molecular basis underlying brain activities and is discussed in detail by L. Q. Mao and co-workers on page 6933.
Related JoVE Video
In vivo fluorescence sensing of the salicylate-induced change of zinc ion concentration in the auditory cortex of rat brain.
Analyst
PUBLISHED: 10-10-2014
Show Abstract
Hide Abstract
This study demonstrates a fluorescence method for in vivo sensing of the dynamic change of Zn(2+) concentration in auditory cortex microdialysates induced by salicylate with N'-(7-nitro-2,1,3-benzoxadiazole-4-yl)-N,N,N'-tris(pyridine-2-ylmethyl) ethane-1,2-diamine (NBD-TPEA) as a probe. The excellent properties of the NBD-TPEA probe make it possible to achieve a high selectivity for Zn(2+) sensing with the co-existence of amino acids and other metal ions as well as the species commonly existing in the cerebral system. To validate the method for in vivo fluorescence sensing of Zn(2+) in the rat brain, we pre-mix the microdialysates in vivo sampled from the auditory cortex with the NBD-TPEA probe and then perfuse the mixtures into a fluorescent cuvette for continuous-flow fluorescence detection. The method demonstrated here shows a linear relationship between the signal output and Zn(2+) concentration within the concentration range from 0.5 ?M to 4 ?M, with a detection limit of 156 nM (S/N = 3). The basal level of extracellular Zn(2+) in auditory cortex microdialysates is determined to be 0.52 ± 0.082 ?M (n = 4). This value is increased by the injection of 100 mg mL(-1) of salicylate (1 ?L min(-1), 5 min, i.p.), reaches a peak at the time point of 90 min, and levels off with time. Such an increase is attenuated by the injection of MK-801, a potent and specific NMDA receptor antagonist, after the pre-injection of 100 mg mL(-1) salicylate for 5 min. This study offers a fluorescence method for in vivo sensing of Zn(2+) in the rat brain that could be useful for the investigations of chemical processes involved in brain functions.
Related JoVE Video
1,5-diaminonaphthalene hydrochloride assisted laser desorption/ionization mass spectrometry imaging of small molecules in tissues following focal cerebral ischemia.
Anal. Chem.
PUBLISHED: 10-03-2014
Show Abstract
Hide Abstract
A sensitive analytical technique for visualizing small endogenous molecules simultaneously is of great significance for clearly elucidating metabolic mechanisms during pathological progression. In the present study, 1,5-naphthalenediamine (1,5-DAN) hydrochloride was prepared for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) of small molecules in liver, brain, and kidneys from mice. Furthermore, 1,5-DAN hydrochloride assisted LDI MSI of small molecules in brain tissue of rats subjected to middle cerebral artery occlusion (MCAO) was carried out to investigate the altered metabolic pathways and mechanisms underlying the development of ischemic brain damage. Our results suggested that the newly prepared matrix possessed brilliant features including low cost, strong ultraviolet absorption, high salt tolerance capacity, and fewer background signals especially in the low mass range (typically m/z < 500), which permitted us to visualize the spatial distribution of a broad range of small molecule metabolites including metal ions, amino acids, carboxylic acids, nucleotide derivatives, peptide, and lipids simultaneously. Nineteen endogenous metabolites involved in metabolic networks such as ATP metabolism, tricarboxylic acid (TCA) cycle, glutamate-glutamine cycle, and malate-aspartate shuttle, together with metal ions and phospholipids as well as antioxidants underwent relatively obvious changes after 24 h of MCAO. The results were highly consistent with the data obtained by MRM MS analysis. These findings highlighted the promising potential of the organic salt matrix for application in the field of biomedical research.
Related JoVE Video
Effective visualization assay for alcohol content sensing and methanol differentiation with solvent stimuli-responsive supramolecular ionic materials.
Anal. Chem.
PUBLISHED: 07-18-2014
Show Abstract
Hide Abstract
This study demonstrates a rapid visualization assay for on-spot sensing of alcohol content as well as for discriminating methanol-containing beverages with solvent stimuli-responsive supramolecular ionic material (SIM). The SIM is synthesized by ionic self-assembling of imidazolium-based dication C10(mim)2 and dianionic 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in water and shows water stability, a solvent stimuli-responsive property, and adaptive encapsulation capability. The rationale for the visualization assay demonstrated here is based on the combined utilization of the unique properties of SIM, including its water stability, ethanol stimuli-responsive feature, and adaptive encapsulation capability toward optically active rhodamine 6G (Rh6G); the addition of ethanol into a stable aqueous dispersion of Rh6G-encapsulated SIM (Rh6G-SIM) destructs the Rh6G-SIM structure, resulting in the release of Rh6G from SIM into the solvent. Alcohol content can thus be visualized with the naked eyes through the color change of the dispersion caused by the addition of ethanol. Alcohol content can also be quantified by measuring the fluorescence line of Rh6G released from Rh6G-SIM on a thin-layer chromatography (TLC) plate in response to alcoholic beverages. By fixing the diffusion distance of the mobile phase, the fluorescence line of Rh6G shows a linear relationship with alcohol content (vol %) within a concentration range from 15% to 40%. We utilized this visualization assay for on-spot visualizing of the alcohol contents of three Chinese commercial spirits and discriminating methanol-containing counterfeit beverages. We found that addition of a trace amount of methanol leads to a large increase of the length of Rh6G on TLC plates, which provides a method to identify methanol adulterated beverages with labeled ethanol content. This study provides a simple yet effective assay for alcohol content sensing and methanol differentiation.
Related JoVE Video
Platinized aligned carbon nanotube-sheathed carbon fiber microelectrodes for in vivo amperometric monitoring of oxygen.
Anal. Chem.
PUBLISHED: 05-07-2014
Show Abstract
Hide Abstract
The abnormal level of O2 could disturb various neurochemical processes and even induce neural injury and brain dysfunction. In order to assess critical roles of O2 in the neurochemical processes, it is essential to perform in vivo monitoring of the dynamic changes of O2. In this study, we develop a new electrochemical method for selectively monitoring O2 in vivo, using platinized vertically aligned carbon nanotube (VACNT)-sheathed carbon fibers (Pt/VACNT-CFs) as the electrodes. The VACNT-sheathed CFs (VACNT-CFs) are produced via the pyrolysis of iron phthalocyanine (FePc) on the surface of CFs, followed by electrochemical deposition of platinum nanoparticles to form Pt/VACNT-CFs. The resulting Pt/VACNT-CF microelectrodes exhibit fast overall kinetics for the O2 reduction via a four-electron reduction process without the formation of toxic H2O2 intermediate. Consequently, effective and selective electrochemical methods are developed for the measurements of O2 in rat brain with the Pt/VACNT-CF microelectrodes, even in the presence of some species at their physiological levels, such as ascorbic acid, dopamine, uric acid, 5-hydroxytryptamine, and of the O2 fluctuation in rat brain in the early stage of global cerebral ischemia/reperfusion, mild hyperoxia, and hypoxia induced by exposing the animal, for a short time, to O2 and N2, respectively, and hindfeet pinch. The use of VACNT-CF as the support for Pt effectively improves the stability of Pt, as compared with the bare CF support, while the FePc pyrolysis ensures the VACNT-CFs to be reproducibly produced. Thus, this study offers a novel and reliable strategy for preparing new microelectrodes for in vivo monitoring of O2 in various physiological processes with a high sensitivity and selectivity.
Related JoVE Video
Water-stable, adaptive, and electroactive supramolecular ionic material and its application in biosensing.
ACS Appl Mater Interfaces
PUBLISHED: 04-11-2014
Show Abstract
Hide Abstract
Developing water-stable and adaptive supramolecular materials is of great importance in various research fields. Here, we demonstrate a new kind of water-stable, adaptive, and electroactive supramolecular ionic materials (SIM) that is formed from the aqueous solutions of imidazolium-based dication and dianionic dye (i.e., 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), ABTS) through ionic self-assembly. The formed SIM not only shows good thermostability and unique optical and electrochemical properties that are raised from precursors of the SIM, but also exhibits good water-stability, salt-stability, and adaptive encapsulation properties toward some heterocyclic cationic dye molecules. UV-vis and FT-IR results demonstrate that this encapsulation property is essentially based on the electrostatic interactions between the guest dye molecules and ABTS in the SIM. The application of the SIM prepared here is illustrated by the development of a new electrochemical sensor for NADH sensing at a low potential. This study not only opens a new avenue to the preparation of the supramolecular materials, but also provides a versatile platform for electrochemical (bio)sensing.
Related JoVE Video
Vertically aligned carbon nanotube-sheathed carbon fibers as pristine microelectrodes for selective monitoring of ascorbate in vivo.
Anal. Chem.
PUBLISHED: 03-28-2014
Show Abstract
Hide Abstract
Using as-synthesized vertically aligned carbon nanotube-sheathed carbon fibers (VACNT-CFs) as microelectrodes without any postsynthesis functionalization, we have developed in this study a new method for in vivo monitoring of ascorbate with high selectivity and reproducibility. The VACNT-CFs are formed via pyrolysis of iron phthalocyanine (FePc) on the carbon fiber support. After electrochemical pretreatment in 1.0 M NaOH solution, the pristine VACNT-CF microelectrodes exhibit typical microelectrode behavior with fast electron transfer kinetics for electrochemical oxidation of ascorbate and are useful for selective ascorbate monitoring even with other electroactive species (e.g., dopamine, uric acid, and 5-hydroxytryptamine) coexisting in rat brain. Pristine VACNT-CFs are further demonstrated to be a reliable and stable microelectrode for in vivo recording of the dynamic increase of ascorbate evoked by intracerebral infusion of glutamate. Use of a pristine VACNT-CF microelectrode can effectively avoid any manual electrode modification and is free from person-to-person and/or electrode-to-electrode deviations intrinsically associated with conventional CF electrode fabrication, which often involves electrode surface modification with randomly distributed CNTs or other pretreatments, and hence allows easy fabrication of highly selective, reproducible, and stable microelectrodes even by nonelectrochemists. Thus, this study offers a new and reliable platform for in vivo monitoring of neurochemicals (e.g., ascorbate) to largely facilitate future studies on the neurochemical processes involved in various physiological events.
Related JoVE Video
Continuous and simultaneous electrochemical measurements of glucose, lactate, and ascorbate in rat brain following brain ischemia.
Anal. Chem.
PUBLISHED: 03-24-2014
Show Abstract
Hide Abstract
Developing new tools and technologies to enable recording the dynamic changes of multiple neurochemicals is the essence of better understanding of the molecular basis of brain functions. This study demonstrates a microfluidic chip-based online electrochemical system (OECS) for in vivo continuous and simultaneous monitoring of glucose, lactate, and ascorbate in rat brain. To fabricate the microfluidic chip-based detecting system, a microfluidic chip with patterned channel is developed into an electrochemical flow cell by incorporating the chip with three surface-modified indium-tin oxide (ITO) electrodes as working electrodes, a Ag/AgCl wire as reference electrode, and a stainless steel tube as counter electrode. Selective detection of ascorbate is achieved by the use of single-walled carbon nanotubes (SWNTs) to largely facilitate the electrochemical oxidation of ascorbate, while a dehydrogenase-based biosensing mechanism with methylene green (MG) adsorbed onto SWNTs as an electrocatalyst for the oxidation of dihydronicotiamide adenine dinucleotide (NADH) is employed for biosensing of glucose and lactate. To avoid the crosstalk among three sensors, the sensor alignment is carefully designed with the SWNT-modified electrode in the upstream channel and paralleled glucose and lactate biosensors in the downstream channels. With the microfluidic chip-based electrochemical flow cell as the detector, an OECS is successfully established by directly integrating the microfluidic chip-based electrochemical flow cell with in vivo microdialysis. The OECS exhibits a good linear response toward glucose, lactate, and ascorbate with less crosstalk. This property, along with the high stability and selectivity, enables the OECS for continuously monitoring three species in rat brain following brain ischemia.
