JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Swi/Snf dynamics on stress-responsive genes is governed by competitive bromodomain interactions.
Genes Dev.
PUBLISHED: 10-17-2014
Show Abstract
Hide Abstract
The Swi/Snf chromatin remodeling complex functions to alter nucleosome positions by either sliding nucleosomes on DNA or the eviction of histones. The presence of histone acetylation and activator-dependent recruitment and retention of Swi/Snf is important for its efficient function. It is not understood, however, why such mechanisms are required to enhance Swi/Snf activity on nucleosomes. Snf2, the catalytic subunit of the Swi/Snf remodeling complex, has been shown to be a target of the Gcn5 acetyltransferase. Our study found that acetylation of Snf2 regulates both recruitment and release of Swi/Snf from stress-responsive genes. Also, the intramolecular interaction of the Snf2 bromodomain with the acetylated lysine residues on Snf2 negatively regulates binding and remodeling of acetylated nucleosomes by Swi/Snf. Interestingly, the presence of transcription activators mitigates the effects of the reduced affinity of acetylated Snf2 for acetylated nucleosomes. Supporting our in vitro results, we found that activator-bound genes regulating metabolic processes showed greater retention of the Swi/Snf complex even when Snf2 was acetylated. Our studies demonstrate that competing effects of (1) Swi/Snf retention by activators or high levels of histone acetylation and (2) Snf2 acetylation-mediated release regulate dynamics of Swi/Snf occupancy at target genes.
Related JoVE Video
Phosphorylation by Casein Kinase 2 Facilitates Psh1 Protein-assisted Degradation of Cse4 Protein.
J. Biol. Chem.
PUBLISHED: 09-02-2014
Show Abstract
Hide Abstract
Cse4 is the centromeric histone H3 variant in budding yeast. Psh1 is an E3 ubiquitin ligase that controls Cse4 levels through proteolysis. Here we report that Psh1 is phosphorylated by the Cka2 subunit of casein kinase 2 (CK2) to promote its E3 activity for Cse4. Deletion of CKA2 significantly stabilized Cse4. Consistent with phosphorylation promoting the activity of Psh1, Cse4 was stabilized in a Psh1 phosphodepleted mutant strain in which the major phosphorylation sites were changed to alanines. Phosphorylation of Psh1 did not control Psh1-Cse4 or Psh1-Ubc3(E2) interactions. Although Cse4 was highly stabilized in a cka2? strain, mislocalization of Cse4 was mild, suggesting that Cse4 misincorporation was prevented by the intact Psh1-Cse4 association. Supporting this idea, Psh1 was also stabilized in a cka2? strain. Collectively our data suggest that phosphorylation is crucial in Psh1-assisted control of Cse4 levels and that the Psh1-Cse4 association itself functions to prevent Cse4 misincorporation.
Related JoVE Video
Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling.
Science
PUBLISHED: 08-30-2014
Show Abstract
Hide Abstract
Histone H3 lysine(27)-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing derepression of PRC2 target genes and developmental perturbations. Similarly, an H3K9M mutant depletes H3K9 methylation levels and suppresses position-effect variegation in various Drosophila tissues. The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M-containing nucleosomes, and its misregulation in Drosophila results in changes of H3K9 methylation levels and heterochromatic silencing defects. We have established histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin signaling pathways.
Related JoVE Video
Suberoylanilide Hydroxamic Acid (SAHA)-Induced Dynamics of a Human Histone Deacetylase Protein Interaction Network.
Mol. Cell Proteomics
PUBLISHED: 07-29-2014
Show Abstract
Hide Abstract
Histone deacetylases (HDACs) are targets for cancer therapy. Suberoylanilide hydroxamic acid (SAHA) is an HDAC inhibitor approved by the U.S. Food and Drug Administration for the treatment of cutaneous T-cell lymphoma. To obtain a better mechanistic understanding of the Sin3/HDAC complex in cancer, we extended its protein-protein interaction network and identified a mutually exclusive pair within the complex. We then assessed the effects of SAHA on the disruption of the complex network through six homologous baits. SAHA perturbs multiple protein interactions and therefore compromises the composition of large parts of the Sin3/HDAC network. A comparison of the effect of SAHA treatment on gene expression in breast cancer cells to a knockdown of the ING2 subunit indicated that a portion of the anticancer effects of SAHA may be attributed to the disruption of ING2's association with the complex. Our dynamic protein interaction network resource provides novel insights into the molecular mechanism of SAHA action and demonstrates the potential for drugs to rewire networks.
Related JoVE Video
The membrane-associated proteins FCHo and SGIP are allosteric activators of the AP2 clathrin adaptor complex.
Elife
PUBLISHED: 06-10-2014
Show Abstract
Hide Abstract
The AP2 clathrin adaptor complex links protein cargo to the endocytic machinery but it is unclear how AP2 is activated on the plasma membrane. Here we demonstrate that the membrane-associated proteins FCHo and SGIP1 convert AP2 into an open, active conformation. We screened for Caenorhabditis elegans mutants that phenocopy the loss of AP2 subunits and found that AP2 remains inactive in fcho-1 mutants. A subsequent screen for bypass suppressors of fcho-1 nulls identified 71 compensatory mutations in all four AP2 subunits. Using a protease-sensitivity assay we show that these mutations restore the open conformation in vivo. The domain of FCHo that induces this rearrangement is not the F-BAR domain or the µ-homology domain, but rather is an uncharacterized 90 amino acid motif, found in both FCHo and SGIP proteins, that directly binds AP2. Thus, these proteins stabilize nascent endocytic pits by exposing membrane and cargo binding sites on AP2.
Related JoVE Video
Controlling for gene expression changes in transcription factor protein networks.
Mol. Cell Proteomics
PUBLISHED: 04-10-2014
Show Abstract
Hide Abstract
The development of affinity purification technologies combined with mass spectrometric analysis of purified protein mixtures has been used both to identify new protein-protein interactions and to define the subunit composition of protein complexes. Transcription factor protein interactions, however, have not been systematically analyzed using these approaches. Here, we investigated whether ectopic expression of an affinity tagged transcription factor as bait in affinity purification mass spectrometry experiments perturbs gene expression in cells, resulting in the false positive identification of bait-associated proteins when typical experimental controls are used. Using quantitative proteomics and RNA sequencing, we determined that the increase in the abundance of a set of proteins caused by overexpression of the transcription factor RelA is not sufficient for these proteins to then co-purify non-specifically and be misidentified as bait-associated proteins. Therefore, typical controls should be sufficient, and a number of different baits can be compared with a common set of controls. This is of practical interest when identifying bait interactors from a large number of different baits. As expected, we found several known RelA interactors enriched in our RelA purifications (NF?B1, NF?B2, Rel, RelB, I?B?, I?B?, and I?B?). We also found several proteins not previously described in association with RelA, including the small mitochondrial chaperone Tim13. Using a variety of biochemical approaches, we further investigated the nature of the association between Tim13 and NF?B family transcription factors. This work therefore provides a conceptual and experimental framework for analyzing transcription factor protein interactions.
Related JoVE Video
The cohesin acetyltransferase Eco1 coordinates rDNA replication and transcription.
EMBO Rep.
PUBLISHED: 03-14-2014
Show Abstract
Hide Abstract
Eco1 is the acetyltransferase that establishes sister-chromatid cohesion during DNA replication. A budding yeast strain with an eco1 mutation that genocopies Roberts syndrome has reduced ribosomal DNA (rDNA) transcription and a transcriptional signature of starvation. We show that deleting FOB1--a gene that encodes a replication fork-blocking protein specific for the rDNA region--rescues rRNA production and partially rescues transcription genome-wide. Further studies show that deletion of FOB1 corrects the genome-wide replication defects, nucleolar structure, and rDNA segregation that occur in the eco1 mutant. Our study highlights that the presence of cohesin at the rDNA locus has a central role in controlling global DNA replication and gene expression.
Related JoVE Video
Analysis of the heterochromatin protein 1 (HP1) interactome in Drosophila.
J Proteomics
PUBLISHED: 02-20-2014
Show Abstract
Hide Abstract
Heterochromatin protein 1 (HP1) was first described in Drosophila melanogaster as a heterochromatin associated protein required for epigenetic gene silencing. Most eukaryotes have at least three HP1 homologs that play differential roles in heterochromatin and euchromatin. However, despite the fact that the three HP1 proteins bind to different regions of the genome, several studies show that most of the interactions occur in a manner specific to HP1a. In addition, little is known about the overall interaction network of the three Drosophila HP1 homologs, HP1a, HP1b, and HP1c. Here, we performed the first comprehensive proteomic analysis of Drosophila HP1 homologs by coupling a double-affinity purification approach with MudPIT analysis to identify interacting proteins of Drosophila HP1. We discovered 160-310 proteins co-eluted with HP1, including a number of novel HP1-binding partners along with the previously identified HP1 binding proteins. Finally, we showed that slight and unique binding preferences might exist between the three HP1 proteins in Drosophila. These studies are the first to systematically analyze the interactome of HP1 paralogs and provide the basic clues as to the molecular mechanism by which HP1 might control cellular processes.
Related JoVE Video
Loss of Drosophila Ataxin-7, a SAGA subunit, reduces H2B ubiquitination and leads to neural and retinal degeneration.
Genes Dev.
PUBLISHED: 02-05-2014
Show Abstract
Hide Abstract
The Spt-Ada-Gcn5-acetyltransferase (SAGA) chromatin-modifying complex possesses acetyltransferase and deubiquitinase activities. Within this modular complex, Ataxin-7 anchors the deubiquitinase activity to the larger complex. Here we identified and characterized Drosophila Ataxin-7 and found that reduction of Ataxin-7 protein results in loss of components from the SAGA complex. In contrast to yeast, where loss of Ataxin-7 inactivates the deubiquitinase and results in increased H2B ubiquitination, loss of Ataxin-7 results in decreased H2B ubiquitination and H3K9 acetylation without affecting other histone marks. Interestingly, the effect on ubiquitination was conserved in human cells, suggesting a novel mechanism regulating histone deubiquitination in higher organisms. Consistent with this mechanism in vivo, we found that a recombinant deubiquitinase module is active in the absence of Ataxin-7 in vitro. When we examined the consequences of reduced Ataxin-7 in vivo, we found that flies exhibited pronounced neural and retinal degeneration, impaired movement, and early lethality.
Related JoVE Video
Contribution of Orb2A stability in regulated amyloid-like oligomerization of Drosophila Orb2.
PLoS Biol.
