JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Production in Escherichia coli, folding, purification and characterization of notexin with wild type sequence and with N-terminal and catalytic site mutations.
Toxicon
PUBLISHED: 01-08-2014
Show Abstract
Hide Abstract
Notexin (Ntx) is a group I phospholipase A2 (PLA2) protein, main component of the Australian snake Notechis scutatus scutatus venom. It is both a presynaptic neurotoxin and a myotoxin. In this work, for the first time, a method for the production and folding of recombinant Ntx was developed. Ntx was produced with wild type sequence (rNtx), with an extra peptide (T7-Ntx) or a methionine (M-Ntx) before Asn-1, and with Asn-1 substituted by alanine (Ntx-A1) or by serine (Ntx-S1). The proteins were analyzed for their catalytic and toxic activities. rNtx activity resulted to be comparable to that of the venom extracted protein. The Ntx N-terminus was found to have a major influence on both the catalytic and toxic activities of the protein. The first amino acid of snake venom PLA2s is highly conserved: it is an asparagine in about all group I PLA2s, while in most (>70%) of group II PLA2s it is a serine or an asparagine. Interestingly, Ntx-S1 resulted to be, for both enzymatic and toxic activities, the mutant most similar to the wild type protein. The role of the catalytic activity of Ntx in its toxicity was investigated by replacing the aspartic acid 49, involved in the coordination of the cofactor calcium ion, by a lysine. The obtained mutant (Ntx-K49) is deprived of catalytic activity but possesses a residual toxicity.
Related JoVE Video
Botulinum neurotoxin type A is internalized and translocated from small synaptic vesicles at the neuromuscular junction.
Mol. Neurobiol.
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
Botulinum neurotoxin type A (BoNT/A) is the most frequent cause of human botulism and, at the same time, is largely used in human therapy. Some evidence indicates that it enters inside nerve terminals via endocytosis of synaptic vesicles, though this has not been directly proven. The metalloprotease L chain of the neurotoxin then reaches the cytosol in a process driven by low pH, but the acidic compartment wherefrom it translocates has not been identified. Using immunoelectron microscope, we show that BoNT/A does indeed enter inside synaptic vesicles and that each vesicle contains either one or two toxin molecules. This finding indicates that it is the BoNT/A protein receptor synaptic vesicle protein 2, and not its polysialoganglioside receptor that determines the number of toxin molecules taken up by a single vesicle. In addition, by rapid quenching the vesicle trans-membrane pH gradient, we show that the neurotoxin translocation into the cytosol is a fast process. Taken together, these results strongly indicate that translocation of BoNT/A takes place from synaptic vesicles, and not from endosomal compartments, and that the translocation machinery is operated by no more than two neurotoxin molecules.
Related JoVE Video
Extracellular ATP signaling during differentiation of C2C12 skeletal muscle cells: role in proliferation.
Mol. Cell. Biochem.
PUBLISHED: 01-05-2011
Show Abstract
Hide Abstract
Evidence shows that extracellular ATP signals influence myogenesis, regeneration and physiology of skeletal muscle. Present work was aimed at characterizing the extracellular ATP signaling system of skeletal muscle C2C12 cells during differentiation. We show that mechanical and electrical stimulation produces substantial release of ATP from differentiated myotubes, but not from proliferating myoblasts. Extracellular ATP-hydrolyzing activity is low in myoblasts and high in myotubes, consistent with the increased expression of extracellular enzymes during differentiation. Stimulation of cells with extracellular nucleotides produces substantial Ca(2+) transients, whose amplitude and shape changed during differentiation. Consistently, C2C12 cells express several P2X and P2Y receptors, whose level changes along with maturation stages. Supplementation with either ATP or UTP stimulates proliferation of C2C12 myoblasts, whereas excessive doses were cytotoxic. The data indicate that skeletal muscle development is accompanied by major functional changes in extracellular ATP signaling.
Related JoVE Video
Different mechanisms of inhibition of nerve terminals by botulinum and snake presynaptic neurotoxins.
Toxicon
PUBLISHED: 12-16-2009
Show Abstract
Hide Abstract
The different mode of action on peripheral nerve terminals of the botulinum neurotoxins and of the snake presynaptic phospholipase A2 neurotoxins is reviewed here. These two groups of toxins are highly toxic because they are neurospecific and at the same time are enzymes that can modify many substrate molecules before being inactivated. The similarity of symptoms they cause in humans derives from the fact that both botulinum neurotoxins (seven serotypes named A-G) and snake presynaptic PLA2 neurotoxins block the nerve terminals and that peripheral cholinergic terminals are major targets. Given this general similarity of targets and clinical symptoms, the specific molecular and cellular mechanisms at the basis of their action are very different. This difference appears evident from the beginning of intoxication, i.e. neurotoxins binding to peripheral nerve terminals and proceeds with the different site of actions and molecular targets.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.