Related JoVE Video
Improving the fluorescence detection limit with positively charged carbon nanostructures as a low background signal platform.
Analyst
PUBLISHED: 03-19-2014
Show Abstract
Hide Abstract
We have demonstrated a new strategy to improve the fluorescence detection limit by enhancing the energy transfer efficiency between carbon structures and fluorescent dyes using polyimidazolium-functionalized carbon nanostructures as a low background signal platform. Based on this, a highly sensitive method for thrombin was proposed with a detection limit as low as 2.79 pM without any amplification.
Related JoVE Video
G-quadruplex DNAzymes-induced highly selective and sensitive colorimetric sensing of free heme in rat brain.
Analyst
PUBLISHED: 03-07-2014
Show Abstract
Hide Abstract
Direct selective determination of free heme in the cerebral system is of great significance due to the crucial roles of free heme in physiological and pathological processes. In this work, a G-quadruplex DNAzymes-induced highly sensitive and selective colorimetric sensing of free heme in rat brain is established. Initially, the conformation of an 18-base G-rich DNA sequence, PS2.M (5'-GTGGGTAGGGCGGGTTGG-3'), in the presence of K(+), changes from a random coil to a "parallel" G-quadruplex structure, which can bind free heme in the cerebral system with high affinity through ?-? stacking. The resulted heme/G-quadruplex complex exhibits high peroxidase-like activity, which can be used to catalyze the oxidation of colorless ABTS(2-) to green ABTS?(-) by H2O2. The concentration of heme can be evaluated by the naked eye and determined by UV-vis spectroscopy. The signal output showed a linear relationship for heme within the concentration range from 1 to 120 nM with a detection limit of 0.637 nM. The assay demonstrated here was highly selective and free from the interference of physiologically important species such as dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), ascorbate acid (AA), cysteine, uric acid (UA), glucose and lactate in the cerebral system. The basal dialysate level of free heme in the microdialysate from the striatum of adult male Sprague-Dawley rats was determined to be 32.8 ± 19.5 nM (n = 3). The analytic protocol possesses many advantages, including theoretical simplicity, low-cost technical and instrumental demands, and responsible detection of heme in rat brain microdialysate.
Related JoVE Video
Visualization and quantification of neurochemicals with gold nanoparticles: opportunities and challenges.
Adv. Mater. Weinheim
PUBLISHED: 01-24-2014
Show Abstract
Hide Abstract
Gold nanoparticle (Au-NP)-based colorimetric assays offer new opportunitites for the visualization and quantification of neurochemicals involved in physiological and pathological processes due to their high sensitivity, designability, and low technical demands. In this Research News, we systematically review the advances on the development of Au-NP-based colorimetric methods for visualization and quantification of neurochemicals and their potential applications for effectively monitoring neurochemicals in the central nervous system. By integration of the favourable surface chemistry with the high extinction coefficient of Au-NPs, some new principles and methods could be developed for the quantification of neurochemicals involved in brain functions. New strategies to design the surface chemistry of Au-NPs, along with the key challenges yet to be addressed to achieve online visualization and quantification of neurochemicals in the central nervous system, are illustrated and discussed. The questions opened here should inspire future investigations and lead to discoveries that continue the development of the effective analytical protocols based on Au-NPs for neurochemical visualization and quantification.
Related JoVE Video
Electrochemical post-treatment of infinite coordination polymers: an effective route to preparation of Pd nanoparticles supported onto carbon nanotubes with enhanced electrocatalytic activity toward ethanol oxidation.
ACS Appl Mater Interfaces
PUBLISHED: 10-25-2013
Show Abstract
Hide Abstract
This study describes an effective method to prepare highly dispersed palladium nanoparticles supported onto single-walled carbon nanotubes (SWNTs) with high electrocatalytic activity toward the oxidation of ethanol. This method is essentially based on electrochemical post-treatment of Pd-based infinite coordination polymer (ICP). The Pd-based ICP is synthesized through the coordination reaction between Zn(2+) and metallo-Schiff base (MSB) to form Zn-MSB-Zn (ZMZ) ICP that precipitates from ethyl ether. The as-formed Zn-MSB-Zn ICP is then subjected to an ion-exchange reaction with Pd(2+) to obtain the Zn-MSB-Pd (ZMP) ICP. To prepare Pd/SWNT nanocomposite, the ZMP ICP is mixed into the SWNT dispersion in N-dimethylformamide (DMF) to form a homogeneous dispersion that is then drop-coated onto a glassy carbon (GC) electrode. Electrochemical post-treatment of ZMP ICP to form Pd/SWNT nanocomposite is thus performed by polarizing the coated electrode at -0.2 V for 600 s in 0.5 M H2SO4. The results obtained with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) reveal that the resulting Pd nanoparticles are highly dispersed onto SWNTs and the particles size are small and narrowly distributed (2.12 ± 0.32 nm). X-ray photoelectron spectroscopy (XPS) analysis shows that, after the electrochemical post-treatment, no detectable ZMP ICP precursors are left on the surface of SWNTs. The electrocatalytic activity of the as-formed Pd/SWNT nanocomposite toward ethanol oxidation is investigated by cyclic voltammetry and chronoamperometry. The results show that the Pd/SWNT nanocomposite prepared here shows a more negative potential and higher mass catalytic activity, as well as higher stability for the oxidation of ethanol than the commercial Pd/C catalyst. This work demonstrates a novel approach to the formation of ultrasmall and highly dispersed Pd/SWNT nanocomposite with enhanced electrocatalytic activity toward ethanol oxidation.
Related JoVE Video
Online electrochemical monitoring of dynamic change of hippocampal ascorbate: toward a platform for in vivo evaluation of antioxidant neuroprotective efficiency against cerebral ischemia injury.
Anal. Chem.
PUBLISHED: 10-03-2013
Show Abstract
Hide Abstract
Effective monitoring of cerebral ascorbate following intravenous antioxidant treatment is of great importance in evaluating the antioxidant efficiency for neuroprotection because ascorbate is closely related to a series of ischemia-induced neuropathological processes. This study demonstrates the validity of an online electrochemical system (OECS) for ascorbate detection as a platform for in vivo evaluation of neuroprotective efficiency of antioxidants by studying the dynamic change of hippocampal ascorbate during the acute period of cerebral ischemia and its responses to intravenous administration of antioxidants including ascorbate and glutathione (GSH). The OECS consists of a selective electrochemical detector made of a thin-layer electrochemical flow cell integrated with in vivo microdialysis. With such a system, the basal level of hippocampal ascorbate is determined to be 5.18 ± 0.60 ?M (n = 20). This level is increased by 10 min of two-vessel occlusion (2-VO) ischemia treatment and reaches 11.51 ± 3.43 ?M (n = 5) at the time point of 60 min after the ischemia. The 2-VO ischemia-induced hippocampal ascorbate increase is obviously attenuated by immediate intravenous administration of ascorbate (2.94 g/kg) or glutathione (5.12 g/kg) within 10 min after ischemia and the ascorbate level remains to be 3.75 ± 1.66 ?M (n = 4) and 5.30 ± 0.79 ?M (n = 5), respectively, at the time point of 60 min after ischemia. To confirm if the attenuated hippocampal ascorbate increase is attributed to the antioxidant-induced oxidative stress alleviation, we further study the immunoreactivity of 8-hydroxy-2-deoxyguanosine (8-OHdG) in the ischemic hippocampus and find that the 8-OHdG immunoreactivity is decreased by the administration of ascorbate or GSH as compared to the ischemic brain without antioxidant treatment. These results substantially demonstrate that the OECS for ascorbate detection could be potentially used as a platform for evaluating the efficiency of antioxidant neuroprotection in cerebral ischemia treatment.
Related JoVE Video
Real-time colorimetric assay of inorganic pyrophosphatase activity based on reversibly competitive coordination of Cu2+ between cysteine and pyrophosphate ion.
Anal. Chem.
PUBLISHED: 09-18-2013
Show Abstract
Hide Abstract
In this study we demonstrate a new colorimetric method for real-time pyrophosphatase (PPase) activity assay based on reversible tuning of the dispersion/aggregation states of gold nanoparticles (Au-NPs) by controlling the coordination of Cu(2+) between cysteine and pyrophosphate ion (PPi) with PPase. The addition of Cu(2+) to the cysteine-stabilized Au-NP dispersion results in the aggregation of Au-NPs, while the further addition of PPi to this aggregation turns the aggregated Au-NPs into their dispersed state because of the higher coordination reactivity between Cu(2+) and PPi than that between Cu(2+) and cysteine. The subsequent addition of PPase to the PPi-triggered dispersed Au-NPs restores the aggregation state of Au-NPs because PPase catalyzes the hydrolysis of PPi into orthophosphate and thus consumes PPi in the reaction system. In this study, we utilize this reversibility of the change between the aggregation/dispersion states of Au-NPs for real-time colorimetric monitoring of PPase activity by continuously measuring the ratio of absorbance at the wavelength of 650 nm (A650) to that at 522 nm (A522) in the time-dependent UV-vis spectra of Au-NP dispersions containing different activities of PPase. To calculate the kinetics of the PPase-catalyzed hydrolysis of PPi, the A650/A522 values are converted into PPi concentrations to obtain the time-dependent changes of PPi concentrations in the dispersions containing different activities of PPase. The initial reaction rates (v0) are thus achieved from the time-dependent logarithm of PPi concentrations with the presence of different PPase activities. Under the experimental conditions employed here, the v0 values are linear with the PPase activity within a range from 0.025 to 0.4 U with a detection limit down to 0.010 U (S/N = 3). Moreover, the colorimetric method developed here is also employed for PPase inhibitor evaluation. This study offers a simple yet effective method for real-time PPase activity assay.
Related JoVE Video
Folic acid-functionalized fluorescent gold nanoclusters with polymers as linkers for cancer cell imaging.
Chem. Commun. (Camb.)
PUBLISHED: 08-01-2013
Show Abstract
Hide Abstract
A novel nano-conjugate containing ultrasmall water-soluble AuNCs protected by ovalbumin as the fluorescent part, folic acid as the targeting ligand and a homopolymer N-acryloxysuccinimide as the linker has been investigated. Moreover, specific staining of HeLa cells by the nano-conjugate has been demonstrated.
Related JoVE Video
[Preparation of a novel polymer monolith using atom transfer radical polymerization method for solid phase extraction].
Se Pu
PUBLISHED: 08-01-2013
Show Abstract
Hide Abstract
In this study, a novel polymer monolith based solid phase extraction (SPE) material has been prepared by two-step atom transfer radical polymerization (ATRP) method. Firstly, employing ethylene glycol dimethacrylate (EDMA) as a cross-linker, a polymer monolith filled in a filter head has been in-situ prepared quickly under mild conditions. Then, the activators generated by electron transfer ATRP (ARGET ATRP) was used for the modification of poly(2-(dimethylamino)ethyl-methacrylate) (PDMAEMA) on the monolithic surface. Finally, this synthesized monolith for SPE was successfully applied in the extraction and enrichment of steroids. The results revealed that ATRP can be developed as a facile and effective method with mild reaction conditions for monolith construction and has the potential for preparing monolith in diverse devices.
Related JoVE Video
[Development of intelligent monolithic stationary phase for chromatography].