PUBLISHED: 02-01-2014
Show Abstract
Hide Abstract
How learned experiences persist as memory for a long time is an important question. In Drosophila the persistence of memory is dependent upon amyloid-like oligomers of the Orb2 protein. However, it is not clear how the conversion of Orb2 to the amyloid-like oligomeric state is regulated. The Orb2 has two protein isoforms, and the rare Orb2A isoform is critical for oligomerization of the ubiquitous Orb2B isoform. Here, we report the discovery of a protein network comprised of protein phosphatase 2A (PP2A), Transducer of Erb-B2 (Tob), and Lim Kinase (LimK) that controls the abundance of Orb2A. PP2A maintains Orb2A in an unphosphorylated and unstable state, whereas Tob-LimK phosphorylates and stabilizes Orb2A. Mutation of LimK abolishes activity-dependent Orb2 oligomerization in the adult brain. Moreover, Tob-Orb2 association is modulated by neuronal activity and Tob activity in the mushroom body is required for stable memory formation. These observations suggest that the interplay between PP2A and Tob-LimK activity may dynamically regulate Orb2 amyloid-like oligomer formation and the stabilization of memories.
Related JoVE Video
The multifunctional autophagy pathway in the human malaria parasite, Plasmodium falciparum.
Autophagy
PUBLISHED: 11-11-2013
Show Abstract
Hide Abstract
Autophagy is a catabolic pathway typically induced by nutrient starvation to recycle amino acids, but can also function in removing damaged organelles. In addition, this pathway plays a key role in eukaryotic development. To date, not much is known about the role of autophagy in apicomplexan parasites and more specifically in the human malaria parasite Plasmodium falciparum. Comparative genomic analysis has uncovered some, but not all, orthologs of autophagy-related (ATG) genes in the malaria parasite genome. Here, using a genome-wide in silico analysis, we confirmed that ATG genes whose products are required for vesicle expansion and completion are present, while genes involved in induction of autophagy and cargo packaging are mostly absent. We subsequently focused on the molecular and cellular function of P. falciparum ATG8 (PfATG8), an autophagosome membrane marker and key component of the autophagy pathway, throughout the parasite asexual and sexual erythrocytic stages. In this context, we showed that PfATG8 has a distinct and atypical role in parasite development. PfATG8 localized in the apicoplast and in vesicles throughout the cytosol during parasite development. Immunofluorescence assays of PfATG8 in apicoplast-minus parasites suggest that PfATG8 is involved in apicoplast biogenesis. Furthermore, treatment of parasite cultures with bafilomycin A 1 and chloroquine, both lysosomotropic agents that inhibit autophagosome and lysosome fusion, resulted in dramatic morphological changes of the apicoplast, and parasite death. Furthermore, deep proteomic analysis of components associated with PfATG8 indicated that it may possibly be involved in ribophagy and piecemeal microautophagy of the nucleus. Collectively, our data revealed the importance and specificity of the autophagy pathway in the malaria parasite and offer potential novel therapeutic strategies.
Related JoVE Video
Gene duplication and neofunctionalization: POLR3G and POLR3GL.
Genome Res.
PUBLISHED: 10-09-2013
Show Abstract
Hide Abstract
RNA polymerase III (Pol III) occurs in two versions, one containing the POLR3G subunit and the other the closely related POLR3GL subunit. It is not clear whether these two Pol III forms have the same function, in particular whether they recognize the same target genes. We show that the POLR3G and POLR3GL genes arose from a DNA-based gene duplication, probably in a common ancestor of vertebrates. POLR3G- as well as POLR3GL-containing Pol III are present in cultured cell lines and in normal mouse liver, although the relative amounts of the two forms vary, with the POLR3G-containing Pol III relatively more abundant in dividing cells. Genome-wide chromatin immunoprecipitations followed by high-throughput sequencing (ChIP-seq) reveal that both forms of Pol III occupy the same target genes, in very constant proportions within one cell line, suggesting that the two forms of Pol III have a similar function with regard to specificity for target genes. In contrast, the POLR3G promoter-not the POLR3GL promoter-binds the transcription factor MYC, as do all other promoters of genes encoding Pol III subunits. Thus, the POLR3G/POLR3GL duplication did not lead to neo-functionalization of the gene product (at least with regard to target gene specificity) but rather to neo-functionalization of the transcription units, which acquired different mechanisms of regulation, thus likely affording greater regulation potential to the cell.
Related JoVE Video
Polysome profiling reveals translational control of gene expression in the human malaria parasite Plasmodium falciparum.
Genome Biol.
PUBLISHED: 09-05-2013
Show Abstract
Hide Abstract
In eukaryotic organisms, gene expression is regulated at multiple levels during the processes of transcription and translation. The absence of a tight regulatory network for transcription in the human malaria parasite suggests that gene expression may largely be controlled at post-transcriptional and translational levels.
Related JoVE Video
Novel Thioredoxin-Like Proteins Are Components of a Protein Complex Coating the Cortical Microtubules of Toxoplasma gondii.
Eukaryotic Cell
PUBLISHED: 07-19-2013
Show Abstract
Hide Abstract
Microtubules are versatile biopolymers that support numerous vital cellular functions in eukaryotes. The specific properties of microtubules are dependent on distinct microtubule-associated proteins, as the tubulin subunits and microtubule structure are exceptionally conserved. Highly specialized microtubule-containing assemblies are often found in protists, which are rich sources for novel microtubule-associated proteins. A protozoan parasite, Toxoplasma gondii, possesses several distinct tubulin-containing structures, including 22 microtubules closely associated with the cortical membrane. Early ultrastructural studies have shown that the cortical microtubules are heavily decorated with associating proteins. However, little is known about the identities of these proteins. Here, we report the discovery of a novel protein, TrxL1 (for Thioredoxin-Like protein 1), and an associating complex that coats the cortical microtubules. TrxL1 contains a thioredoxin-like fold. To visualize its localization in live parasites by fluorescence, we replaced the endogenous TrxL1 gene with an mEmeraldFP-TrxL1 fusion gene. Structured illumination-based superresolution imaging of this parasite line produced a detailed view of the microtubule cytoskeleton. Despite its stable association with the cortical microtubules in the parasite, TrxL1 does not seem to bind to microtubules directly. Coimmunoprecipitation experiments showed that TrxL1 associates with a protein complex containing SPM1, a previously reported microtubule-associated protein in T. gondii. We also found that SPM1 recruits TrxL1 to the cortical microtubules. Besides SPM1, several other novel proteins are found in the TrxL1-containing complex, including TrxL2, a close homolog of TrxL1. Thus, our results reveal for the first time a microtubule-associated complex in T. gondii.
Related JoVE Video
Role for human mediator subunit MED25 in recruitment of mediator to promoters by endoplasmic reticulum stress-responsive transcription factor ATF6?.
J. Biol. Chem.
PUBLISHED: 07-17-2013
Show Abstract
Hide Abstract
Transcription factor ATF6? functions as a master regulator of endoplasmic reticulum (ER) stress response genes. In response to ER stress, ATF6? translocates from its site of latency in the ER membrane to the nucleus, where it activates RNA polymerase II transcription of ER stress response genes upon binding sequence-specifically to ER stress response enhancer elements (ERSEs) in their promoter-regulatory regions. In a recent study, we demonstrated that ATF6? activates transcription of ER stress response genes by a mechanism involving recruitment to ERSEs of the multisubunit Mediator and several histone acetyltransferase (HAT) complexes, including Spt-Ada-Gcn5 (SAGA) and Ada-Two-A-containing (ATAC) (Sela, D., Chen, L., Martin-Brown, S., Washburn, M.P., Florens, L., Conaway, J.W., and Conaway, R.C. (2012) J. Biol. Chem. 287, 23035-23045). In this study, we extend our investigation of the mechanism by which ATF6? supports recruitment of Mediator to ER stress response genes. We present findings arguing that Mediator subunit MED25 plays a critical role in this process and identify a MED25 domain that serves as a docking site on Mediator for the ATF6? transcription activation domain.
Related JoVE Video
FBXL2- and PTPL1-mediated degradation of p110-free p85? regulatory subunit controls the PI(3)K signalling cascade.
Nat. Cell Biol.
PUBLISHED: 03-13-2013
Show Abstract
Hide Abstract
F-box proteins are the substrate-recognition subunits of SCF (Skp1/Cul1/F-box protein) ubiquitin ligase complexes. Purification of the F-box protein FBXL2 identified the PI(3)K regulatory subunit p85? and tyrosine phosphatase PTPL1 as interacting proteins. FBXL2 interacts with the pool of p85? that is free of p110 PI(3)K catalytic subunits and targets this pool for ubiquitylation and subsequent proteasomal degradation. FBXL2-mediated degradation of p85? is dependent on the integrity of its CaaX motif. Whereas most SCF substrates require phosphorylation to interact with their F-box proteins, phosphorylation of p85? on Tyr 655, which is adjacent to the degron, inhibits p85? binding to FBXL2. Dephosphorylation of phospho-Tyr-655 by PTPL1 stimulates p85? binding to and degradation through FBXL2. Finally, defects in the FBXL2-mediated degradation of p85? inhibit the binding of p110 subunits to IRS1, attenuate the PI(3)K signalling cascade and promote autophagy. We propose that FBXL2 and PTPL1 suppress p85? levels, preventing the inhibition of PI(3)K by an excess of free p85 that could compete with p85-p110 heterodimers for IRS1.
Related JoVE Video
Binding of Drosophila Polo kinase to its regulator Matrimony is noncanonical and involves two separate functional domains.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 03-11-2013
Show Abstract
Hide Abstract
Drosophila melanogaster Polo kinase physically interacts with, and is repressed by, the Matrimony (Mtrm) protein during oogenesis. Females heterozygous for a deletion of the mtrm gene display defects in chromosome segregation at meiosis I. However, a complete absence of Mtrm results in both meiotic catastrophe and female sterility. We show that three phosphorylated residues in an N-terminal region in Mtrm are required for Mtrm::Polo binding. However, this binding is noncanonical; it does not require either a complete S-pS/pT-P motif in Mtrm or key residues in the Polo-box domain of Polo that allow Polo to bind phosphorylated substrates. By using fluorescence cross-correlation spectroscopy to characterize the Mtrm::Polo interaction in vivo, we show that a sterile ?-motif (SAM) domain located at the C terminus of Mtrm increases the stability of Mtrm::Polo binding. Although Mtrms C-terminal SAM domain is not required to rescue the chromosome segregation defects observed in mtrm/+ females, it is essential to prevent both meiotic catastrophe and the female sterility observed in mtrm/mtrm females. We propose that Polos interaction with the cluster of phosphorylated residues alone is sufficient to rescue the meiosis I defect. However, the strengthening of Mtrm::Polo binding mediated by the SAM domain is necessary to prevent meiotic catastrophe and ensure female fertility. Characterization of the Mtrm::Polo interaction, as well as that of other Polo regulators, may assist in the design of a new class of Polo inhibitors to be used as targeted anticancer therapeutic agents.
Related JoVE Video
The little elongation complex functions at initiation and elongation phases of snRNA gene transcription.