Se Pu
PUBLISHED: 08-01-2013
Show Abstract
Hide Abstract
In recent years, great attention has been paid to monolith, which is developed as a new generation of chromatographic stationary phase, due to its advantages of in-situ preparation, fast mass transfer and high permeability. Besides, as a class of functional materials, intelligent polymer could response to external environmental stimuli, such as temperature, pH, salt and so on. This intelligent polymer is usually modified onto solid support surface for fabrication of environmental responsive materials, which could be widely applied in drug release, chemical sensing, cell growth, etc. As a result, the construction of intelligent surface on monolith can provide new opportunities for its development in chromatography. This review summarizes the development of intelligent monolith as chromatographic stationary phase during recent years.
Related JoVE Video
Photodecomposition of ferrocenedicarboxylic acid in methanol to form an electroactive infinite coordination polymer and its application in bioelectrochemistry.
ACS Appl Mater Interfaces
PUBLISHED: 07-19-2013
Show Abstract
Hide Abstract
Accurately characterizing the product of photodecomposition of ferrocene derivatives remains a longstanding challenge due to its structural complexity and strong dependence on the solvent and the substituent. Herein, photodecomposition of ferrocenedicarboxylic acid (FcDC) in methanol is found for the first time to form an electroactive infinite coordinate polymer (ICP) with uniform size, good water stability and photostability, and excellent electrochemical activity. The possible mechanism for the ICP formation is proposed based on the fission of the Fe-ring bond and deprotonation of FcDC under light irradiation. The dissociated Fe(2+) is first oxidized to Fe(3+) that consequently coordinates with the deprotonated ferrocene dicarboxylate to produce ICP nanoparticles. This work not only provides a new insight into the product formation of the photodecomposition of ferrocene derivatives but also offers a mild and simple route to the synthesis of electroactive ICPs.
Related JoVE Video
Microfluidic chip-based online electrochemical detecting system for continuous and simultaneous monitoring of ascorbate and Mg2+ in rat brain.
Anal. Chem.
PUBLISHED: 07-19-2013
Show Abstract
Hide Abstract
This study demonstrates a microfluidic chip-based online electrochemical detecting system for in vivo continuous and simultaneous monitoring of ascorbate and Mg(2+) in rat brain. In this system, a microfluidic chip is used as the detector for both species. To fabricate the detector, a single-channel microfluidic chip is developed into an electrochemical flow cell by incorporating the chip with an indium-tin oxide (ITO) electrode as working electrode, an Ag/AgCl wire as reference electrode, and a stainless steel tube as counter electrode. Selective detection of ascorbate and Mg(2+) is achieved by drop-coating single-walled carbon nanotubes (SWNTs) and polymerizing toluidine blue O (polyTBO) film onto the ITO electrode, respectively. Moreover, the alignment of SWNT-modified and polyTBO-modified electrodes and the solution introduction pattern are carefully designed to avoid any cross talk between two electrodes. With the microfluidic chip-based electrochemical flow cell as the detector, an online electrochemical detecting system is successfully established by directly integrating the microfluidic chip-based electrochemical flow cell with in vivo microdialysis. The microfluidic system exhibits sensing properties with a linear relationship from 5 to 100 ?M for ascorbate and from 100 to 2000 ?M for Mg(2+). Moreover, this system demonstrates a high selectivity and stability and good reproducibility for simultaneous measurements of ascorbate and Mg(2+) in a continuous-flow system. These excellent properties substantially render this system great potential for continuous and simultaneous online monitoring of ascorbate and Mg(2+) in rat brain.
Related JoVE Video
Zeolitic imidazolate framework-based electrochemical biosensor for in vivo electrochemical measurements.
Anal. Chem.
PUBLISHED: 07-15-2013
Show Abstract
Hide Abstract
This study demonstrates the first exploitation of zeolitic imidazolate frameworks (ZIFs) as the matrix for constructing integrated dehydrogenase-based electrochemical biosensors for in vivo measurement of neurochemicals, such as glucose. In this study, we find that ZIFs are able to serve as a matrix for coimmobilizing electrocatalysts (i.e., methylene green, MG) and dehydrogenases (i.e., glucose dehydrogenase, GDH) onto the electrode surface and an integrated electrochemical biosensor is readily formed. We synthesize a series of ZIFs, including ZIF-7, ZIF-8, ZIF-67, ZIF-68, and ZIF-70 with different pore sizes, surface areas, and functional groups. The adsorption capabilities toward MG and GDH of these ZIFs are systematically studied with UV-vis spectroscopy, confocal laser scanning microscopy, and Fourier transfer-infrared spectroscopy. Among all the ZIFs demonstrated here, ZIF-70 shows excellent adsorption capacities toward both MG and GDH and is thus employed as the matrix for our glucose biosensor. To construct the biosensor, we first drop-coat a MG/ZIF-70 composite onto a glassy carbon electrode and then coat GDH onto the MG/ZIF-70 composite. In a continuous-flow system, the as-prepared ZIF-based biosensor is very sensitive to glucose with a linear range of 0.1-2 mM. Moreover, the ZIF-based biosensor is more highly selective on glucose than on other endogenous electroactive species in the cerebral system. In the end, we demonstrate that our biosensor is capable of monitoring dialysate glucose collected from the brain of guinea pigs selectively and in a near real-time pattern.
Related JoVE Video
Alkaline post-treatment of Cd(II)-glutathione coordination polymers: toward green synthesis of water-soluble and cytocompatible CdS quantum dots with tunable optical properties.
ACS Appl Mater Interfaces
PUBLISHED: 05-21-2013
Show Abstract
Hide Abstract
In this study, we demonstrate a facile and environmentally friendly method for the synthesis of glutathione (GSH)-capped water-soluble CdS quantum dots (QDs) with a high cytocompatibility and a tunable optical property based on alkaline post-treatment of Cd-GSH coordination polymers (CPs). Cd-GSH CPs are synthesized with the coordination reaction of Cd(2+) with GSH at different pH values, and the CdS QDs are then formed by adding NaOH to the aqueous dispersion of the Cd-GSH CPs to break the coordination interaction between Cd(2+) and GSH with the release of sulfur. The particle size and optical property of the as-formed CdS QDs are found to be easily tailored by simply adjusting the starting pH values of GSH solutions used for the formation of Cd-GSH CPs, in which the wavelengths of trap-state emission of the QDs red-shift with an increase in the sizes of the QDs that is caused by an increase in the starting pH values of GSH solutions. In addition, the use of GSH as the capping reagent eventually endows the as-formed CdS QDs with enhanced water solubility and good cytocompatibility, as demonstrated with HeLa cells. The method demonstrated here is advantageous in that the cadmium precursor and the sulfur source are nontoxic and easily available, and the size, optical properties, water solubility, and cytocompatibilty of the as-formed CdS QDs are simply achieved and experimentally regulated. This study offers a new and green synthetic route to water-soluble and cytocompatible CdS QDs with tunable optical properties.
Related JoVE Video
Direct electrochemistry and intramolecular electron transfer of ascorbate oxidase confined on l-cysteine self-assembled gold electrode.
Bioelectrochemistry
PUBLISHED: 04-23-2013
Show Abstract
Hide Abstract
A direct electrochemistry and intramolecular electron transfer of multicopper oxidases are of a great importance for the fabrication of these enzyme-based bioelectrochemical-devices. Ascorbate oxidase from Acremonium sp. (ASOM) has been successfully immobilized via a chemisorptive interaction on the l-cysteine self-assembled monolayer modified gold electrode (cys-SAM/AuE). Thermodynamics and kinetics of adsorption of ASOM on the cys-SAM/AuE were studied using cyclic voltammetry. A well-defined redox wave centered at 166±3mV (vs. Ag?AgCl?KCl(sat.)) was observed in 5.0mM phosphate buffer solution (pH7.0) at the fabricated ASOM electrode, abbreviated as ASOM/cys-SAM/AuE, confirming a direct electrochemistry, i.e., a direct electron transfer (DET) between ASOM and cys-SAM/AuE. The direct electrochemistry of ASOM was further confirmed by taking into account the chemical oxidation of ascorbic acid (AA) by O2 via an intramolecular electron transfer in the ASOM as well as the electrocatalytic oxidation of AA at the ASOM/cys-SAM/AuE. Thermodynamics and kinetics of the adsorption of ASOM on the cys-SAM/AuE have been elaborated along with its direct electron transfer at the modified electrodes on the basis of its intramolecular electron transfer and electrocatalytic activity towards ascorbic acid oxidation and O2 reduction. ASOM saturated surface area was obtained as 2.41×10(-11)molcm(-2) with the apparent adsorption coefficient of 1.63×10(6)Lmol(-1). The ASOM confined on the cys-SAM/AuE possesses its essential enzymatic function.
Related JoVE Video
Cysteine-modulated colorimetric sensing of extracellular Mg2+ in rat brain based on the strong chelation interaction between dithiothreitol and Mg2+.
Analyst
PUBLISHED: 04-13-2013
Show Abstract
Hide Abstract
Simple and effective measurement of Mg(2+) in the brain of living animals is of great physiological and pathological importance. In this study, we report a facile yet highly selective colorimetric method for effective sensing of cerebral Mg(2+). The method is based on rational design of surface chemistry of gold nanoparticles (Au-NPs) with functional molecules including 1,4-dithiothreitol (DTT) and cysteine, enabling the fine tuning of the surface chemistry of Au-NPs in such a way that the addition of Mg(2+) into the Au-NPs dispersion could selectively trigger the change of the dispersion/aggregation states of Au-NPs. The strong chelation interaction between Mg(2+) and the hydroxyls in 1,4-dithiothreitol and the co-existence of cysteine on the surface of Au-NPs could, on one hand, enable the selective colorimetric detection of Mg(2+) and, on the other hand, avoid the aggregation of Au-NPs induced by DTT itself. As a result, the addition of Mg(2+) into the dispersion of the Au-NPs containing both cysteine and DTT results in the changes in both the color and the UV-vis spectra of the Au-NPs dispersion. The signal readout shows a linear relationship of Mg(2+) within the concentration range from 1 ?M to 40 ?M with a detection limit of 800 nM (S/N = 3). Moreover, the assay demonstrated here is free from the interference of some physiological species commonly existing in rat brain. Although Ca(2+) could interfere with the detection of Mg(2+) because of its strong chelation with DTT, it could be selectively masked by masking agent (i.e., ethyleneglcol-bis (2-aminoethylether) tetraacetic acid). By combining the microdialysis technique, the basal dialysate level of Mg(2+) is determined to be 299.2 ± 41.1 ?M (n = 3) in the cerebral systems. The method essentially offers a new method for the detection of Mg(2+) in the cerebral system.
Related JoVE Video
Hybridization of bioelectrochemically functional infinite coordination polymer nanoparticles with carbon nanotubes for highly sensitive and selective in vivo electrochemical monitoring.
Anal. Chem.
PUBLISHED: 03-28-2013
Show Abstract
Hide Abstract
This study demonstrates the formation of a three-dimensional conducting framework through hybridization of bioelectrochemically active infinite coordination polymer (ICP) nanoparticles with single-walled carbon nanotubes (SWNTs) for highly sensitive and selective in vivo electrochemical monitoring with combination with in vivo microdialysis. The bioelectrochemically active ICP nanoparticles are synthesized through the self-assembly process of NAD(+) and Tb(3+), in which all biosensing elements including an electrocatalyst (i.e., methylene green, MG), cofactor (i.e., ?-nicotinamide adenine dinucleotide, NAD(+)), and enzyme (i.e., glucose dehydrogenase, GDH) are adaptively encapsulated. The ICP/SWNT-based biosensors are simply prepared by drop-coating the as-formed ICP/SWNT nanocomposite onto a glassy carbon substrate. Electrochemical studies demonstrate that the simply prepared ICP/SWNT-based biosensors exhibit excellent biosensing properties with a higher sensitivity and stability than the ICP-based biosensors prepared only with ICP nanoparticles (i.e., without hybridization of SWNTs). By using a GDH-based electrochemical biosensor as an example, we demonstrate a technically simple yet effective online electroanalytical platform for continuously monitoring glucose in the brain of guinea pigs with the ICP/SWNT-based biosensor as an online detector in a continuous-flow system combined with in vivo microdialysis. Under the experimental conditions employed here, the dynamic linear range for glucose with the ICP/SWNT-biosensor is from 50 to 1000 ?M. Moreover, in vivo selectivity investigations with the biosensors prepared by the GDH-free ICPs reveal that ICP/SWNT-based biosensors are very selective for the measurement of glucose in the cerebral system. The basal level of glucose in the microdialysates from the striatum of guinea pigs is determined to be 0.31 ± 0.03 mM (n = 3). The study offers a simple route to the preparation of electrochemical biosensors, which is envisaged to be particularly useful for probing the chemical events involved in some physiological and pathological processes.
Related JoVE Video
Anion-exchange-based amperometric assay for heparin using polyimidazolium as synthetic receptor.
Anal. Chem.
PUBLISHED: 03-07-2013
Show Abstract
Hide Abstract
This study demonstrates a facile yet effective strategy for amperometric assay of electrochemically inactive heparin based on an anion-exchange mechanism with polyimidazolium (Pim) as the synthetic receptor. The rationale for the amperometric heparin assay is essentially based on the different binding affinity of the synthetic Pim receptor toward electrochemically active ferricyanide (Fe(CN)6(3-)) and electrochemically inactive heparin. To accomplish the amperometric assay, Pim is first synthesized and used as the artificial receptor to recognize the anions (i.e., Fe(CN)6(3-) and heparin). The stronger binding affinity of the synthetic Pim receptor toward heparin than toward Fe(CN)6(3-) essentially validates the amperometric heparin assay through an anion-exchange mechanism with the decrease in the redox peak current of Fe(CN)6(3-) adsorbed onto the Pim film as the signal readout. The anion exchange between Fe(CN)6(3-) and heparin on the Pim receptor is verified by cyclic voltammetry and Fourier transform IR and UV-visible spectroscopies. The ratio of the current decrease shows a linear relationship with heparin concentration with a concentration range from 0.5 to 10 ?M. With animal experiments by dosing intraperitoneally and collecting the serum sample, the method is demonstrated to be potentially useful for investigating heparin metabolism in the biological system. This study not only provides a simple yet effective route to a heparin assay but also opens a new way to developing amperometric methods for electrochemically inert species by fully utilizing the supramolecular principles.
Related JoVE Video
L-Lysine-derived ionic liquids as chiral ligands of Zn(II) complexes used in ligand-exchange CE.
Electrophoresis
PUBLISHED: 02-20-2013
Show Abstract
Hide Abstract
Amino acid ionic liquids (AAILs) with L-lysine (L-Lys) as anion were synthesized and applied as new chiral ligands in Zn(II) complexes for chiral ligand-exchange CE. After effective optimization, baseline enantioseparation of seven pairs of dansylated amino acids was achieved with a buffer of 100.0 mM boric acid, 5.0 mM ammonium acetate, 3.0 mM ZnSO4 , and 6.0 mM [C6 mim][L-Lys] at pH 8.2. To validate the unique behavior of AAILs, a comparative study between the performance of Zn(II)-L-Lys and Zn(II)-[C6 mim][L-Lys] systems was conducted. In Zn(II)-[C6 mim][L-Lys] system, it has been found that the improved chiral resolution could be obtained and the migration times of the three test samples were markedly prolonged. Then the separation mechanism was further discussed. The role of [C6 mim][L-Lys] indicated clearly that the synthesized AAILs could be used as chiral ligands and would have potential utilization in separation science in future.
Related JoVE Video
Influence of ionic liquids as electrolyte additives on chiral separation of dansylated amino acids by using Zn(II) complex mediated chiral ligand exchange CE.
J Sep Sci
PUBLISHED: 02-06-2013
Show Abstract
Hide Abstract
In this work, investigation of the comparative influence of diverse ionic liquids (ILs) as electrolyte additives on the chiral separation of dansylated amino acids by using Zn(II)-L-arginine complex mediated chiral ligand exchange CE (CLE-CE) was conducted. It has been found that not only the varied substituted group number, but also the alkyl chain length of the substituted group on imidazole ring in the structure of ILs show different influence on chiral separation of the analytes in the CLE-CE system, which could be understood by their direct influence on EOF. Meanwhile, the variation of anion in the structure of ILs displayed remarkably changed performance and the ILs with Cl(-) showed the most obvious promoting effect on the chiral separation performance. Among the investigated seven ILs, 1-butyl-3-methylimidazolium chloride was validated to be the proper electrolyte additive in the CLE-CE system. Moreover, it has been observed that 1-butyl-3-methylimidazolium chloride also has obvious promotive effect on the labeling performance. The results have demonstrated that the ILs with different structures have important relation to their performance in CLE-CE and to their labeling efficiency in dansylation of the analytes.
Related JoVE Video
Competitive coordination of Cu2+ between cysteine and pyrophosphate ion: toward sensitive and selective sensing of pyrophosphate ion in synovial fluid of arthritis patients.
Anal. Chem.
PUBLISHED: 01-31-2013
Show Abstract
Hide Abstract
Direct selective and sensitive sensing of pyrophosphate ion (PPi) in synovial fluid of arthritis patients is of great importance because of its crucial roles in the diagnosis and therapy of arthritic diseases. In this study, we demonstrate a sensitive and selective method for PPi sensing in synovial fluid of arthritis patients with gold nanoparticles (Au-NPs) as the signal readout based on the competitive coordination chemistry of Cu(2+) between cysteine and PPi. Initially, Au-NPs stabilized with cysteine are red in color and exhibit absorption at 519 nm in the UV-vis spectrum. The addition of an aqueous solution of Cu(2+) to the Au-NPs dispersion containing cysteine causes the aggregation of Au-NPs, resulting in the wine red-to-blue color change and the appearance of a new absorption at 650 nm in the UV-vis spectrum of the Au-NPs dispersion. The subsequent addition of PPi to the Au-NPs aggregation well solubilizes the aggregated Au-NPs with the changes in both the color and the UV-vis spectrum of the Au-NPs dispersion. These changes are ascribed to the higher coordination reactivity between Cu(2+) and PPi than that between Cu(2+) and cysteine. On the basis of this, the concentration of PPi can be visualized with the naked eyes through the blue-to-wine red color change of the Au-NPs dispersion and quantitatively determined by UV-vis spectroscopy. Under the optimized conditions, the ratio of the absorbance at 650 nm (A(650)) to that at 519 nm (A(519)) shows a linear relationship with PPi concentration within a concentration range from 130 nM to 1.3 mM. The method demonstrated here is highly sensitive, free from the interference from other species in the synovial fluid, and is thus particularly useful for fast and simple clinic diagnosis of arthritic diseases.
Related JoVE Video
High-salt-tolerance matrix for facile detection of glucose in rat brain microdialysates by MALDI mass spectrometry.
Anal. Chem.
PUBLISHED: 12-12-2011
Show Abstract
Hide Abstract
Due to its strong ultraviolet absorption, high salt tolerance, and little interference in the low molecular weight region, N-(1-naphthyl) ethylenediamine dihydrochloride (NEDC) has been applied as a matrix to measure the level of glucose in rat brain microdialysates by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) in combination with in vivo microdialysis. By monitoring the ion signals of (glucose + Cl)(-) in the mass spectra, we achieved a low detection limit of ~10 ?M for glucose in 126 mM NaCl, which is a typical component in artificial cerebrospinal fluid, without prior sample purification. It is concluded that NEDC-assisted laser desorption/ionization (LDI) MS is a fast and general method for sensitive detection of small molecules (such as glucose and amino acids) in high ionic strength solutions.
Related JoVE Video
Sensitive and selective voltammetric measurement of Hg2+ by rational covalent functionalization of graphene oxide with cysteamine.
Analyst
PUBLISHED: 11-07-2011
Show Abstract
Hide Abstract
We report here a new voltammetric method for the sensitive and selective determination of Hg(2+) based on rational covalent functionalization of graphene oxide with cysteamine to form cysteamine-functionalized graphene through nucleophilic ring-opening reaction between the epoxy of graphene oxide and the amino group of cysteamine in KOH solution.
Related JoVE Video
Graphene as a spacer to layer-by-layer assemble electrochemically functionalized nanostructures for molecular bioelectronic devices.
Langmuir
PUBLISHED: 08-05-2011
Show Abstract
Hide Abstract
This study demonstrates the capability of graphene as a spacer to form electrochemically functionalized multilayered nanostructures onto electrodes in a controllable manner through layer-by-layer (LBL) chemistry. Methylene green (MG) and positively charged methylimidazolium-functionalized multiwalled carbon nanotubes (MWNTs) were used as examples of electroactive species and electrochemically useful components for the assembly, respectively. By using graphene as the spacer, the multilayered nanostructures of graphene/MG and graphene/MWNT could be readily formed onto electrodes with the LBL method on the basis of the electrostatic and/or ?-? interaction(s) between graphene and the electrochemically useful components. Scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV-vis), and cyclic voltammetry (CV) were used to characterize the assembly processes, and the results revealed that nanostructure assembly was uniform and effective with graphene as the spacer. Electrochemical studies demonstrate that the assembled nanostructures possess excellent electrochemical properties and electrocatalytic activity toward the oxidation of NADH and could thus be used as electronic transducers for bioelectronic devices. This potential was further demonstrated by using an alcohol dehydrogenase-based electrochemical biosensor and glucose dehydrogenase-based glucose/O(2) biofuel cell as typical examples. This study offers a simple route to the controllable formation of graphene-based electrochemically functionalized nanostructures that can be used for the development of molecular bioelectronic devices such as biosensors and biofuel cells.
Related JoVE Video
Rational design and one-step formation of multifunctional gel transducer for simple fabrication of integrated electrochemical biosensors.
Anal. Chem.
PUBLISHED: 06-22-2011
Show Abstract
Hide Abstract
This study demonstrates a new strategy to simplify the biosensor fabrication and thus minimize the biosensor-to-biosensor deviation through rational design and one-step formation of a multifunctional gel electronic transducer integrating all elements necessitated for efficiently transducing the biorecognition events to signal readout, by using glucose dehydrogenase (GDH) based electrochemical biosensor as an example. To meet the requirements for preparing integrated biosensors and retaining electronic and ionic conductivities for electronically transducing process, ionic liquids (ILs) with enzyme cofactor (i.e., oxidized form of nicotinamide adenine dinucleotide) as the anion were synthesized and used to form a bucky gel with single-walled carbon nanotubes, in which methylene green electrocatalyst was stably encapsulated for the oxidation of nicotinamide adenine dinucleotide. With such kind of rationally designed and one-step-formed multifunctional gel as the electronic transducer, the GDH-based electrochemical biosensors were simply fabricated by polishing the electrodes onto the gel followed by enzyme immobilization. This capability greatly simplifies the biosensor fabrication, prolongs the stability of the biosensors, and, more remarkably, minimizes the biosensor-to-biosensor deviation. The relative standard deviations obtained both with one electrode for the repeated measurements of glucose and with the different electrodes prepared with the same method for the concurrent measurements of glucose with the same concentration were 3.30% (n = 7) and 4.70% (n = 6), respectively. These excellent properties of the multifunctional gel-based biosensors substantially enable them to well-satisfy the pressing need of rapid measurements, for example, environmental monitoring, food analysis, and clinical diagnoses.