Mol. Cell
PUBLISHED: 03-07-2013
Show Abstract
Hide Abstract
The small nuclear RNA (snRNA) genes have been widely used as a model system for understanding transcriptional regulation due to the unique aspects of their promoter structure, selectivity for either RNA polymerase (Pol) II or III, and because of their unique mechanism of termination that is tightly linked with the promoter. Recently, we identified the little elongation complex (LEC) in Drosophila that is required for the expression of Pol II-transcribed snRNA genes. Here, using Drosophila and mammalian systems, we provide genetic and molecular evidence that LEC functions in at least two phases of snRNA transcription: an initiation step requiring the ICE1 subunit, and an elongation step requiring ELL.
Related JoVE Video
Quantitative proteomics demonstrates that the RNA polymerase II subunits Rpb4 and Rpb7 dissociate during transcriptional elongation.
Mol. Cell Proteomics
PUBLISHED: 02-15-2013
Show Abstract
Hide Abstract
Eukaryotic RNA polymerase II (RNAPII) is a 12-subunit enzyme that is responsible for the transcription of messenger RNA. Two of the subunits of RNA polymerase II, Rpb4 and Rpb7, have been shown to dissociate from the enzyme under a number of specific laboratory conditions. However, a biological context for the dissociation of Rpb4 and Rpb7 has not been identified. We have found that Rpb4/7 dissociate from RNAPII upon interaction with specific transcriptional elongation-associated proteins that are recruited to the hyperphosphorylated form of the C-terminal domain. However, the dissociation of Rpb4/7 is likely short lived because a significant level of free Rpb4/7 was not detected by quantitative proteomic analyses. In addition, we have found that RNAPII that is isolated through Rpb7 is depleted in serine 2 C-terminal domain phosphorylation. In contrast to previous reports, these data indicate that Rpb4/7 are dispensable during specific stages of transcriptional elongation in Saccharomyces cerevisiae.
Related JoVE Video
Regulation of the CRL4(Cdt2) ubiquitin ligase and cell-cycle exit by the SCF(Fbxo11) ubiquitin ligase.
Mol. Cell
PUBLISHED: 01-29-2013
Show Abstract
Hide Abstract
F-box proteins and DCAF proteins are the substrate binding subunits of the Skp1-Cul1-F-box protein (SCF) and Cul4-RING protein ligase (CRL4) ubiquitin ligase complexes, respectively. Using affinity purification and mass spectrometry, we determined that the F-box protein FBXO11 interacts with CDT2, a DCAF protein that controls cell-cycle progression, and recruits CDT2 to the SCF(FBXO11)complex to promote its proteasomal degradation. In contrast to most SCF substrates, which exhibit phosphodegron-dependent binding to F-box proteins, CDK-mediated phosphorylation of Thr464 present in the CDT2 degron inhibits recognition by FBXO11. Finally, our results show that the functional interaction between FBXO11 and CDT2 is evolutionary conserved from worms to humans and plays an important role in regulating the timing of cell-cycle exit.
Related JoVE Video
FBH1 promotes DNA double-strand breakage and apoptosis in response to DNA replication stress.
J. Cell Biol.
PUBLISHED: 01-14-2013
Show Abstract
Hide Abstract
Proper resolution of stalled replication forks is essential for genome stability. Purification of FBH1, a UvrD DNA helicase, identified a physical interaction with replication protein A (RPA), the major cellular single-stranded DNA (ssDNA)-binding protein complex. Compared with control cells, FBH1-depleted cells responded to replication stress with considerably fewer double-strand breaks (DSBs), a dramatic reduction in the activation of ATM and DNA-PK and phosphorylation of RPA2 and p53, and a significantly increased rate of survival. A minor decrease in ssDNA levels was also observed. All these phenotypes were rescued by wild-type FBH1, but not a FBH1 mutant lacking helicase activity. FBH1 depletion had no effect on other forms of genotoxic stress in which DSBs form by means that do not require ssDNA intermediates. In response to catastrophic genotoxic stress, apoptosis prevents the persistence and propagation of DNA lesions. Our findings show that FBH1 helicase activity is required for the efficient induction of DSBs and apoptosis specifically in response to DNA replication stress.
Related JoVE Video
Characterization of a highly conserved histone related protein, Ydl156w, and its functional associations using quantitative proteomic analyses.
Mol. Cell Proteomics
PUBLISHED: 12-22-2011
Show Abstract
Hide Abstract
A significant challenge in biology is to functionally annotate novel and uncharacterized proteins. Several approaches are available for deducing the function of proteins in silico based upon sequence homology and physical or genetic interaction, yet this approach is limited to proteins with well-characterized domains, paralogs and/or orthologs in other species, as well as on the availability of suitable large-scale data sets. Here, we present a quantitative proteomics approach extending the protein network of core histones H2A, H2B, H3, and H4 in Saccharomyces cerevisiae, among which a novel associated protein, the previously uncharacterized Ydl156w, was identified. In order to predict the role of Ydl156w, we designed and applied integrative bioinformatics, quantitative proteomics and biochemistry approaches aiming to infer its function. Reciprocal analysis of Ydl156w protein interactions demonstrated a strong association with all four histones and also to proteins strongly associated with histones including Rim1, Rfa2 and 3, Yku70, and Yku80. Through a subsequent combination of the focused quantitative proteomics experiments with available large-scale genetic interaction data and Gene Ontology functional associations, we provided sufficient evidence to associate Ydl156w with multiple processes including chromatin remodeling, transcription and DNA repair/replication. To gain deeper insights into the role of Ydl156w in histone biology we investigated the effect of the genetic deletion of ydl156w on H4 associated proteins, which lead to a dramatic decrease in the association of H4 with RNA polymerase III proteins. The implication of a role for Ydl156w in RNA Polymerase III mediated transcription was consequently verified by RNA-Seq experiments. Finally, using these approaches we generated a refined network of Ydl156w-associated proteins.
Related JoVE Video
Improving proteomics mass accuracy by dynamic offline lock mass.
Anal. Chem.
PUBLISHED: 11-16-2011
Show Abstract
Hide Abstract
Several methods to obtain low-ppm mass accuracy have been described. In particular, online or offline lock mass approaches can use background ions, produced by electrospray under ambient conditions, as calibrants. However, background ions such as protonated and ammoniated polydimethylcyclosiloxane ions have relatively weak and fluctuating intensity. To address this issue, we implemented dynamic offline lock mass (DOLM). Within every MS1 survey spectrum, DOLM dynamically selected the strongest n background ions for statistical treatments and m/z recalibration. We systematically optimized the mass profile abstraction method to find one single m/z value to represent an ion and the number of calibrants. To assess the influence of the intensity of the analyte ions, we used tandem mass spectroscopy (MS/MS) datasets obtained from MudPIT analyses of two protein samples with different dynamic ranges. DOLM outperformed both external mass calibration and offline lock mass that used predetermined calibrant ions, especially in the low-ppm range. The unique dynamic feature of DOLM was able to adapt to wide variations in calibrant intensities, leading to averaged mass error center at 0.03 ± 0.50 ppm for precursor ions. Such consistently tight mass accuracies meant that a precursor mass tolerance as low as 1.5 ppm could be used to search or filter post-search DOLM-recalibrated MS/MS datasets.
Related JoVE Video
The little elongation complex regulates small nuclear RNA transcription.
Mol. Cell
PUBLISHED: 10-18-2011
Show Abstract
Hide Abstract
Eleven-nineteen lysine-rich leukemia (ELL) participates in the super elongation complex (SEC) with the RNA polymerase II (Pol II) CTD kinase P-TEFb. SEC is a key regulator in the expression of HOX genes in mixed lineage leukemia (MLL)-based hematological malignancies, in the control of induced gene expression early in development, and in immediate early gene transcription. Here, we identify an SEC-like complex in Drosophila, as well as a distinct ELL-containing complex that lacks P-TEFb and other components of SEC named the "little elongation complex" (LEC). LEC subunits are highly enriched at RNA Pol II-transcribed small nuclear RNA (snRNA) genes, and the loss of LEC results in decreased snRNA expression in both flies and mammals. The specialization of the SEC and LEC complexes for mRNA and snRNA-containing genes, respectively, suggests the presence of specific classes of elongation factors for each class of genes transcribed by RNA polymerase II.
Related JoVE Video
Unraveling the ubiquitome of the human malaria parasite.
J. Biol. Chem.
PUBLISHED: 09-19-2011
Show Abstract
Hide Abstract
Malaria is one of the deadliest infectious diseases worldwide. The most severe form is caused by the eukaryotic protozoan parasite Plasmodium falciparum. Recent studies have highlighted the importance of post-translational regulations for the parasites progression throughout its life cycle, protein ubiquitylation being certainly one of the most abundant. The specificity of its components and the wide range of biological processes in which it is involved make the ubiquitylation pathway a promising source of suitable targets for anti-malarial drug development. Here, we combined immunofluorescent microscopy, biochemical assays, in silico prediction, and mass spectrometry analysis using the multidimensional protein identification technology, or MudPIT, to describe the P. falciparum ubiquitome. We found that ubiquitin conjugates are detected at every morphological stage of the parasite erythrocytic cycle. Furthermore, we detected that more than half of the parasites proteome represents possible targets for ubiquitylation, especially proteins found to be present at the most replicative stage of the asexual cycle, the trophozoite stage. A large proportion of ubiquitin conjugates were also detected at the schizont stage, consistent with a cell activity slowdown to prepare for merozoite differentiation and invasion. Finally, for the first time in the human malaria parasite, our results strongly indicate the presence of heterologous mixed conjugations, SUMO/UB. This discovery suggests that sumoylated proteins may be regulated by ubiquitylation in P. falciparum. Altogether, our results present the first stepping stone toward a better understanding of ubiquitylation and its role(s) in the biology of the human malaria parasite.
Related JoVE Video
The COMPASS family of H3K4 methylases in Drosophila.
Mol. Cell. Biol.
PUBLISHED: 08-29-2011
Show Abstract
Hide Abstract
Methylation of histone H3 lysine 4 (H3K4) in Saccharomyces cerevisiae is implemented by Set1/COMPASS, which was originally purified based on the similarity of yeast Set1 to human MLL1 and Drosophila melanogaster Trithorax (Trx). While humans have six COMPASS family members, Drosophila possesses a representative of the three subclasses within COMPASS-like complexes: dSet1 (human SET1A/SET1B), Trx (human MLL1/2), and Trr (human MLL3/4). Here, we report the biochemical purification and molecular characterization of the Drosophila COMPASS family. We observed a one-to-one similarity in subunit composition with their mammalian counterparts, with the exception of LPT (lost plant homeodomains [PHDs] of Trr), which copurifies with the Trr complex. LPT is a previously uncharacterized protein that is homologous to the multiple PHD fingers found in the N-terminal regions of mammalian MLL3/4 but not Drosophila Trr, indicating that Trr and LPT constitute a split gene of an MLL3/4 ancestor. Our study demonstrates that all three complexes in Drosophila are H3K4 methyltransferases; however, dSet1/COMPASS is the major monoubiquitination-dependent H3K4 di- and trimethylase in Drosophila. Taken together, this study provides a springboard for the functional dissection of the COMPASS family members and their role in the regulation of histone H3K4 methylation throughout development in Drosophila.
Related JoVE Video
Post-transcription initiation function of the ubiquitous SAGA complex in tissue-specific gene activation.
Genes Dev.
PUBLISHED: 07-19-2011
Show Abstract
Hide Abstract
The Spt-Ada-Gcn5-acetyltransferase (SAGA) complex was discovered from Saccharomyces cerevisiae and has been well characterized as an important transcriptional coactivator that interacts both with sequence-specific transcription factors and the TATA-binding protein TBP. SAGA contains a histone acetyltransferase and a ubiquitin protease. In metazoans, SAGA is essential for development, yet little is known about the function of SAGA in differentiating tissue. We analyzed the composition, interacting proteins, and genomic distribution of SAGA in muscle and neuronal tissue of late stage Drosophila melanogaster embryos. The subunit composition of SAGA was the same in each tissue; however, SAGA was associated with considerably more transcription factors in muscle compared with neurons. Consistent with this finding, SAGA was found to occupy more genes specifically in muscle than in neurons. Strikingly, SAGA occupancy was not limited to enhancers and promoters but primarily colocalized with RNA polymerase II within transcribed sequences. SAGA binding peaks at the site of RNA polymerase pausing at the 5 end of transcribed sequences. In addition, many tissue-specific SAGA-bound genes required its ubiquitin protease activity for full expression. These data indicate that in metazoans SAGA plays a prominent post-transcription initiation role in tissue-specific gene expression.
Related JoVE Video
Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes.
Mol. Syst. Biol.
PUBLISHED: 05-22-2011
Show Abstract
Hide Abstract
Despite the availability of several large-scale proteomics studies aiming to identify protein interactions on a global scale, little is known about how proteins interact and are organized within macromolecular complexes. Here, we describe a technique that consists of a combination of biochemistry approaches, quantitative proteomics and computational methods using wild-type and deletion strains to investigate the organization of proteins within macromolecular protein complexes. We applied this technique to determine the organization of two well-studied complexes, Spt-Ada-Gcn5 histone acetyltransferase (SAGA) and ADA, for which no comprehensive high-resolution structures exist. This approach revealed that SAGA/ADA is composed of five distinct functional modules, which can persist separately. Furthermore, we identified a novel subunit of the ADA complex, termed Ahc2, and characterized Sgf29 as an ADA family protein present in all Gcn5 histone acetyltransferase complexes. Finally, we propose a model for the architecture of the SAGA and ADA complexes, which predicts novel functional associations within the SAGA complex and provides mechanistic insights into phenotypical observations in SAGA mutants.
Related JoVE Video
DYRK1A protein kinase promotes quiescence and senescence through DREAM complex assembly.
Genes Dev.
PUBLISHED: 04-19-2011
Show Abstract
Hide Abstract
In the absence of growth signals, cells exit the cell cycle and enter into G0 or quiescence. Alternatively, cells enter senescence in response to inappropriate growth signals such as oncogene expression. The molecular mechanisms required for cell cycle exit into quiescence or senescence are poorly understood. The DREAM (DP, RB [retinoblastoma], E2F, and MuvB) complex represses cell cycle-dependent genes during quiescence. DREAM contains p130, E2F4, DP1, and a stable core complex of five MuvB-like proteins: LIN9, LIN37, LIN52, LIN54, and RBBP4. In mammalian cells, the MuvB core dissociates from p130 upon entry into the cell cycle and binds to BMYB during S phase to activate the transcription of genes expressed late in the cell cycle. We used mass spectroscopic analysis to identify phosphorylation sites that regulate the switch of the MuvB core from BMYB to DREAM. Here we report that DYRK1A can specifically phosphorylate LIN52 on serine residue 28, and that this phosphorylation is required for DREAM assembly. Inhibiting DYRK1A activity or point mutation of LIN52 disrupts DREAM assembly and reduces the ability of cells to enter quiescence or undergo Ras-induced senescence. These data reveal an important role for DYRK1A in the regulation of DREAM activity and entry into quiescence.
Related JoVE Video
Human mediator subunit MED26 functions as a docking site for transcription elongation factors.
Cell
PUBLISHED: 04-15-2011
Show Abstract
Hide Abstract
Promoter-proximal pausing by initiated RNA polymerase II (Pol II) and regulated release of paused polymerase into productive elongation has emerged as a major mechanism of transcription activation. Reactivation of paused Pol II correlates with recruitment of super-elongation complexes (SECs) containing ELL/EAF family members, P-TEFb, and other proteins, but the mechanism of their recruitment is an unanswered question. Here, we present evidence for a role of human Mediator subunit MED26 in this process. We identify in the conserved N-terminal domain of MED26 overlapping docking sites for SEC and a second ELL/EAF-containing complex, as well as general initiation factor TFIID. In addition, we present evidence consistent with the model that MED26 can function as a molecular switch that interacts first with TFIID in the Pol II initiation complex and then exchanges TFIID for complexes containing ELL/EAF and P-TEFb to facilitate transition of Pol II into the elongation stage of transcription.
Related JoVE Video
Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein.
Nature
PUBLISHED: 04-11-2011
Show Abstract
Hide Abstract
Macrophages and dendritic cells have key roles in viral infections, providing virus reservoirs that frequently resist antiviral therapies and linking innate virus detection to antiviral adaptive immune responses. Human immunodeficiency virus 1 (HIV-1) fails to transduce dendritic cells and has a reduced ability to transduce macrophages, due to an as yet uncharacterized mechanism that inhibits infection by interfering with efficient synthesis of viral complementary DNA. In contrast, HIV-2 and related simian immunodeficiency viruses (SIVsm/mac) transduce myeloid cells efficiently owing to their virion-associated Vpx accessory proteins, which counteract the restrictive mechanism. Here we show that the inhibition of HIV-1 infection in macrophages involves the cellular SAM domain HD domain-containing protein 1 (SAMHD1). Vpx relieves the inhibition of lentivirus infection in macrophages by loading SAMHD1 onto the CRL4(DCAF1) E3 ubiquitin ligase, leading to highly efficient proteasome-dependent degradation of the protein. Mutations in SAMHD1 cause Aicardi-Goutières syndrome, a disease that produces a phenotype that mimics the effects of a congenital viral infection. Failure to dispose of endogenous nucleic acid debris in Aicardi-Goutières syndrome results in inappropriate triggering of innate immune responses via cytosolic nucleic acids sensors. Thus, our findings show that macrophages are defended from HIV-1 infection by a mechanism that prevents an unwanted interferon response triggered by self nucleic acids, and uncover an intricate relationship between innate immune mechanisms that control response to self and to retroviral pathogens.
Related JoVE Video
Nuclear cGMP-dependent kinase regulates gene expression via activity-dependent recruitment of a conserved histone deacetylase complex.
PLoS Genet.
PUBLISHED: 03-21-2011
Show Abstract
Hide Abstract
Elevation of the second messenger cGMP by nitric oxide (NO) activates the cGMP-dependent protein kinase PKG, which is key in regulating cardiovascular, intestinal, and neuronal functions in mammals. The NO-cGMP-PKG signaling pathway is also a major therapeutic target for cardiovascular and male reproductive diseases. Despite widespread effects of PKG activation, few molecular targets of PKG are known. We study how EGL-4, the Caenorhabditis elegans PKG ortholog, modulates foraging behavior and egg-laying and seeks the downstream effectors of EGL-4 activity. Using a combination of unbiased forward genetic screen and proteomic analysis, we have identified a conserved SAEG-1/SAEG-2/HDA-2 histone deacetylase complex that is specifically recruited by activated nuclear EGL-4. Gene expression profiling by microarrays revealed >40 genes that are sensitive to EGL-4 activity in a SAEG-1-dependent manner. We present evidence that EGL-4 controls egg laying via one of these genes, Y45F10C.2, which encodes a novel protein that is expressed exclusively in the uterine epithelium. Our results indicate that, in addition to cytoplasmic functions, active EGL-4/PKG acts in the nucleus via a conserved Class I histone deacetylase complex to regulate gene expression pertinent to behavioral and physiological responses to cGMP. We also identify transcriptional targets of EGL-4 that carry out discrete components of the physiological response.
Related JoVE Video
Subunit organization of the human INO80 chromatin remodeling complex: an evolutionarily conserved core complex catalyzes ATP-dependent nucleosome remodeling.
J. Biol. Chem.
PUBLISHED: 02-08-2011
Show Abstract
Hide Abstract
We previously identified and purified a human ATP-dependent chromatin remodeling complex with similarity to the Saccharomyces cerevisiae INO80 complex (Jin, J., Cai, Y., Yao, T., Gottschalk, A. J., Florens, L., Swanson, S. K., Gutierrez, J. L., Coleman, M. K., Workman, J. L., Mushegian, A., Washburn, M. P., Conaway, R. C., and Conaway, J. W. (2005) J. Biol. Chem. 280, 41207-41212) and demonstrated that it is composed of (i) a Snf2 family ATPase (hIno80) related in sequence to the S. cerevisiae Ino80 ATPase; (ii) seven additional evolutionarily conserved subunits orthologous to yeast INO80 complex subunits; and (iii) six apparently metazoan-specific subunits. In this report, we present evidence that the human INO80 complex is composed of three modules that assemble with three distinct domains of the hIno80 ATPase. These modules include (i) one that is composed of the N terminus of the hIno80 protein and all of the metazoan-specific subunits and is not required for ATP-dependent nucleosome remodeling; (ii) a second that is composed of the hIno80 Snf2-like ATPase/helicase and helicase-SANT-associated/post-HSA (HSA/PTH) domain, the actin-related proteins Arp4 and Arp8, and the GLI-Kruppel family transcription factor YY1; and (iii) a third that is composed of the hIno80 Snf2 ATPase domain, the Ies2 and Ies6 proteins, the AAA(+) ATPases Tip49a and Tip49b, and the actin-related protein Arp5. Through purification and characterization of hINO80 complex subassemblies, we demonstrate that ATP-dependent nucleosome remodeling by the hINO80 complex is catalyzed by a core complex comprising the hIno80 protein HSA/PTH and Snf2 ATPase domains acting in concert with YY1 and the complete set of its evolutionarily conserved subunits. Taken together, our findings shed new light on the structure and function of the INO80 chromatin-remodeling complex.
Related JoVE Video
The tumour antigen PRAME is a subunit of a Cul2 ubiquitin ligase and associates with active NFY promoters.
EMBO J.