Related JoVE Video
Determination of sodium benzoate by chiral ligand exchange CE based on its inhibitory activity in D-amino acid oxidase mediated oxidation of D-serine.
Anal. Chim. Acta
PUBLISHED: 01-20-2011
Show Abstract
Hide Abstract
A novel quantitative approach for the determination of sodium benzoate (SB) was proposed by the kinetic study about its competitive inhibitory efficiency to D-amino acid oxidase (DAAO) activity with a chiral ligand exchange capillary electrophoresis (CE) method, in which the Zn(II)-L-prolinamide complex was chosen as a novel chiral selector. After the optimization of buffer pH and the chiral selector concentration this chiral ligand exchange CE method was employed to determine labeled D,L-Serine with good linearity (r(2)?0.995), efficient recovery (95.6-100.9%) and remarkable reproducibility (RSD?1.2%). This chiral separation method was further used to observe DAAO activity through the determination of D-Serine concentration variation after being incubated with DAAO and obtain the sigmoidal inhibitory curve of SB to DAAO activity. The ascending part of this inhibitory curve was linearly fitted in a limited range for SB from 2.0 to 200 ?M with an appropriate coefficient of determination (R(2)=0.990). The linearity was then validated to be a promising method for the analysis of SB with the standout merits of high selectivity and adjustable detection range. Furthermore, this proposed method was used for the pharmacokinetics study of SB.
Related JoVE Video
Development of a new open-tubular capillary electrochromatography method for in vitro monitoring of toxic aromatic amines distribution in rat blood.
J Sep Sci
PUBLISHED: 01-17-2011
Show Abstract
Hide Abstract
Exposure to aromatic amines from different industrial and agricultural activities entails a substantial risk of deleterious somatic effects, genetic damage and cancer development. Thus, a new and simple method for separation and analysis of aromatic amines has been developed by open-tubular capillary electrochromatography with a novel amphipathic block copolymer (poly(tert-butyl acrylate)(127)-block-poly(glycidyl methacrylate)(86)) coating based on its self-assembled property. Key factors affecting the separation efficiency of the test analytes, such as pH, buffer concentration and selective solvent, were studied in detail. Meanwhile, method validation was well evaluated by linearity (?0.998), detection limit and recovery. Application of this developed protocol on in vitro monitoring of the target aromatic amines distribution in rat blood demonstrated its potential usage for separation and determination of aromatic amines in biological samples. Additionally, for assimilating more polymeric materials into analysis of aromatic amines, the effect of morphology changes of the amphipathic block copolymer coating on open-tubular capillary electrochromatography separation was also studied, and the result revealed that the block copolymer coating could play the same role as surfactant.
Related JoVE Video
A novel amphipathic block copolymer coating forming micelle-like aggregates for separation of steroids in open tubular capillary electrochromatography.
Talanta
PUBLISHED: 01-05-2011
Show Abstract
Hide Abstract
A new amphipathic block copolymer, poly(tert-butyl acrylate)(127)-block-poly(glycidyl methacrylate)(86), was developed for the coating in open tubular capillary electrochromatography. The self-assembly characters of the coating, which could form micelle-like aggregates under proper conditions, were observed by atomic force microscopy. Compared with bare capillary, this coating could act as surfactant and lead to improve the separation of steroids. In addition, the influence of pH, buffer concentration and organic solvents on the separation was investigated. The best separation of the three model steroid analytes could be achieved using 20.0mM borate buffer at pH 10.5. For covalent bonding, the coating showed good repeatability and stability with RSD of u(EOF) less than 3.3%. Then, this proposed method was well validated with good linearity (? 0.999), recovery (91.0-94.0%) and repeatability, and was successfully used for separation of steroids in spiked serum samples, which indicated that this new OT-CEC method could provide a potential tool to determine steroids in real biological system without interference.
Related JoVE Video
Online electrochemical measurements of Ca2+ and Mg2+ in rat brain based on divalent cation enhancement toward electrocatalytic NADH oxidation.
Anal. Chem.
PUBLISHED: 11-08-2010
Show Abstract
Hide Abstract
This study describes a novel electrochemical approach to effective online monitoring of electroinactive Ca(2+) and Mg(2+) in the rat brain based on the current enhancement of divalent cations toward electrocatalytic oxidation of NADH. Cyclic voltammetry for NADH oxidation at the electrodes modified with the polymerized film of toluidine blue O (TBO) reveals that the current of such an electrocatalytic oxidation process is remarkably enhanced by divalent cations such as Ca(2+) and Mg(2+). The current enhancement is thus used to constitute an electrochemical method for the measurements of Ca(2+) and Mg(2+) in a continuous-flow system with the polyTBO-modified electrode as the detector. Upon being integrated with in vivo microdialysis, the electrochemical method is successfully applied in investigating on cerebral Ca(2+) and Mg(2+) of living animals in two aspects: (1) online simultaneous measurements of the basal levels of Ca(2+) and Mg(2+) in the brain of the freely moving rats by using ethyleneglcol-bis(2-aminoethylether) tetraacetic acid (EGTA) as the selective masking agent for Ca(2+) to differentiate the net current responses selectively for Ca(2+) and Mg(2+); and (2) online continuous monitoring of the cerebral Mg(2+) following the global ischemia by using Ca(2+)-masking agent (i.e., EGTA) to completely eliminate the interference from Ca(2+). Compared with the existing methods for the measurements of cerebral Ca(2+) and Mg(2+), the method demonstrated here is advantageous in terms of its simplicity both in instrumentation and in the experimental procedures and near real-time nature, and is thus highly anticipated to find wide applications in understanding of chemical events involved in some physiological and pathological processes.
Related JoVE Video
Study on the decrease of renal D-amino acid oxidase activity in the rat after renal ischemia by chiral ligand exchange capillary electrophoresis.
Amino Acids
PUBLISHED: 09-01-2010
Show Abstract
Hide Abstract
D: -Amino acid oxidase (DAAO) in mammal kidney regulates the renal reactive oxygen species (ROS) levels directly and plays a leading role in the development of ROS-mediated renal pathologic damages based on its crucial role in the oxidative deamination of D: -amino acids and the consequent generation of H(2)O(2). Quantitative measurement of DAAO activity in the process of renal ischemia, which could help to understand the molecular mechanisms of this gripping acute renal disease, was conducted through the determination of chiral substrate by capillary electrophoresis (CE) in our study. In this study, a chiral ligand exchange CE method was explored with Zn(II)-L: -alaninamide complex as the chiral selector to investigate DAAO activity by determining the decreased concentration of the chiral substrate of DAAO-mediated enzymatic reaction. Then, the change of DAAO activity following 60-min acute renal ischemia in rats was observed with the proposed method. The study showed that the operation of renal ischemia resulted in a 45.49 ± 8.30% (n = 8) decrease in the DAAO-induced consumption of substrate, indicating a sharp decrease in renal DAAO activity following this acute renal injury. This phenomenon, with the possible reason of metabolic acidosis, could pave a new way for the study of oxidative stress in the development of renal ischemia injury.
Related JoVE Video
Determination of formal potential of NADH/NAD+ redox couple and catalytic oxidation of NADH using poly(phenosafranin)-modified carbon electrodes.
Bioelectrochemistry
PUBLISHED: 05-27-2010
Show Abstract
Hide Abstract
The electrochemical regeneration of NADH/NAD(+) redox couple has been studied using poly(phenosafranin) (PPS)-modified carbon electrodes to evaluate the formal potential and catalytic rate constant for the oxidation of NADH. The PPS-modified electrodes were prepared by electropolymerization of phenosafranin onto different carbon substrates (glassy carbon (GC) and basal-plane pyrolytic graphite (BPPG)) in different electrolytic solutions. The formal potential was estimated to be -0.365±0.002V vs. SHE at pH 7.0. As for the bare carbon electrodes, the oxidation of NADH at the BPPG electrode was found to be enhanced compared with the GC electrode. For the PPS-modified electrodes, it was found that the electrocatalysis of PPS-modified electrodes for the oxidation of NADH largely depends on the carbon substrate and electrolyte solution employed for their preparation, i.e., the PPS-modified BPPG electrode prepared in 0.2M NaClO(4)/acetonitrile solution exhibits an excellent and persistent electrocatalytic property toward NADH oxidation in phosphate buffer solution (pH 7.0) with a diminution of the overpotential of about 740 and 670mV compared with those at the bare GC electrode and the PPS-modified GC electrode prepared in 0.2M H(2)SO(4) solution, respectively. A quantitative analysis of the electrocatalytic reaction based on rotating disk voltammetry gave the electrocatalytic reaction rate constants of the order of 10(3)-10(4)M(-)(1)s(-1) depending on the preparation conditions of the PPS-modified electrodes.
Related JoVE Video
Pt-Ru/CeO2/carbon nanotube nanocomposites: an efficient electrocatalyst for direct methanol fuel cells.
Langmuir
PUBLISHED: 05-22-2010
Show Abstract
Hide Abstract
Pt-Ru/CeO(2)/multiwalled carbon nanotube (MWNT) electrocatalysts were prepared using a rapid sonication-facilitated deposition method and were characterized by X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), and voltammetry. Morphological characterization by TEM revealed that CeO(2) nanoparticles (NPs) were in intimate contact with Pt-Ru NPs, and both were highly dispersed on the exteriors of nanotubes with a small size and a very narrow size distribution. Compared with the Pt-Ru/MWNT and Pt/MWNT electrocatalysts, the as-prepared Pt-Ru/CeO(2)/MWNT exhibited a significantly improved electrochemically active surface area (ECSA) and a remarkably enhanced activity toward methanol oxidation. The effects of the Pt-Ru loading and the Pt-to-Ru molar ratio on the electrocatalytic activity of Pt-Ru/CeO(2)/MWNT for methanol oxidation were investigated. We found that a maximum activity toward methanol oxidation reached at the 10 wt % of Pt-Ru loading and 1:1 of Pt-to-Ru ratio. Moreover, the role of CeO(2) in the catalysts for the enhancement of methanol oxidation was discussed in terms of both bifunctional mechanism and electronic effects.
Related JoVE Video
Noncovalent attachment of NAD+ cofactor onto carbon nanotubes for preparation of integrated dehydrogenase-based electrochemical biosensors.
Langmuir
PUBLISHED: 02-04-2010
Show Abstract
Hide Abstract
This study describes a facile approach to the preparation of integrated dehydrogenase-based electrochemical biosensors through noncovalent attachment of an oxidized form of beta-nicotinamide adenine dinucleotide (NAD(+)) onto carbon nanotubes with the interaction between the adenine subunit in NAD(+) molecules and multiwalled carbon nanotubes (MWCNTs). X-ray photoelectron spectroscopic and cyclic voltammetric results suggest that NAD(+) is noncovalently attached onto MWCNTs to form an NAD(+)/MWCNT composite that acts as the electronic transducer for the integrated dehydrogenase-based electrochemical biosensors. With glucose dehydrogenase (GDH) as a model dehydrogenase-based recognition unit, electrochemical studies reveal that glucose is readily oxidized at the GDH/NAD(+)/MWCNT-modified electrode without addition of NAD(+) in the phosphate buffer. The potential for the oxidation of glucose at the GDH/NAD(+)/MWCNT-modified electrode remains very close to that for NADH oxidation at the MWCNT-modified electrode, but it is more negative than those for the oxidation of glucose at the MWCNT-modified electrode and for NADH oxidation at a bare glassy carbon electrode. These results demonstrate that NAD(+) molecules stably attached onto MWCNTs efficiently act as the cofactor for the dehydrogenases. MWCNTs employed here not only serve as the electronic transducer and the support to confine NAD(+) cofactor onto the electrode surface, but also act as the electrocatalyst for NADH oxidation in the dehydrogenase-based electrochemical biosensors. At the GDH/NAD(+)/MWCNT-based glucose biosensor, the current is linear with the concentration of glucose being within a concentration range from 10 to 300 microM with a limit of detection down to 4.81 microM (S/N = 3). This study offers a facile and versatile approach to the development of integrated dehydrogenase-based electrochemical devices, such as electrochemical biosensors and biofuel cells.