PUBLISHED: 02-07-2011
Show Abstract
Hide Abstract
The human tumour antigen PRAME (preferentially expressed antigen of melanoma) is frequently overexpressed in tumours. High PRAME levels correlate with poor clinical outcome of several cancers, but the mechanisms by which PRAME could be involved in tumourigenesis remain largely elusive. We applied protein-complex purification strategies and identified PRAME as a substrate recognition subunit of a Cullin2-based E3 ubiquitin ligase. PRAME can be recruited to DNA in vitro, and genome-wide chromatin immunoprecipitation experiments revealed that PRAME is specifically enriched at transcriptionally active promoters that are also bound by NFY and at enhancers. Our results are consistent with a role for the PRAME ubiquitin ligase complex in NFY-mediated transcriptional regulation.
Related JoVE Video
Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/Snf2.
Genes Dev.
PUBLISHED: 12-17-2010
Show Abstract
Hide Abstract
The positive link between the SWI/SNF and the Gcn5 histone acetyltransferase in transcriptional activation has been well described. Here we report an inhibitory role for Gcn5 in SWI/SNF targeting. We demonstrate that Gcn5-containing complexes directly acetylate the Snf2 subunit of the SWI/SNF complex in vitro, as well as in vivo. Moreover, the acetylation of Snf2 facilitates the dissociation of the SWI/SNF complex from acetylated histones, and reduces its association with promoters in vivo. These data reveal a novel mechanism by which Gcn5 modulates chromatin structure not only through the acetylation of histones, but also by directly acetylating Snf2.
Related JoVE Video
Highly reproducible label free quantitative proteomic analysis of RNA polymerase complexes.
Mol. Cell Proteomics
PUBLISHED: 11-03-2010
Show Abstract
Hide Abstract
The use of quantitative proteomics methods to study protein complexes has the potential to provide in-depth information on the abundance of different protein components as well as their modification state in various cellular conditions. To interrogate protein complex quantitation using shotgun proteomic methods, we have focused on the analysis of protein complexes using label-free multidimensional protein identification technology and studied the reproducibility of biological replicates. For these studies, we focused on three highly related and essential multi-protein enzymes, RNA polymerase I, II, and III from Saccharomyces cerevisiae. We found that label-free quantitation using spectral counting is highly reproducible at the protein and peptide level when analyzing RNA polymerase I, II, and III. In addition, we show that peptide sampling does not follow a random sampling model, and we show the need for advanced computational models to predict peptide detection probabilities. In order to address these issues, we used the APEX protocol to model the expected peptide detectability based on whole cell lysate acquired using the same multidimensional protein identification technology analysis used for the protein complexes. Neither method was able to predict the peptide sampling levels that we observed using replicate multidimensional protein identification technology analyses. In addition to the analysis of the RNA polymerase complexes, our analysis provides quantitative information about several RNAP associated proteins including the RNAPII elongation factor complexes DSIF and TFIIF. Our data shows that DSIF and TFIIF are the most highly enriched RNAP accessory factors in Rpb3-TAP purifications and demonstrate our ability to measure low level associated protein abundance across biological replicates. In addition, our quantitative data supports a model in which DSIF and TFIIF interact with RNAPII in a dynamic fashion in agreement with previously published reports.
Related JoVE Video
Heterochromatin protein 1 (HP1) connects the FACT histone chaperone complex to the phosphorylated CTD of RNA polymerase II.
Genes Dev.
PUBLISHED: 10-05-2010
Show Abstract
Hide Abstract
Heterochromatin protein 1 (HP1) is well known as a silencing protein found at pericentric heterochromatin. Most eukaryotes have at least three isoforms of HP1 that play differential roles in heterochromatin and euchromatin. In addition to its role in heterochromatin, HP1 proteins have been shown to function in transcription elongation. To gain insights into the transcription functions of HP1, we sought to identify novel HP1-interacting proteins. Biochemical and proteomic approaches revealed that HP1 interacts with the histone chaperone complex FACT (facilitates chromatin transcription). HP1c interacts with the SSRP1 (structure-specific recognition protein 1) subunit and the intact FACT complex. Moreover, HP1c guides the recruitment of FACT to active genes and links FACT to active forms of RNA polymerase II. The absence of HP1c partially impairs the recruitment of FACT into heat-shock loci and causes a defect in heat-shock gene expression. Thus, HP1c functions to recruit the FACT complex to RNA polymerase II.
Related JoVE Video
Several novel nuclear envelope transmembrane proteins identified in skeletal muscle have cytoskeletal associations.
Mol. Cell Proteomics
PUBLISHED: 09-27-2010
Show Abstract
Hide Abstract
Nuclear envelopes from liver and a neuroblastoma cell line have previously been analyzed by proteomics; however, most diseases associated with the nuclear envelope affect muscle. To determine whether muscle has unique nuclear envelope proteins, rat skeletal muscle nuclear envelopes were prepared and analyzed by multidimensional protein identification technology. Many novel muscle-specific proteins were identified that did not appear in previous nuclear envelope data sets. Nuclear envelope residence was confirmed for 11 of these by expression of fusion proteins and by antibody staining of muscle tissue cryosections. Moreover, transcript levels for several of the newly identified nuclear envelope transmembrane proteins increased during muscle differentiation using mouse and human in vitro model systems. Some of these proteins tracked with microtubules at the nuclear surface in interphase cells and accumulated at the base of the microtubule spindle in mitotic cells, suggesting they may associate with complexes that connect the nucleus to the cytoskeleton. The finding of tissue-specific proteins in the skeletal muscle nuclear envelope proteome argues the importance of analyzing nuclear envelopes from all tissues linked to disease and suggests that general investigation of tissue differences in organellar proteomes might yield critical insights.
Related JoVE Video
Temporal regulation of gene expression of the Thermus thermophilus bacteriophage P23-45.
J. Mol. Biol.
PUBLISHED: 08-30-2010
Show Abstract
Hide Abstract
Regulation of gene expression during infection of the thermophilic bacterium Thermus thermophilus HB8 with the bacteriophage P23-45 was investigated. Macroarray analysis revealed host transcription shut-off and identified three temporal classes of phage genes; early, middle and late. Primer extension experiments revealed that the 5 ends of P23-45 early transcripts are preceded by a common sequence motif that likely defines early viral promoters. T. thermophilus HB8 RNA polymerase (RNAP) recognizes middle and late phage promoters in vitro but does not recognize early promoters. In vivo experiments revealed the presence of rifampicin-resistant RNA polymerizing activity in infected cells responsible for early transcription. The product of the P23-45 early gene 64 shows a distant sequence similarity with the largest, catalytic subunits of multisubunit RNAPs and contains the conserved metal-binding motif that is diagnostic of these proteins. We hypothesize that ORF64 encodes rifampicin-resistant phage RNAP that recognizes early phage promoters. Affinity isolation of T. thermophilus HB8 RNAP from P23-45-infected cells identified two phage-encoded proteins, gp39 and gp76, that bind the host RNAP and inhibit in vitro transcription from host promoters, but not from middle or late phage promoters, and may thus control the shift from host to viral gene expression during infection. To our knowledge, gp39 and gp76 are the first characterized bacterial RNAP-binding proteins encoded by a thermophilic phage.
Related JoVE Video
The leukocyte nuclear envelope proteome varies with cell activation and contains novel transmembrane proteins that affect genome architecture.
Mol. Cell Proteomics
PUBLISHED: 08-06-2010
Show Abstract
Hide Abstract
A favored hypothesis to explain the pathology underlying nuclear envelopathies is that mutations in nuclear envelope proteins alter genome/chromatin organization and thus gene expression. To identify nuclear envelope proteins that play roles in genome organization, we analyzed nuclear envelopes from resting and phytohemagglutinin-activated leukocytes because leukocytes have a particularly high density of peripheral chromatin that undergoes significant reorganization upon such activation. Thus, nuclear envelopes were isolated from leukocytes in the two states and analyzed by multidimensional protein identification technology using an approach that used expected contaminating membranes as subtractive fractions. A total of 3351 proteins were identified between both nuclear envelope data sets among which were 87 putative nuclear envelope transmembrane proteins (NETs) that were not identified in a previous proteomics analysis of liver nuclear envelopes. Nuclear envelope localization was confirmed for 11 new NETs using tagged fusion proteins and antibodies on spleen cryosections. 27% of the new proteins identified were unique to one or the other of the two leukocyte states. Differences in expression between activated and resting leukocytes were confirmed for some NETs by RT-PCR, and most of these proteins appear to only be expressed in certain types of blood cells. Several known proteins identified in both data sets have functions in chromatin organization and gene regulation. To test whether the novel NETs identified might include those that also regulate chromatin, nine were run through two screens for different chromatin effects. One screen found two NETs that can recruit a specific gene locus to the nuclear periphery, and the second found a different NET that promotes chromatin condensation. The variation in the protein milieu with pharmacological activation of the same cell population and consequences for gene regulation suggest that the nuclear envelope is a complex regulatory system with significant influences on genome organization.
Related JoVE Video
Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast.
Nature
PUBLISHED: 07-02-2010
Show Abstract
Hide Abstract
Aneuploidy, referring here to genome contents characterized by abnormal numbers of chromosomes, has been associated with developmental defects, cancer and adaptive evolution in experimental organisms. However, it remains unresolved how aneuploidy impacts gene expression and whether aneuploidy could directly bring about phenotypic variation and improved fitness over that of euploid counterparts. Here we show, using quantitative mass spectrometry-based proteomics and phenotypic profiling, that levels of protein expression in aneuploid yeast strains largely scale with chromosome copy numbers, following the same trend as that observed for the transcriptome, and that aneuploidy confers diverse phenotypes. We designed a novel scheme to generate, through random meiotic segregation, 38 stable and fully isogenic aneuploid yeast strains with distinct karyotypes and genome contents between 1N and 3N without involving any genetic selection. Through quantitative growth assays under various conditions or in the presence of a panel of chemotherapeutic or antifungal drugs, we found that some aneuploid strains grew significantly better than euploid control strains under conditions suboptimal for the latter. These results provide strong evidence that aneuploidy directly affects gene expression at both the transcriptome and proteome levels and can generate significant phenotypic variation that could bring about fitness gains under diverse conditions. Our findings suggest that the fitness ranking between euploid and aneuploid cells is dependent on context and karyotype, providing the basis for the notion that aneuploidy can directly underlie phenotypic evolution and cellular adaptation.
Related JoVE Video
Psh1 is an E3 ubiquitin ligase that targets the centromeric histone variant Cse4.
Mol. Cell
PUBLISHED: 06-10-2010
Show Abstract
Hide Abstract
Cse4 is a variant of histone H3 that is incorporated into a single nucleosome at each centromere in budding yeast. We have discovered an E3 ubiquitin ligase, called Psh1, which controls the cellular level of Cse4 via ubiquitylation and proteolysis. The activity of Psh1 is dependent on both its RING and zinc finger domains. We demonstrate the specificity of the ubiquitylation activity of Psh1 toward Cse4 in vitro and map the sites of ubiquitylation. Mutation of key lysines prevents ubiquitylation of Cse4 by Psh1 in vitro and stabilizes Cse4 in vivo. While deletion of Psh1 stabilizes Cse4, elimination of the Cse4-specific chaperone Scm3 destabilizes Cse4, and the addition of Scm3 to the Psh1-Cse4 ubiquitylation reaction prevents Cse4 ubiquitylation, together suggesting Scm3 may protect Cse4 from ubiquitylation. Without Psh1, Cse4 overexpression is toxic and Cse4 is found at ectopic locations. Our results suggest Psh1 functions to prevent the mislocalization of Cse4.