Related JoVE Video
Femtoliter and attoliter electrochemical cells on chips.
Anal. Chem.
PUBLISHED: 01-29-2010
Show Abstract
Hide Abstract
Chip electrochemistry is one of the top ambitions of todays electrochemistry. Here, a study for manufacturing electrochemical microcells on chips in a cost-effective, facile, and mass-producible way is presented. The ultrasmall, planar electrochemical cells, ranging from 140 femtoliter to 14 attoliter, can work independently as electroanalytical devices with embedded functional microelectrodes. Electrochemical responses of the miniaturized cells have been characterized by cyclic voltammetry. Ideal steady-state voltammograms were recorded with femtoliter volume cells, indicating the domination of a radical diffusion regime and a greatly improved signal/background ratio. Quasi-thin-layer behavior was observed for attoliter volume cells, which exhibited a special capability of offering accurately confined domains for redox processes. Positive feedback effect of the cells indicated that interactions between the close-by working and reference/counter microelectrodes can be well developed and potentially utilized for trace level electroanalysis. This study vividly offers i) a new protocol of electrochemical chip for applications, ii) a new tool for trace electroanalysis, and iii) a more approachable insight for single molecule electrochemistry in the near future.
Related JoVE Video
Enhanced catalytic reduction of oxygen at tantalum deposited platinum electrode.
Chem. Commun. (Camb.)
PUBLISHED: 01-08-2010
Show Abstract
Hide Abstract
A tantalum deposited platinum electrode that offers an enhanced catalytic four-electron reduction of oxygen over the bare platinum electrode in acidic solution is explored.
Related JoVE Video
Effective electrochemical method for investigation of hemoglobin unfolding based on the redox property of heme groups at glassy carbon electrodes.
Anal. Chem.
PUBLISHED: 09-17-2009
Show Abstract
Hide Abstract
This study demonstrates a facile and effective electrochemical method for investigation of hemoglobin (Hb) unfolding based on the electrochemical redox property of heme groups in Hb at bare glassy carbon (GC) electrodes. In the native state, the heme groups are deeply buried in the hydrophobic pockets of Hb with a five-coordinate high-spin complex and thus show a poor electrochemical property at bare GC electrodes. Upon the unfolding of Hb induced by the denaturant of guanidine hydrochloride (GdnHCl), the fifth coordinative bond between the heme groups and the residue of the polypeptides (His-F8) is broken, and as a result, the heme groups initially buried deeply in the hydrophobic pockets dissociate from the polypeptide chains and are reduced electrochemically at GC electrodes, which can be used to probe the unfolding of Hb. The results on the GdnHCl-induced Hb unfolding obtained with the electrochemical method described here well coincide with those studied with other methods, such as UV-vis spectroscopy, fluorescence, and circular dichroism. The application of the as-established electrochemical method is illustrated to study the kinetics of GdnHCl-induced Hb unfolding, the GdnHCl-induced unfolding of another kind of hemoprotein, catalase, and the pH-induced Hb unfolding/refolding.
Related JoVE Video
A non-oxidative electrochemical approach to online measurements of dopamine release through laccase-catalyzed oxidation and intramolecular cyclization of dopamine.
Biosens Bioelectron
PUBLISHED: 08-23-2009
Show Abstract
Hide Abstract
A new electrochemical approach to selective online measurements of dopamine (DA) release in the cerebral microdialysate is demonstrated with a non-oxidative mechanism based on the distinct reaction properties of DA and the excellent biocatalytic activity of laccase. To make the successful transition of the distinct sequential reaction properties of DA from a conceptual determination protocol to a practical online analytical system, laccase enzyme is immobilized onto magnetite nanoparticles and the nanoparticles are confined into a fused-silica capillary through an external magnetic field to fabricate a magnetic microreactor. The microreactor is placed in the upstream of the thin-layer electrochemical flow cell to efficiently catalyze the oxidation of DA into its quinonoid form and thereby initialize the sequential reactions including deprotonation, intramolecular cyclization, disproportionation and/or oxidation to finally give 5,6-dihydroxyindoline quinone. The electrochemical reduction of the produced 5,6-dihydroxyindoline quinone at bare glassy carbon electrode is used as the readout for the DA measurement. The laccase-immobilized microreactor is also found to catalyze the oxidation of ascorbic acid (AA) and 3,4-dihydroxyphenylacetic acid (DOPAC) into electroinactive species and, as such, to eliminate the great interference from both species. Moreover, the successful transition of the mechanism for DA detection from the conventional oxidative electrochemical approach to the non-oxidative one substantially enables the measurements virtually interference-free from physiological levels of uric acid, 5-hydroxytryptamine, norepinephrine, and epinephrine. The current response is linear with DA concentration within a concentration range from 1 to 20 microM with a sensitivity of 3.97 nA/microM. The detection limit, based on a signal-to-noise ratio of 3, is calculated to be 0.3 microM. The high selectivity and the good linearity as well as the high stability of the online method make it very potential for continuous monitoring of cerebral DA release in physiological and pathological processes.
Related JoVE Video
Sensitive impedimetric DNA biosensor with poly(amidoamine) dendrimer covalently attached onto carbon nanotube electronic transducers as the tether for surface confinement of probe DNA.
Biosens Bioelectron
PUBLISHED: 08-07-2009
Show Abstract
Hide Abstract
This study demonstrates a new impedimetric DNA biosensor with second-generation poly(amidoamine) dendrimer (G2-PAMAM) covalently functionalized onto multi-walled carbon nanotube (MWNT) electronic transducers as the tether for surface confinement of probe DNA. G2-PAMAM dendrimer was covalently functionalized onto purified MWNTs and the as-formed G2-PAMAM-functionalized MWNT composite (i.e., G2-PAMAM/MWNT) was used both as the support to confine the single-stranded DNA (ssDNA) probe and as the electronic transducer to form the DNA biosensors. Upon the occurrence of hybridization events between surface-confined ssDNA probe with target DNA in solution to form a double-stranded DNA (dsDNA) at electrode surface, the negative charge in the electrode/electrolyte interface and, as such, the interfacial charge-transfer resistance of the electrodes towards the Fe(CN)(6)(3-/4-) redox couple were changed. Such a change was used for the impedimetric DNA biosensing. The use of G2-PAMAM dendrimer attached onto MWNT electronic transducer as the tether for probe DNA provides a large number of amino groups to increase the surface binding of probe DNA, results in the increase the sensitivity of the impedimetric biosensor for the target DNA. Under the conditions employed here, the change in the interfacial charge-transfer resistance was linear with the logarithm of the concentration of the target DNA within a concentration range from 0.5 to 500 pM with a detection limit of 0.1 pM (S/N=3). The excellent analytical properties of the impedimetric DNA biosensors developed here substantially makes them potentially useful for practical applications.
Related JoVE Video
Dynamic regional changes of extracellular ascorbic acid during global cerebral ischemia: studied with in vivo microdialysis coupled with on-line electrochemical detection.
Brain Res.
PUBLISHED: 03-18-2009
Show Abstract
Hide Abstract
The morphologic and functional outcomes of cerebral ischemia generally result from the acute neurochemical changes that occur 1 h after cerebral ischemia. As one of the small chemical species, ascorbic acid (AA) is involved in almost all kinds of neurochemical processes in acute cerebral ischemia. To understand the neurochemical processes in global cerebral ischemia, this study compares the dynamic regional changes of extracellular AA level, with in vivo microdialysis coupled with on-line electrochemical detection, in four different brain regions, 1 h after global cerebral ischemia induced by two-vessel occlusion (2-VO). The regional distribution of physiological AA levels in the microdialysates from striatum, cortex, dorsal hippocampus, and ventral hippocampus were 2.97 +/- 0.06, 3.98 +/- 0.09, 3.02 +/- 0.47, and 3.80 +/- 0.29 microM, respectively. In 1 h after 2-VO cerebral ischemia, the microdialysate AA levels in the above four regions varied in a different manner; the striatum AA slowly decreased to 86.49 +/- 5.53% of the basal level (n=3, P<0.05). The AA levels in the cortex, dorsal hippocampus, and ventral hippocampus increased to 549.80 +/- 167.86 % (n=3, P<0.05), 167.81 +/- 41.85 % (n=4, P<0.05) and 261.24 +/- 65.00% (n=3, P<0.05), in relation to their respective basal levels, respectively. The recorded spatiotemporal regional changes in the extracellular AA levels essentially reflect the intricate neurochemical changes during the acute period of global cerebral ischemia and may thus be useful for understanding the neurochemical processes of global cerebral ischemia.
Related JoVE Video
Physiologically relevant online electrochemical method for continuous and simultaneous monitoring of striatum glucose and lactate following global cerebral ischemia/reperfusion.
Anal. Chem.
PUBLISHED: 03-14-2009
Show Abstract
Hide Abstract
This study demonstrates a new electroanalytical method with a high physiological relevance for simultaneous online monitoring of glucose and lactate in the striatum of the rat brain following global cerebral ischemia/reperfusion. The online analytical method is based on the efficient integration of in vivo microdialysis sampling with an online selective electrochemical detection with the electrochemical biosensors with dehydrogenases, i.e., glucose and lactate dehydrogenases, as recognition elements. The dehydrogenase-based electrochemical biosensors are developed onto the dual split-disk plastic carbon film (SPCF) electrodes with methylene green (MG) adsorbed onto single-walled carbon nanotubes (SWNTs) as the electrocatalyst for the oxidation of dihydronicotiamide adenine dinucleotide (NADH) at a low potential of 0.0 V (vs Ag/AgCl). Artificial cerebrospinal fluid (aCSF) containing NAD(+) is externally perfused from a second pump and online mixed with the brain microdialysates to minimize the variation of pH that occurred following the cerebral ischemia/reperfusion and to supply NAD(+) cofactor and O(2) for the enzymatic reactions of dehydrogenases and ascorbate oxidase, respectively. As a result, the developed online electroanalytical method exhibits a high selectivity against the electrochemically active species endogenously existing in the cerebral systems and a high tolerance against the variation of pH and O(2) following cerebral ischemia/reperfusion. This property, along with the good linearity and a high stability toward glucose and lactate as well as little cross-talk between two biosensors, substantially makes this method possible for the continuous, simultaneous, and online monitoring of glucose and lactate in the rat brain following global cerebral ischemia/reperfusion. This study establishes a new and effective platform for the investigation of the energy metabolism in physiological and pathological processes.
Related JoVE Video
Determination of monoamine neurotransmitters and their metabolites in a mouse brain microdialysate by coupling high-performance liquid chromatography with gold nanoparticle-initiated chemiluminescence.
Anal. Chim. Acta
PUBLISHED: 02-17-2009
Show Abstract
Hide Abstract
Our previous work showed that gold nanoparticles could trigger chemiluminescence (CL) between luminol and AgNO3. In the present work, the effect of some biologically important reductive compounds, including monoamine neurotransmitters and their metabolites, reductive amino acids, ascorbic acid, uric acid, and glutathione, on the novel CL reaction were investigated for analytical purpose. It was found that all of them could inhibit the CL from the luminol-AgNO3-Au colloid system. Among them, monoamine neurotransmitters and their metabolites exhibited strong inhibition effect. Taking dopamine as a model compound, the CL mechanism was studied by measuring absorption spectra during the CL reaction and the reaction kinetics via stopped-flow technique. The CL inhibition mechanism is proposed to be due to that these tested compounds competed with luminol for AgNO3 to inhibit the formation of luminol radicals and to accelerate deposition of Ag atoms on surface of gold nanoparticles, leading to a decrease in CL intensity. Based on the inhibited CL, a novel method for simultaneous determination of monoamine neurotransmitters and their metabolites was developed by coupling high-performance liquid chromatography with this CL reaction. The new method was successfully applied to determine the compounds in a mouse brain microdialysate. Compared with the reported HPLC-CL methods, the proposed method is simple, fast, and could determine more analytes. Moreover, the limits of linear ranges for NE, E, and DA using the proposed method were one order of magnitude lower than the luminol system without gold nanoparticles.
Related JoVE Video
Label-free and sequence-specific DNA detection down to a picomolar level with carbon nanotubes as support for probe DNA.
Anal. Chim. Acta
PUBLISHED: 01-30-2009
Show Abstract
Hide Abstract
This study describes a simple and label-free electrochemical impedance spectroscopic (EIS) method for sequence-specific detection of DNA by using single-walled carbon nanotubes (SWNTs) as the support for probe DNA. SWNTs are confined onto gold electrodes with mixed self-assembly monolayers of thioethanol and cysteamine. Single-stranded DNA (ssDNA) probe is anchored onto the SWNT support through covalent binding between carboxyl groups at the nanotubes and amino groups at 5 ends of ssDNA. Hybridization of target DNA with the anchored probe DNA greatly increases the interfacial electron-transfer resistance (R(et)) at the double-stranded DNA (dsDNA)-modified electrodes for the redox couple of Fe(CN)(6)(3-/4-), which could be used for label-free and sequence-specific DNA detection. EIS results demonstrate that the utilization of SWNTs as the support for probe DNA substantially increases the surface loading of probe DNA onto electrode surface and thus remarkably lowers the detection limit for target DNA. Under the conditions employed here, R(et) is linear with the concentration of target DNA within a concentration range from 1 to 10 pM with a detection limit down to 0.8 pM (S/N=3). This study may offer a novel and label-free electrochemical approach to sensitive sequence-specific DNA detection.
Related JoVE Video
Biofuel cell-based self-powered biogenerators for online continuous monitoring of neurochemicals in rat brain.
Analyst
Show Abstract
Hide Abstract
This study demonstrates a new electrochemical method for continuous neurochemical sensing with a biofuel cell-based self-powered biogenerator as the detector for the analysis of microdialysate continuously sampled from rat brain, with glucose as an example analyte. To assemble a glucose/O(2) biofuel cell that can be used as a self-powered biogenerator for glucose sensing, glucose dehydrogenase (GDH) was used as the bioanodic catalyst for the oxidation of glucose with methylene green (MG) adsorbed onto single-walled carbon nanotubes (SWNTs) as the electrocatalyst for the oxidation of dihydronicotinamide adenine dinucleotide (NADH). Laccase crosslinked onto SWNTs was used as the biocathodic catalyst for the O(2) reduction. To enable the bioanode and biocathode to work efficiently in their individually favorable solutions and to eliminate the interference between the glucose bioanode and O(2) biocathode, the biofuel cell-based biogenerator was built in a co-laminar microfluidic chip so that the bioanodic and biocathodic streams could be independently optimized to provide conditions favorable for each of the bioelectrodes. By using a home-made portable voltmeter to output the voltage generated on an external resistor, the biogenerator was used for glucose sensing based on a galvanic cell mechanism. In vitro experiments demonstrate that, under the optimized conditions, the voltage generated on an external resistor shows a linear relationship with the logarithmic glucose concentration within a concentration range of 0.2 mM to 1.0 mM. Moreover, the biogenerator exhibits a high stability and a good selectivity for glucose sensing. The validity of the biofuel cell-based self-powered biogenerator for continuous neurochemical sensing was illustrated by online continuous monitoring of striatum glucose in rat brain through the combination of in vivo microdialysis. This study offers a new and technically simple platform for continuously monitoring physiologically important species in cerebral systems.
Related JoVE Video
Aspartic acid-promoted highly selective and sensitive colorimetric sensing of cysteine in rat brain.
Anal. Chem.
Show Abstract
Hide Abstract
Direct selective determination of cysteine in the cerebral system is of great importance because of the crucial roles of cysteine in physiological and pathological processes. In this study, we report a sensitive and selective colorimetric assay for cysteine in the rat brain with gold nanoparticles (Au-NPs) as the signal readout. Initially, Au-NPs synthesized with citrate as the stabilizer are red in color and exhibit absorption at 520 nm. The addition of an aqueous solution (20 ?L) of cysteine or aspartic acid alone to a 200 ?L Au-NP dispersion causes no aggregation, while the addition of an aqueous solution of cysteine into a Au-NP dispersion containing aspartic acid (1.8 mM) causes the aggregation of Au-NPs and thus results in the color change of the colloid from wine red to blue. These changes are ascribed to the ion pair interaction between aspartic acid and cysteine on the interface between Au-NPs and solution. The concentration of cysteine can be visualized with the naked eye and determined by UV-vis spectroscopy. The signal output shows a linear relationship for cysteine within the concentration range from 0.166 to 1.67 ?M with a detection limit of 100 nM. The assay demonstrated here is highly selective and is free from the interference of other natural amino acids and other thiol-containing species as well as the species commonly existing in the brain such as lactate, ascorbic acid, and glucose. The basal dialysate level of cysteine in the microdialysate from the striatum of adult male Sprague-Dawley rats is determined to be around 9.6 ± 2.1 ?M. The method demonstrated here is facile but reliable and durable and is envisaged to be applicable to understanding the chemical essence involved in physiological and pathological events associated with cysteine.
Related JoVE Video
An electrochemical method for investigation of conformational flexibility of active sites of Trametes versicolor laccase based on sensitive determination of copper ion with cysteine-modified electrodes.
Anal. Chem.
Show Abstract
Hide Abstract
This study demonstrates a facile yet effective electrochemical method to investigate the conformational flexibility of the active sites of Trametes versicolor (Tv) laccase based on sensitive determination of copper ions (Cu(2+)) dissociated from the enzyme with the cysteine-modified Au electrodes. In the native state, the multicopper active sites are deeply buried in the polypeptide of Tv laccase and are thus not electrochemically detectable even at the cysteine-modified Au electrodes. Upon the unfolding of Tv laccase induced by guanidine hydrochloride (GdnHCl), copper ions dissociate from the peptide chain and, as a consequence, are electrochemically reduced and thus detected at the cysteine-modified Au electrodes. Such a property could be used to investigate the conformational flexibility of multicopper active sites of Tv laccase in a simple way. We find that both the conformation of the multicopper active sites in Tv laccase and the enzyme activity change with the presence of a low concentration of GdnHCl denaturant (midpoint, where 50% of the enzyme is unfolded, at 0.7 M). This concentration is lower than that required to induce the conformational changes of Tv laccase molecule as a whole (midpoint at 3.4 M), as investigated by the intrinsic fluorescence of Tv laccase. This observation suggests that the multicopper active sites are formed by relatively weak interactions and hence may be conformationally more flexible than the intact enzyme. The electrochemical method demonstrated in this study is technically simple yet effective and could be potentially useful for investigation on the thermodynamics and kinetics of the conformational changes of multicopper oxidases induced by different denaturants.
Related JoVE Video
Reactive polymer as a versatile toolbox for construction of multifunctional superparamagnetic nanocomposites.
Chemistry
Show Abstract
Hide Abstract
The development of magnetic nanoparticles with multiple functions has been an ever-growing field because of their diverse applications in drug delivery, biosensing, cell labeling, and so on. In this study, a facile method was developed to construct multifunctional magnetic nanocomposites. The approach is based on the use of poly(glycidyl methacrylate), PGMA, with numerous epoxy groups as reactive polymer to combine with fluorescent dye, the surface of magnetic nanoparticles, and targeting ligands directly without expatiatory functionality design. The resultant nanocomposites with good superparamagnetic and fluorescent properties could be exploited for bioimaging. Moreover, after conjugation with a model protein, namely, transferrin, which specifically targets cells overexpressing transferrin receptors, the nanocomposites could be used selectively to recognize Hela cells in comparison with nonconjugated ones. These results indicate that the newly designed magnetic nanocomposites with PGMA as functional polymer could serve as a novel versatile platform to conjugate with various molecules for construction of diverse multifunctional magnetic nanocomposites to meet different requirements and potential uses in nanomedicine and biological chemistry.
Related JoVE Video
Chiral separation using capillary electromigration techniques based on ligand exchange principle.
J Sep Sci
Show Abstract
Hide Abstract
Over the last couple of decades, researchers have developed diverse chiral separation methods emerged from a few chiral separation principles. This review article is primarily focused on the application of chiral ligand-exchange (CLE) principle in capillary electromigration techniques, such as capillary electrophoresis (CE) and capillary electrochromatography (CEC). First, the most commonly used CLE-CZE separation mode by using different kinds of central ions, such as Cu(II), Zn(II), borate ion, and other metal ions, has been introduced. Meanwhile, several kinds of surfactants have been applied as the micelle-forming agents in the CLE micellar electrokinetic chromatography mode. The highlight of recent research of CLE-CEC is the exploitation of novel columns for chiral separation. Then, two kinds of capillary columns, packed capillary and monolithic capillary column, have been briefly described. Finally, the effective application of these chiral separation methods has been presented, including the application in life science and food analysis area.
Related JoVE Video
In vivo electrochemical monitoring of the change of cochlear perilymph ascorbate during salicylate-induced tinnitus.
Anal. Chem.
Show Abstract
Hide Abstract
As one of the most important neurochemicals in biological systems, ascorbate plays vital roles in many physiological and pathological processes. In order to understand the roles of ascorbate in the pathological process of tinnitus, this study demonstrates an in vivo method for real time monitoring of the changes of ascorbate level in the cochlear perilymph of guinea pigs during the acute period of tinnitus induced by local microinfusion of salicylate with carbon fiber microelectrodes (CFMEs) modified with multiwalled carbon nanotubes (MWNTs). To accomplish in vivo electrochemical monitoring of ascorbate in the microenvironment of the cochlear perilymph, the MWNT-modified CFME is used as working electrode, a microsized Ag/AgCl is used as reference electrode, and Pt wire is used as counter electrode. Three electrodes are combined together around a capillary to form integrated capillary-electrodes. The integrated capillary-electrode is carefully implanted into the cochlear perilymph of guinea pigs and used both for externally microinfusing of salicylate into the cochlear perilymph and for real time monitoring of the change of ascorbate levels. The in vivo voltammetric method based on the integrated capillary-electrodes possesses a high selectivity and a good linearity for ascorbate determination in the cochlear perilymph of guinea pigs. With such a method, the basal level of cochlear perilymph ascorbate is determined to be 45.0 ± 5.1 ?M (n = 6). The microinfusion of 10 mM salicylate (1 ?L/min, 5 min) into the cochlear decreases the ascorbate level to 28 ± 10% of the basal level (n = 6) with a statistical significance (P < 0.05), implying that the decrease in ascorbate level in the cochlear may be associated with salicylate-induced tinnitus. This study essentially offers a new method for in vivo monitoring of the cochlear perilymph ascorbate following the salicylate-induced tinnitus and can thus be useful for investigation on chemical essences involved in tinnitus.