Related JoVE Video
The ATAC acetyltransferase complex coordinates MAP kinases to regulate JNK target genes.
Cell
PUBLISHED: 05-14-2010
Show Abstract
Hide Abstract
In response to extracellular cues, signal transduction activates downstream transcription factors like c-Jun to induce expression of target genes. We demonstrate that the ATAC (Ada two A containing) histone acetyltransferase (HAT) complex serves as a transcriptional cofactor for c-Jun at the Jun N-terminal kinase (JNK) target genes Jra and chickadee. ATAC subunits are required for c-Jun occupancy of these genes and for H4K16 acetylation at the Jra enhancer, promoter, and transcribed sequences. Under conditions of osmotic stress, ATAC colocalizes with c-Jun, recruits the upstream kinases Misshapen, MKK4, and JNK, and suppresses further activation of JNK. Relocalization of these MAPKs and suppression of JNK activation by ATAC are dependent on the CG10238 subunit of ATAC. Thus, ATAC governs the transcriptional response to MAP kinase signaling by serving as both a coactivator of transcription and as a suppressor of upstream signaling.
Related JoVE Video
Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom).
Genes Dev.
PUBLISHED: 03-04-2010
Show Abstract
Hide Abstract
Epigenetic modifications of chromatin play an important role in the regulation of gene expression. KMT4/Dot1 is a conserved histone methyltransferase capable of methylating chromatin on Lys79 of histone H3 (H3K79). Here we report the identification of a multisubunit Dot1 complex (DotCom), which includes several of the mixed lineage leukemia (MLL) partners in leukemia such as ENL, AF9/MLLT3, AF17/MLLT6, and AF10/MLLT10, as well as the known Wnt pathway modifiers TRRAP, Skp1, and beta-catenin. We demonstrated that the human DotCom is indeed capable of trimethylating H3K79 and, given the association of beta-catenin, Skp1, and TRRAP, we investigated, and found, a role for Dot1 in Wnt/Wingless signaling in an in vivo model system. Knockdown of Dot1 in Drosophila results in decreased expression of a subset of Wingless target genes. Furthermore, the loss of expression for the Drosophila homologs of the Dot1-associated proteins involved in the regulation of H3K79 shows a similar reduction in expression of these Wingless targets. From yeast to human, specific trimethylation of H3K79 by Dot1 requires the monoubiquitination of histone H2B by the Rad6/Bre1 complex. Here, we demonstrate that depletion of Bre1, the E3 ligase required for H2B monoubiquitination, leads specifically to reduced bulk H3K79 trimethylation levels and a reduction in expression of many Wingless targets. Overall, our study describes for the first time the components of DotCom and links the specific regulation of H3K79 trimethylation by Dot1 and its associated factors to the Wnt/Wingless signaling pathway.
Related JoVE Video
Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins.
Anal. Chem.
PUBLISHED: 02-20-2010
Show Abstract
Hide Abstract
Quantitative shotgun proteomics is dependent on the detection, identification, and quantitative analysis of peptides. An issue arises with peptides that are shared between multiple proteins. What protein did they originate from and how should these shared peptides be used in a quantitative proteomics workflow? To systematically evaluate shared peptides in label-free quantitative proteomics, we devised a well-defined protein sample consisting of known concentrations of six albumins from different species, which we added to a highly complex yeast lysate. We used the spectral counts based normalized spectral abundance factor (NSAF) as the starting point for our analysis and compared an exhaustive list of possible combinations of parameters to determine what was the optimal approach for dealing with shared peptides and shared spectral counts. We showed that distributing shared spectral counts based on the number of unique spectral counts led to the most accurate and reproducible results.
Related JoVE Video
Deacetylase inhibitors dissociate the histone-targeting ING2 subunit from the Sin3 complex.
Chem. Biol.
PUBLISHED: 02-10-2010
Show Abstract
Hide Abstract
Histone deacetylase (HDAC) inhibitors are in clinical development for several diseases, including cancers and neurodegenerative disorders. HDACs 1 and 2 are among the targets of these inhibitors and are part of multisubunit protein complexes. HDAC inhibitors (HDACis) block the activity of HDACs by chelating a zinc molecule in their catalytic sites. It is not known if the inhibitors have any additional functional effects on the multisubunit HDAC complexes. Here, we find that suberoylanilide hydroxamic acid (SAHA), the first FDA-approved HDACi for cancer, causes the dissociation of the PHD-finger-containing ING2 subunit from the Sin3 deacetylase complex. Loss of ING2 disrupts the in vivo binding of the Sin3 complex to the p21 promoter, an important target gene for cell growth inhibition by SAHA. Our findings reveal a molecular mechanism by which HDAC inhibitors disrupt deacetylase function.
Related JoVE Video
AFF4, a component of the ELL/P-TEFb elongation complex and a shared subunit of MLL chimeras, can link transcription elongation to leukemia.
Mol. Cell
PUBLISHED: 01-25-2010
Show Abstract
Hide Abstract
Chromosomal translocations involving the MLL gene are associated with infant acute lymphoblastic and mixed lineage leukemia. There are a large number of translocation partners of MLL that share very little sequence or seemingly functional similarities; however, their translocations into MLL result in the pathogenesis of leukemia. To define the molecular reason why these translocations result in the pathogenesis of leukemia, we purified several of the commonly occurring MLL chimeras. We have identified super elongation complex (SEC) associated with all chimeras purified. SEC includes ELL, P-TEFb, AFF4, and several other factors. AFF4 is required for SEC stability and proper transcription by poised RNA polymerase II in metazoans. Knockdown of AFF4 in leukemic cells shows reduction in MLL chimera target gene expression, suggesting that AFF4/SEC could be a key regulator in the pathogenesis of leukemia through many of the MLL partners.
Related JoVE Video
SCF(Cyclin F) controls centrosome homeostasis and mitotic fidelity through CP110 degradation.
Nature
PUBLISHED: 01-18-2010
Show Abstract
Hide Abstract
Generally, F-box proteins are the substrate recognition subunits of SCF (Skp1-Cul1-F-box protein) ubiquitin ligase complexes, which mediate the timely proteolysis of important eukaryotic regulatory proteins. Mammalian genomes encode roughly 70 F-box proteins, but only a handful have established functions. The F-box protein family obtained its name from Cyclin F (also called Fbxo1), in which the F-box motif (the approximately 40-amino-acid domain required for binding to Skp1) was first described. Cyclin F, which is encoded by an essential gene, also contains a cyclin box domain, but in contrast to most cyclins, it does not bind or activate any cyclin-dependent kinases (CDKs). However, like other cyclins, Cyclin F oscillates during the cell cycle, with protein levels peaking in G2. Despite its essential nature and status as the founding member of the F-box protein family, Cyclin F remains an orphan protein, whose functions are unknown. Starting from an unbiased screen, we identified CP110, a protein that is essential for centrosome duplication, as an interactor and substrate of Cyclin F. Using a mode of substrate binding distinct from other F-box protein-substrate pairs, CP110 and Cyclin F physically associate on the centrioles during the G2 phase of the cell cycle, and CP110 is ubiquitylated by the SCF(Cyclin F) ubiquitin ligase complex, leading to its degradation. siRNA-mediated depletion of Cyclin F in G2 induces centrosomal and mitotic abnormalities, such as multipolar spindles and asymmetric, bipolar spindles with lagging chromosomes. These phenotypes were reverted by co-silencing CP110 and were recapitulated by expressing a stable mutant of CP110 that cannot bind Cyclin F. Finally, expression of a stable CP110 mutant in cultured cells also promotes the formation of micronuclei, a hallmark of chromosome instability. We propose that SCF(Cyclin F)-mediated degradation of CP110 is required for the fidelity of mitosis and genome integrity.
Related JoVE Video
A novel histone fold domain-containing protein that replaces TAF6 in Drosophila SAGA is required for SAGA-dependent gene expression.
Genes Dev.
PUBLISHED: 12-17-2009
Show Abstract
Hide Abstract
The histone acetyltransferase complex SAGA is well characterized as a coactivator complex in yeast. In this study of Drosophila SAGA (dSAGA), we describe three novel components that include an ortholog of Spt20, a potential ortholog of Sgf73/ATXN7, and a novel histone fold protein, SAF6 (SAGA factor-like TAF6). SAF6, which binds directly to TAF9, functions analogously in dSAGA to TAF6/TAF6L in the yeast and human SAGA complexes, respectively. Moreover, TAF6 in flies is restricted to TFIID. Mutations in saf6 disrupt SAGA-regulated gene expression without disrupting acetylated or ubiquitinated histone levels. Thus, SAF6 is essential for SAGA coactivator function independent of the enzymatic activities of the complex.
Related JoVE Video
Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex.
J. Biol. Chem.
PUBLISHED: 12-14-2009
Show Abstract
Hide Abstract
Human MOF (MYST1), a member of the MYST (Moz-Ybf2/Sas3-Sas2-Tip60) family of histone acetyltransferases (HATs), is the human ortholog of the Drosophila males absent on the first (MOF) protein. MOF is the catalytic subunit of the male-specific lethal (MSL) HAT complex, which plays a key role in dosage compensation in the fly and is responsible for a large fraction of histone H4 lysine 16 (H4K16) acetylation in vivo. MOF was recently reported to be a component of a second HAT complex, designated the non-specific lethal (NSL) complex (Mendjan, S., Taipale, M., Kind, J., Holz, H., Gebhardt, P., Schelder, M., Vermeulen, M., Buscaino, A., Duncan, K., Mueller, J., Wilm, M., Stunnenberg, H. G., Saumweber, H., and Akhtar, A. (2006) Mol. Cell 21, 811-823). Here we report an analysis of the subunit composition and substrate specificity of the NSL complex. Proteomic analyses of complexes purified through multiple candidate subunits reveal that NSL is composed of nine subunits. Two of its subunits, WD repeat domain 5 (WDR5) and host cell factor 1 (HCF1), are shared with members of the MLL/SET family of histone H3 lysine 4 (H3K4) methyltransferase complexes, and a third subunit, MCRS1, is shared with the human INO80 chromatin-remodeling complex. In addition, we show that assembly of the MOF HAT into MSL or NSL complexes controls its substrate specificity. Although MSL-associated MOF acetylates nucleosomal histone H4 almost exclusively on lysine 16, NSL-associated MOF exhibits a relaxed specificity and also acetylates nucleosomal histone H4 on lysines 5 and 8.
Related JoVE Video
Delayed correlation of mRNA and protein expression in rapamycin-treated cells and a role for Ggc1 in cellular sensitivity to rapamycin.
Mol. Cell Proteomics
PUBLISHED: 11-10-2009
Show Abstract
Hide Abstract
To identify new molecular targets of rapamycin, an anticancer and immunosuppressive drug, we analyzed temporal changes in yeast over 6 h in response to rapamycin at the transcriptome and proteome levels and integrated the expression patterns with functional profiling. We show that the integration of transcriptomics, proteomics, and functional data sets provides novel insights into the molecular mechanisms of rapamycin action. We first observed a temporal delay in the correlation of mRNA and protein expression where mRNA expression at 1 and 2 h correlated best with protein expression changes after 6 h of rapamycin treatment. This was especially the case for the inhibition of ribosome biogenesis and induction of heat shock and autophagy essential to promote the cellular sensitivity to rapamycin. However, increased levels of vacuolar protease could enhance resistance to rapamycin. Of the 85 proteins identified as statistically significantly changing in abundance, most of the proteins that decreased in abundance were correlated with a decrease in mRNA expression. However, of the 56 proteins increasing in abundance, 26 were not correlated with an increase in mRNA expression. These protein changes were correlated with unchanged or down-regulated mRNA expression. These proteins, involved in mitochondrial genome maintenance, endocytosis, or drug export, represent new candidates effecting rapamycin action whose expression might be post-transcriptionally or post-translationally regulated. We identified GGC1, a mitochondrial GTP/GDP carrier, as a new component of the rapamycin/target of rapamycin (TOR) signaling pathway. We determined that the protein product of GGC1 was stabilized in the presence of rapamycin, and the deletion of the GGC1 enhanced growth fitness in the presence of rapamycin. A dynamic mRNA expression analysis of Deltaggc1 and wild-type cells treated with rapamycin revealed a key role for Ggc1p in the regulation of ribosome biogenesis and cell cycle progression under TOR control.
Related JoVE Video
Proteomics reveals a physical and functional link between hepatocyte nuclear factor 4alpha and transcription factor IID.
J. Biol. Chem.
PUBLISHED: 10-05-2009
Show Abstract
Hide Abstract
Proteomic analyses have contributed substantially to our understanding of diverse cellular processes. Improvements in the sensitivity of mass spectrometry approaches are enabling more in-depth analyses of protein-protein networks and, in some cases, are providing surprising new insights into well established, longstanding problems. Here, we describe such a proteomic analysis that exploits MudPIT mass spectrometry and has led to the discovery of a physical and functional link between the orphan nuclear receptor hepatocyte nuclear factor 4alpha (HNF4alpha) and transcription factor IID (TFIID). A systematic characterization of the HNF4alpha-TFIID link revealed that the HNF4alpha DNA-binding domain binds directly to the TATA box-binding protein (TBP) and, through this interaction, can target TBP or TFIID to promoters containing HNF4alpha-binding sites in vitro. Supporting the functional significance of this interaction, an HNF4alpha mutation that blocks binding of TBP to HNF4alpha interferes with HNF4alpha transactivation activity in cells. These findings identify an unexpected role for the HNF4alpha DNA-binding domain in mediating key regulatory interactions and provide new insights into the roles of HNF4alpha and TFIID in RNA polymerase II transcription.
Related JoVE Video
INTS3 controls the hSSB1-mediated DNA damage response.
J. Cell Biol.
PUBLISHED: 09-28-2009
Show Abstract
Hide Abstract
Human SSB1 (single-stranded binding protein 1 [hSSB1]) was recently identified as a part of the ataxia telangiectasia mutated (ATM) signaling pathway. To investigate hSSB1 function, we performed tandem affinity purifications of hSSB1 mutants mimicking the unphosphorylated and ATM-phosphorylated states. Both hSSB1 mutants copurified a subset of Integrator complex subunits and the uncharacterized protein LOC58493/c9orf80 (henceforth minute INTS3/hSSB-associated element [MISE]). The INTS3-MISE-hSSB1 complex plays a key role in ATM activation and RAD51 recruitment to DNA damage foci during the response to genotoxic stresses. These effects on the DNA damage response are caused by the control of hSSB1 transcription via INTS3, demonstrating a new network controlling hSSB1 function.
Related JoVE Video
Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 08-06-2009
Show Abstract
Hide Abstract
Posttranslational modifications play a key role in recruiting chromatin remodeling and modifying enzymes to specific regions of chromosomes to modulate chromatin structure. Alc1 (amplified in liver cancer 1), a member of the SNF2 ATPase superfamily with a carboxy-terminal macrodomain, is encoded by an oncogene implicated in the pathogenesis of hepatocellular carcinoma. Here we show that Alc1 interacts transiently with chromatin-associated proteins, including histones and the poly(ADP-ribose) polymerase Parp1. Alc1 ATPase and chromatin remodeling activities are strongly activated by Parp1 and its substrate NAD and require an intact macrodomain capable of binding poly(ADP-ribose). Alc1 is rapidly recruited to nucleosomes in vitro and to chromatin in cells when Parp1 catalyzes PAR synthesis. We propose that poly(ADP-ribosyl)ation of chromatin-associated Parp1 serves as a mechanism for targeting a SNF2 family remodeler to chromatin.
Related JoVE Video
Effect of dynamic exclusion duration on spectral count based quantitative proteomics.
Anal. Chem.
PUBLISHED: 07-10-2009
Show Abstract
Hide Abstract
To increase proteome coverage, dynamic exclusion (DE) is a widely used tool. When DE is enabled, more proteins can be identified, although the total spectral counts will decrease. To investigate the effects of DE duration on spectral-counting based quantitative proteomics, we analyzed the same sample via multidimensional protein identification technology while enabling different DE durations (15, 60, 90, 300, 600 s) or turning DE off. Normalized spectral abundance factors (NSAFs) measured for abundant proteins varied little with or without DE, while enabling DE lead to higher peptide counts, higher NSAFs, and better reproducibility of detection for proteins of relatively lower abundance. The optimal DE duration, which generated the maximum number of peptides, proteins, and peptides per protein, was observed to be 90 s in our settings. We developed a mathematical model for analyzing the effects of DE duration on peptide spectral counts. We found that the optimal DE duration depends on the average chromatographic peak width at the base of eluting peptides and mass spectrometry parameters, leading us to calculate an optimized DE duration of 97.9 s, in excellent agreement with our observations. In this study, we provide a systematic approach for the optimization of spectral counts for improved quantitative proteomics analysis.
Related JoVE Video
Determining protein complex connectivity using a probabilistic deletion network derived from quantitative proteomics.
PLoS ONE
PUBLISHED: 05-20-2009
Show Abstract
Hide Abstract
Protein complexes are key molecular machines executing a variety of essential cellular processes. Despite the availability of genome-wide protein-protein interaction studies, determining the connectivity between proteins within a complex remains a major challenge. Here we demonstrate a method that is able to predict the relationship of proteins within a stable protein complex. We employed a combination of computational approaches and a systematic collection of quantitative proteomics data from wild-type and deletion strain purifications to build a quantitative deletion-interaction network map and subsequently convert the resulting data into an interdependency-interaction model of a complex. We applied this approach to a data set generated from components of the Saccharomyces cerevisiae Rpd3 histone deacetylase complexes, which consists of two distinct small and large complexes that are held together by a module consisting of Rpd3, Sin3 and Ume1. The resulting representation reveals new protein-protein interactions and new submodule relationships, providing novel information for mapping the functional organization of a complex.
Related JoVE Video
A label free quantitative proteomic analysis of the Saccharomyces cerevisiae nucleus.
J Proteomics
PUBLISHED: 05-01-2009
Show Abstract
Hide Abstract
To gain insight into the nuclear proteome of Saccharomyces cerevisiae, nuclei were isolated and fractionated via sucrose gradient sedimentation. The resulting fractions were analyzed using multidimensional protein identification technology and the detected proteins were quantified using normalized spectral counts. A large number of low abundance proteins, many of which are involved in transcriptional regulation, were recovered. Sucrose gradient elution profiles of known protein complex components demonstrated that this approach may provide insight into the question of what percentage of the total population of a protein is in one complex, versus another protein complex, or exists as a free protein.
Related JoVE Video
Regulation of H3K4 trimethylation via Cps40 (Spp1) of COMPASS is monoubiquitination independent: implication for a Phe/Tyr switch by the catalytic domain of Set1.
Mol. Cell. Biol.
PUBLISHED: 04-27-2009
Show Abstract
Hide Abstract
The multiprotein complex Set1/COMPASS is the founding member of the histone H3 lysine 4 (H3K4) methyltransferases, whose human homologs include the MLL and hSet1 complexes. COMPASS can mono-, di-, and trimethylate H3K4, but transitioning to di- and trimethylation requires prior H2B monoubiquitination followed by recruitment of the Cps35 (Swd2) subunit of COMPASS. Another subunit, Cps40 (Spp1), interacts directly with Set1 and is only required for transitioning to trimethylation. To investigate how the Set1 and COMPASS subunits establish the methylation states of H3K4, we generated a homology model of the catalytic domain of Saccharomyces cerevisiae yeast Set1 and identified several key residues within the Set1 catalytic pocket that are capable of regulating COMPASSs activity. We show that Tyr1052, a putative Phe/Tyr switch of Set1, plays an essential role in the regulation of H3K4 trimethylation by COMPASS and that the mutation to phenylalanine (Y1052F) suppresses the loss of Cps40 in H3K4 trimethylation levels, suggesting that Tyr1052 functions together with Cps40. However, the loss of H2B monoubiquitination is not suppressed by this mutation, while Cps40 is stably assembled in COMPASS on chromatin, demonstrating that Tyr1052- and Cps40-mediated H3K4 trimethylation takes place following and independently of H2B monoubiquitination. Our studies provide a molecular basis for the way in which H3K4 trimethylation is regulated by Tyr1052 and the Cps40 subunit of COMPASS.
Related JoVE Video
Evaluation of clustering algorithms for protein complex and protein interaction network assembly.
J. Proteome Res.
PUBLISHED: 03-26-2009
Show Abstract
Hide Abstract
Assembling protein complexes and protein interaction networks from affinity purification-based proteomics data sets remains a challenge. When little a priori knowledge of the complexes exists, it is difficult to place proteins in the proper locations and evaluate the results of clustering approaches. Here we have systematically compared multiple hierarchical and partitioning clustering approaches using a well-characterized but highly complex human protein interaction network data set centered around the conserved AAA+ ATPases Tip49a and Tip49b. This network provides a challenge to clustering algorithms because Tip49a and Tip49b are present in four distinct complexes, the network contains modules, and the network has multiple attachments. We compared the use of binary data, quantitative proteomics data in the form of normalized spectral abundance factors, and the Z-score normalization. In our analysis, a partitioning approach indicated the major modules in a network. Next, while Euclidian distance was sensitive to scaling, with data transformation, all the attachments in a data set were recovered in one branch of a dendrogram. Finally, when Pearson correlation and hierarchical clustering were used, complexes were well separated and their attachments were placed in the proper locations. Each of these three approaches provided distinct information useful for assembly of a network of multiple protein complexes.