Related JoVE Video
Energy-efficient electrodeposition of metal-based nanostructures through simultaneous deposition at both the cathode and the anode.
Phys Chem Chem Phys
Show Abstract
Hide Abstract
To meet the energy and environmental requirements, an effective strategy is demonstrated to enable electrochemistry to be energy-efficient for deposition of metal-based nanoparticles, based on careful design of the surface/interface reactions of metal precursors in such a way that the deposition can be induced at both the anode and the cathode.
Related JoVE Video
Continuous electrochemical monitoring of extracellular lactate production from neonatal rat cardiomyocytes following myocardial hypoxia.
Anal. Chem.
Show Abstract
Hide Abstract
Continuous monitoring of lactate production from cardiomyocytes is of great physiological and pathological importance since the level of lactate in extracellular fluid is closely associated with myocardial energy metabolism with implication in the diagnosis and therapeutics of myocardial hypoxia and ischemia. This study demonstrates an electrochemical approach to continuous monitoring of lactate production from neonatal rat cardiomyocytes following myocardial hypoxia with a dehydrogenase-based electrochemical biosensor and a negative pressure driven culture sampling. To eliminate the effect of pH variation occurring following the cardiomyocyte hypoxia on the biosensor response and to supply nicotinamide adenine dinucleotide (NAD(+)) cofactor necessary for the enzymatic reaction of lactate dehydrogenase (LDH), artificial cerebrospinal fluid (aCSF) containing NAD(+) cofactor is externally perfused and mixed online with cell culture before the culture goes to the detector. The method exhibits a high selectivity against the electrochemically active species endogenously existing in the extracellular culture of cardiomyocytes and a high tolerance against the variation of pH following cardiomyocyte hypoxia. The dynamic linear range for lactate detection is from 0.20 to 10 mM (I (nA) = 25.6 C(Lactate) (mM) + 20.1, ? = 0.996) with a detection limit of 0.16 mM (S/N = 3). The physiological level of the extracellular lactate of neonatal rat cardiomyocytes is determined to be 1.1 ± 0.1 mM (n = 3) with the cell density of about 0.5 × 10(3) cells/mm(2). When the cardiomyocytes are subject to hypoxia induced with anoxic reagents, carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), the extracellular lactate increases to 255 ± 30.3% (n = 3), relative to the physiological level, following 20 min of the hypoxia. This study essentially offers a new and effective electrochemical platform for investigating energy metabolism during cardiac physiological and pathological processes.
Related JoVE Video
Ionic liquid-assisted preparation of laccase-based biocathodes with improved biocompatibility.
J Phys Chem B
Show Abstract
Hide Abstract
Laccase enzyme has been widely used as the catalyst of the biocathodes in enzymatic biofuel cells (BFCs); the poor biocompatibility of this enzyme (e.g., poor catalytic activity in neutral media and low tolerance against chloride ion) and the lack of selectivity for oxygen reduction at the laccase-based biocathode against ascorbic acid, unfortunately, offer a great limitation to future biological applications of laccase-based BFCs. This study demonstrates a facial yet effective solution to these limitations with the assistance of hydrophobic room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate (Bmim(+)PF(6)(-)). With the Bmim(+)PF(6)(-) overcoating, the laccase-based biocathodes possess a good bioelectrocatalytic activity toward O(2) reduction in neutral media and a high tolerance against Cl(-). Moreover, the Bmim(+)PF(6)(-) overcoating applied to the laccase-based biocathodes also well suppresses the oxidation of ascorbic acid (AA) at the biocathodes and thereby avoids the AA-induced decrease in the power output of the laccase-based BFCs. The mechanisms underlying the excellent properties of the Bmim(+)PF(6)(-) overcoating are proposed based on the intrinsic features of ionic liquid Bmim(+)PF(6)(-). To demonstrate the applications of the BFCs with the as-prepared biocathodes in biologically relevant systems, an AA/O(2) BFC is assembled with single-walled carbon nanotubes (SWNTs) as electrode materials both for accelerating AA oxidation at the bioanode and for promoting direct electron transfer of laccase at the biocathode. With the presence of 0.50 mM AA in 0.10 M quiescent phosphate buffer (pH 7.2), the assembled BFC has an open circuit voltage of 0.73 V and a maximum power output of 24 ?W cm(-2) at 0.40 V under ambient air and room temperature. This study essentially offers a new strategy for the development of enzymatic BFCs with a high biocompatibility.
Related JoVE Video
Electrochemical impedance spectroscopic measurements of FCCP-induced change in membrane permeability of MDCK cells.
Analyst
Show Abstract
Hide Abstract
This study demonstrates a new electrochemical impedance spectroscopic (EIS) method for measurements of the changes in membrane permeability during the process of cell anoxia. Madin-Darby canine kidney (MDCK) cells were employed as the model cells and were cultured onto gelatin-modified glassy carbon (GC) electrodes. EIS measurements were conducted at the MDCK/gelatin-modified GC electrodes with Fe(CN)(6)(3-/4-) as the redox probe. The anoxia of the cells grown onto electrode surface was induced by the addition of carbonycyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) into the cell culture, in which the MDCK/gelatin-modified GC electrodes were immersed for different times. The EIS results show that the presence of FCCP in the cell culture clearly decreases the charge-transfer resistance of the Fe(CN)(6)(3-/4-) redox probe at the MDCK/gelatin-modified GC electrodes, and the charge-transfer resistance decreases with increasing time employed for immersing the MDCK/gelatin-modified GC electrodes into the cell culture containing FCCP. These results demonstrate that the EIS method could be used to monitor the changes in the cell membrane permeability during the FCCP-induced cell anoxia. To simulate the EIS system, a rational equivalent circuit was proposed and the values of ohmic resistance of the electrolyte, charge-transfer resistance and constant phase elements for both the gelatin and the cell layers are given with the fitting error in an acceptable value. This study actually offers a new and simple approach to measuring the dynamic process of cell death induced by anoxia through monitoring the changes in the cell membrane permeability.
Related JoVE Video
A promising dehydrogenase-based bioanode for a glucose biosensor and glucose/O2 biofuel cell.
Analyst
Show Abstract
Hide Abstract
A new type of dehydrogenase-based amperometric glucose biosensor was constructed using glucose dehydrogenase (GDH) which was immobilized on the edge-plane pyrolytic graphite (EPPG) electrode modified with poly(phenosafranin)-functionalized single-walled carbon nanotubes (PPS-SWCNTs). The PPS-SWCNT-modified EPPG electrode was prepared by electropolymerization of phenosafranin on the EPPG electrode which had been previously coated with SWCNTs. The performance of the GDH/PPS-SWCNT/EPPG bioanode was evaluated using cyclic voltammetry and amperometry in the presence of glucose. The GDH/PPS-SWCNT/EPPG electrode possesses promising characteristics as a glucose sensor: a wide linear dynamic range of 50 to 700 ?M, low detection limit of 0.3 ?M, fast response time (1-2 s), high sensitivity (96.5 ?A cm(-2) mM(-1)), and anti-interference and anti-fouling abilities. Moreover, the performance of the GDH/PPS-SWCNT/EPPG bioanode was tested in a glucose/O(2) biofuel cell. The maximum power density delivered by the assembled glucose/O(2) biofuel cell could reach 64.0 ?W cm(-2) at a cell voltage of 0.3 V with 40 mM glucose.
Related JoVE Video
Strong interaction between imidazolium-based polycationic polymer and ferricyanide: toward redox potential regulation for selective in vivo electrochemical measurements.
Anal. Chem.
Show Abstract
Hide Abstract
This study effectively demonstrates a strategy to enable the ferricyanide-based second-generation biosensors for selective in vivo measurements of neurochemicals, with glucose as an example. The strategy is based on regulation of redox potential of ferricyanide mediator by carefully controlling the different adsorption ability of ferricyanide (Fe(CN)(6)(3-)) and ferrocyanide (Fe(CN)(6)(4-)) onto electrode surface. To realize the negative shift of the redox potential of Fe(CN)(6)(3-/4-), imidazolium-based polymer (Pim) is synthesized and used as a matrix for surface adsorption of Fe(CN)(6)(3-/4-) due to its stronger interaction with Fe(CN)(6)(3-) than with Fe(CN)(6)(4-). The different adsorption ability of Fe(CN)(6)(3-) and Fe(CN)(6)(4-) onto electrodes modified with a composite of Pim and multiwalled carbon nanotubes (MWNTs) eventually enables the stable surface adsorption of both species to generate integrated biosensors and, more importantly, leads to a negative shift of the redox potential of the surface-confined redox mediator. Using glucose oxidase (GOD) as the model biorecognition units, we demonstrate the validity of the ferricyanide-based second-generation biosensors for selective in vivo neurochemical measurements. We find that the biosensors developed with the strategy demonstrated in this study can be used well as the selective detector for continuous online detection of striatum glucose of guinea pigs, by integration with in vivo microdialysis. This study essentially paves a new avenue to developing electrochemical biosensors effectively for in vivo neurochemical measurements, which is envisaged to be of great importance in understanding the molecular basis of physiological and pathological events.
Related JoVE Video
Rational design of surface/interface chemistry for quantitative in vivo monitoring of brain chemistry.
Acc. Chem. Res.
Show Abstract
Hide Abstract
To understand the molecular basis of brain functions, researchers would like to be able to quantitatively monitor the levels of neurochemicals in the extracellular fluid in vivo. However, the chemical and physiological complexity of the central nervous system (CNS) presents challenges for the development of these analytical methods. This Account describes the rational design and careful construction of electrodes and nanoparticles with specific surface/interface chemistry for quantitative in vivo monitoring of brain chemistry. We used the redox nature of neurochemicals at the electrode/electrolyte interface to establish a basis for monitoring specific neurochemicals. Carbon nanotubes provide an electrode/electrolyte interface for the selective oxidation of ascorbate, and we have developed both in vivo voltammetry and an online electrochemical detecting system for continuously monitoring this molecule in the CNS. Although Ca(2+) and Mg(2+) are involved in a number of neurochemical signaling processes, they are still difficult to detect in the CNS. These divalent cations can enhance electrocatalytic oxidation of NADH at an electrode modified with toluidine blue O. We used this property to develop online electrochemical detection systems for simultaneous measurements of Ca(2+) and Mg(2+) and for continuous selective monitoring of Mg(2+) in the CNS. We have also harnessed biological schemes for neurosensing in the brain to design other monitoring systems. By taking advantage of the distinct reaction properties of dopamine (DA), we have developed a nonoxidative mechanism for DA sensing and a system that can potentially be used for continuously sensing of DA release. Using "artificial peroxidase" (Prussian blue) to replace a natural peroxidase (horseradish peroxidase, HRP), our online system can simultaneously detect basal levels of glucose and lactate. By substituting oxidases with dehydrogenases, we have used enzyme-based biosensing schemes to develop a physiologically relevant system for detecting glucose and lactate in rat brain. Because of their unique optical properties and modifiable surfaces, gold nanoparticles (Au-NPs) have provided a platform of colorimetric assay for in vivo cerebral glucose quantification. We designed and modified the surfaces of Au-NPs and then used a sequence of reactions to produce hydroxyl radicals from glucose.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.