Related JoVE Video
Generation and analysis of multidimensional protein identification technology datasets.
Methods Mol. Biol.
PUBLISHED: 02-26-2009
Show Abstract
Hide Abstract
Systems that couple two dimensional liquid chromatography (LC/LC) with tandem mass spectrometry are widely used in modern proteomics. One such system, multidimensional protein identification technology (MudPIT), couples strong cation exchange chromatography and reversed phase chromatography to tandem mass spectrometry in a single microcapillary column. Using database searching algorithms like SEQUEST and additional computational tools, researchers are able to analyze in great detail complex peptide mixtures generated from biofluids, tissues, cells, organelles, or protein complexes. This chapter describes the use of MudPIT on modern mass spectrometry instrumentation and describes a data analysis pipeline designed to provide low false positive rates and quantitative datasets.
Related JoVE Video
Yeast Sgf73/Ataxin-7 serves to anchor the deubiquitination module into both SAGA and Slik(SALSA) HAT complexes.
Epigenetics Chromatin
PUBLISHED: 02-18-2009
Show Abstract
Hide Abstract
Spinocerebellar ataxia (SCA) is a physically devastating, genetically inherited disorder characterized by abnormal brain function that results in the progressive loss of the ability to coordinate movements. There are many types of SCAs as there are various gene mutations that can cause this disease. SCA types 1-3, 6-10, 12, and 17 result from a trinucleotide repeat expansion in the DNA-coding sequence. Intriguingly, recent work has demonstrated that increased trinucleotde expansions in the SCA7 gene result in defect in the function of the SAGA histone acetyltransferase complex. The SCA7 gene encodes a subunit of the SAGA complex. This subunit is conserved in yeast as the SGF73 gene. We demonstrate that Sgf73 is required to recruit the histone deubiquitination module into both SAGA and the related SliK(SALSA) complex, and to maintain levels of histone ubiquitination, which is necessary for regulation of transcription at a number of genes.
Related JoVE Video
DNA-PKcs-PIDDosome: a nuclear caspase-2-activating complex with role in G2/M checkpoint maintenance.
Cell
PUBLISHED: 02-11-2009
Show Abstract
Hide Abstract
Caspase-2 is unique among all the mammalian caspases in that it is the only caspase that is present constitutively in the cell nucleus, in addition to other cellular compartments. However, the functional significance of this nuclear localization is unknown. Here we show that DNA damage induced by gamma-radiation triggers the phosphorylation of nuclear caspase-2 at the S122 site within its prodomain, leading to its cleavage and activation. This phosphorylation is carried out by the nuclear serine/threonine protein kinase DNA-PKcs and promoted by the p53-inducible death-domain-containing protein PIDD within a large nuclear protein complex consisting of DNA-PKcs, PIDD, and caspase-2, which we have named the DNA-PKcs-PIDDosome. This phosphorylation and the catalytic activity of caspase-2 are involved in the maintenance of a G2/M DNA damage checkpoint and DNA repair mediated by the nonhomologous end-joining (NHEJ) pathway. The DNA-PKcs-PIDDosome thus represents a protein complex that impacts mammalian G2/M DNA damage checkpoint and NHEJ.
Related JoVE Video
Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation.
Mol. Cell
PUBLISHED: 02-03-2009
Show Abstract
Hide Abstract
Messenger RNA processing is coupled to RNA polymerase II (RNAPII) transcription through coordinated recruitment of accessory proteins to the Rpb1 C-terminal domain (CTD). Dynamic changes in CTD phosphorylation during transcription elongation are responsible for their recruitment, with serine 5 phosphorylation (S5-P) occurring toward the 5 end of genes and serine 2 phosphorylation (S2-P) occurring toward the 3 end. The proteins responsible for regulation of the transition state between S5-P and S2-P CTD remain elusive. We show that a conserved protein of unknown function, Rtr1, localizes within coding regions, with maximum levels of enrichment occurring between the peaks of S5-P and S2-P RNAPII. Upon deletion of Rtr1, the S5-P form of RNAPII accumulates in both whole-cell extracts and throughout coding regions; additionally, RNAPII transcription is decreased, and termination defects are observed. Functional characterization of Rtr1 reveals its role as a CTD phosphatase essential for the S5-to-S2-P transition.
Related JoVE Video
Use of sequential chemical extractions to purify nuclear membrane proteins for proteomics identification.
Methods Mol. Biol.
PUBLISHED: 01-21-2009
Show Abstract
Hide Abstract
The nuclear envelope (NE) is a double membrane system that is both a part of the endoplasmic reticulum and part of the nucleus. As its constituent proteins tend to be highly complexed with nuclear and cytoplasmic components, it is notoriously difficult to purify. Two methods can reduce this difficulty for the identification of nuclear membrane proteins: comparison to contaminating membranes and chemical extractions to enrich for certain groups of proteins. The purification of nuclear envelopes and contaminating microsomal membranes is described here along with procedures for chemical extraction using salt and detergent, chaotropes, or alkaline solutions. Each extraction method enriches for different combinations of nuclear envelope proteins. Finally, we describe the analysis of these fractions with MudPIT, a proteomics methodology that avoids gel extraction of bands to facilitate identification of minor proteins and membrane proteins that do not resolve well on gels. Together these three approaches can significantly increase the output of proteomics studies aimed at identifying the protein complement of subcellular membrane systems.
Related JoVE Video
Identification of FAM111A as an SV40 host range restriction and adenovirus helper factor.
PLoS Pathog.
Show Abstract
Hide Abstract
The small genome of polyomaviruses encodes a limited number of proteins that are highly dependent on interactions with host cell proteins for efficient viral replication. The SV40 large T antigen (LT) contains several discrete functional domains including the LXCXE or RB-binding motif, the DNA binding and helicase domains that contribute to the viral life cycle. In addition, the LT C-terminal region contains the host range and adenovirus helper functions required for lytic infection in certain restrictive cell types. To understand how LT affects the host cell to facilitate viral replication, we expressed full-length or functional domains of LT in cells, identified interacting host proteins and carried out expression profiling. LT perturbed the expression of p53 target genes and subsets of cell-cycle dependent genes regulated by the DREAM and the B-Myb-MuvB complexes. Affinity purification of LT followed by mass spectrometry revealed a specific interaction between the LT C-terminal region and FAM111A, a previously uncharacterized protein. Depletion of FAM111A recapitulated the effects of heterologous expression of the LT C-terminal region, including increased viral gene expression and lytic infection of SV40 host range mutants and adenovirus replication in restrictive cells. FAM111A functions as a host range restriction factor that is specifically targeted by SV40 LT.
Related JoVE Video
The nuclear envelope proteome differs notably between tissues.
Nucleus
Show Abstract
Hide Abstract
One hypothesis to explain how mutations in the same nuclear envelope proteins yield pathologies focused in distinct tissues is that as yet unidentified tissue-specific partners mediate the disease pathologies. The nuclear envelope proteome was recently determined from leukocytes and muscle. Here the same methodology is applied to liver and a direct comparison of the liver, muscle and leukocyte data sets is presented. At least 74 novel transmembrane proteins identified in these studies have been directly confirmed at the nuclear envelope. Within this set, RT-PCR, western blot and staining of tissue cryosections confirms that the protein complement of the nuclear envelope is clearly distinct from one tissue to another. Bioinformatics reveals similar divergence between tissues across the larger data sets. For proteins acting in complexes according to interactome data, the whole complex often exhibited the same tissue-specificity. Other tissue-specific nuclear envelope proteins identified were known proteins with functions in signaling and gene regulation. The high tissue specificity in the nuclear envelope likely underlies the complex disease pathologies and argues that all organelle proteomes warrant re-examination in multiple tissues.
Related JoVE Video
Human family with sequence similarity 60 member A (FAM60A) protein: a new subunit of the Sin3 deacetylase complex.
Mol. Cell Proteomics
Show Abstract
Hide Abstract
Here we describe the function of a previously uncharacterized protein, named family with sequence similarity 60 member A (FAM60A) that maps to chromosome 12p11 in humans. We use quantitative proteomics to determine that the main biochemical partners of FAM60A are subunits of the Sin3 deacetylase complex and show that FAM60A resides in active HDAC complexes. In addition, we conduct gene expression pathway analysis and find that FAM60A regulates expression of genes that encode components of the TGF-beta signaling pathway. Moreover, our studies reveal that loss of FAM60A or another component of the Sin3 complex, SDS3, leads to a change in cell morphology and an increase in cell migration. These studies reveal the function of a previously uncharacterized protein and implicate the Sin3 complex in suppressing cell migration.
Related JoVE Video
Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange.
Nat. Struct. Mol. Biol.
Show Abstract
Hide Abstract
Set2-mediated methylation of histone H3 Lys36 (H3K36) is a mark associated with the coding sequences of actively transcribed genes, but it has a negative role during transcription elongation. It prevents trans-histone exchange over coding regions and signals for histone deacetylation in the wake of RNA polymerase II (RNAPII) passage. We have found that in Saccharomyces cerevisiae the Isw1b chromatin-remodeling complex is specifically recruited to open reading frames (ORFs) by H3K36 methylation through the PWWP domain of its Ioc4 subunit in vivo and in vitro. Isw1b acts in conjunction with Chd1 to regulate chromatin structure by preventing trans-histone exchange from taking place over coding regions. In this way, Isw1b and Chd1 are important in maintaining chromatin integrity during transcription elongation by RNAPII.
Related JoVE Video
Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair.
Cell
Show Abstract
Hide Abstract
F-box proteins are the substrate binding subunits of SCF (Skp1-Cul1-F-box protein) ubiquitin ligase complexes. Using affinity purifications and mass spectrometry, we identified RRM2 (the ribonucleotide reductase family member 2) as an interactor of the F-box protein cyclin F. Ribonucleotide reductase (RNR) catalyzes the conversion of ribonucleotides to deoxyribonucleotides (dNTPs), which are necessary for both replicative and repair DNA synthesis. We found that, during G2, following CDK-mediated phosphorylation of Thr33, RRM2 is degraded via SCF(cyclin F) to maintain balanced dNTP pools and genome stability. After DNA damage, cyclin F is downregulated in an ATR-dependent manner to allow accumulation of RRM2. Defective elimination of cyclin F delays DNA repair and sensitizes cells to DNA damage, a phenotype that is reverted by expressing a nondegradable RRM2 mutant. In summary, we have identified a biochemical pathway that controls the abundance of dNTPs and ensures efficient DNA repair in response to genotoxic stress.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.