JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Parathyroid hormone related-protein promotes epithelial-to-mesenchymal transition in prostate cancer.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Parathyroid hormone-related protein (PTHrP) possesses a variety of physiological and developmental functions and is also known to facilitate the progression of many common cancers, notably their skeletal invasion, primarily by increasing bone resorption. The purpose of this study was to determine whether PTHrP could promote epithelial-to-mesenchymal transition (EMT), a process implicated in cancer stem cells that is critically involved in cancer invasion and metastasis. EMT was observed in DU 145 prostate cancer cells stably overexpressing either the 1-141 or 1-173 isoform of PTHrP, where there was upregulation of Snail and vimentin and downregulation of E-cadherin relative to parental DU 145. By contrast, the opposite effect was observed in PC-3 prostate cancer cells where high levels of PTHrP were knocked-down via lentiviral siRNA transduction. Increased tumor progression was observed in PTHrP-overexpressing DU 145 cells while decreased progression was observed in PTHrP-knockdown PC-3 cells. PTHrP-overexpressing DU 145 formed larger tumors when implanted orthoptopically into nude mice and in one case resulted in spinal metastasis, an effect not observed among mice injected with parental DU 145 cells. PTHrP-overexpressing DU 145 cells also caused significant bone destruction when injected into the tibiae of nude mice, while parental DU 145 cells caused little to no destruction of bone. Together, these results suggest that PTHrP may work through EMT to promote an aggressive and metastatic phenotype in prostate cancer, a pathway of importance in cancer stem cells. Thus, continued efforts to elucidate the pathways involved in PTHrP-induced EMT as well as to develop ways to specifically target PTHrP signaling may lead to more effective therapies for prostate cancer.
Related JoVE Video
Deletion of the gene encoding calcitonin and calcitonin gene-related peptide ? does not affect the outcome of severe infection in mice.
Am. J. Respir. Cell Mol. Biol.
PUBLISHED: 03-26-2013
Show Abstract
Hide Abstract
Procalcitonin (PCT) is expressed in nonthryoidal tissues of humans during severe infections. Serum PCT levels are measured to diagnose and guide therapy, and there is some evidence that PCT may also contribute to the pathogenesis of sepsis. We tested whether disruption of the gene encoding PCT in mice affected the course of sepsis. Mice with exons 2-5 of the gene encoding calcitonin/calcitonin gene-related polypeptide ? (Calca) knocked out and congenic C57BL/6J control mice were challenged with aerosolized Streptococcus pneumoniae or Pseudomonas aeruginosa, or injected intraperitoneally with S. pneumoniae. There were no significant differences in the survival of knockout and control mice in the two pneumonia models, and no significant differences in weight loss, splenic bacterial counts, or blood leukocyte levels in the peritoneal sepsis model. To verify disruption of the Calca gene in knockout mice, the absence of calcitonin in the serum of knockout mice and its presence and inducibility in control mice were confirmed. To evaluate PCT expression in nonthyroidal tissues of control mice, transcripts were measured in multiple organs. PCT transcripts were not significantly expressed in liver or spleen of control mice challenged with aerosolized P. aeruginosa or intraperitoneal endotoxin, and were expressed in lung only at low levels, even though serum IL-6 rose 3,548-fold. We conclude that mice are not an ideal loss-of-function model to test the role of PCT in the pathogenesis of sepsis because of low nonendocrine PCT expression during infection and inflammation. Nonetheless, our studies demonstrate that nonendocrine PCT expression is not necessary for adverse outcomes from sepsis.
Related JoVE Video
Prognostic implications of parathyroid hormone-related protein in males and females with non--small-cell lung cancer.
Clin Lung Cancer
PUBLISHED: 04-24-2011
Show Abstract
Hide Abstract
Non-small-cell lung carcinoma immunoreactivity for parathyroid hormone-related protein has been associated with increased survival in female patients but not in male patients. The current investigation attempted to substantiate this finding in 2 new patient groups.
Related JoVE Video
Knockdown of the ?(1) integrin subunit reduces primary tumor growth and inhibits pancreatic cancer metastasis.
Int. J. Cancer
PUBLISHED: 04-13-2011
Show Abstract
Hide Abstract
To address the role of ?(1) integrins in pancreatic cancer progression, we stably knocked down ?(1) integrin subunit expression in human FG-RFP pancreatic cancer cells using lentiviral-based RNA interference. We then examined the effects of ?(1) integrin subunit knockdown on pancreatic cancer cell adhesion, migration and proliferation on tumor microenvironment-specific extracellular matrix proteins in vitro and on tumor progression in vivo using a clinically relevant fluorescent orthotopic mouse model of pancreatic cancer. Knockdown of the ?(1) integrin subunit inhibited cell adhesion, migration and proliferation on types I and IV collagen, fibronectin and laminin in vitro. In vivo, knockdown of the ?(1) integrin subunit reduced primary tumor growth by 50% and completely inhibited spontaneously occurring metastasis. These observations indicate a critical role for the ?(1) integrin subunit in pancreatic cancer progression and metastasis in particular. Our results suggest the ?(1) integrin subunit as a therapeutic target for the treatment of pancreatic cancer, especially in the adjuvant setting to prevent metastasis of this highly aggressive cancer.
Related JoVE Video
Concurrent primary hyperparathyroidism and humoral hypercalcemia of malignancy in a patient with multiple endocrine neoplasia type 1.
Pancreas
PUBLISHED: 04-13-2011
Show Abstract
Hide Abstract
We report a patient with multiple endocrine neoplasia type 1 presenting with elevation of parathyroid hormone-related protein (PTHrP) from a metastatic pancreatic neuroendocrine tumor (PNET), and parathyroid hormone (PTH) from primary hyperparathyroidism, resulting in severe hypercalcemia. Parathyroid hormone-related protein production by the PNET was confirmed by immunohistochemical analysis. Hypercalcemia and elevated PTHrP improved markedly with hepatic artery chemoembolization of liver metastasis. Thus, in multiple endocrine neoplasia type 1, correct identification of the cause of hypercalcemia as PTHrP production from a PNET or PTH production from a parathyroid tumor has important therapeutic implications.
Related JoVE Video
PTHrP stimulates prostate cancer cell growth and upregulates aldo-keto reductase 1C3.
Cancer Lett.
PUBLISHED: 01-28-2011
Show Abstract
Hide Abstract
The aim of the study was to demonstrate the role of parathyroid hormone related protein (PTHrP) in stimulating aldo-keto reductase (AKR) 1C3 expression in prostate cancer (CaP) cells. CaP cell proliferation and resistance to apoptosis was increased by PTHrP transfection. Conversely, reducing AKR1C3 expression by siRNA decreased cell proliferation. Since these effects could be mediated through AKR1C3-catalyzed reductions of the PPAR? ligand, 15-Deoxy?(12,14)-PGJ(2), we treated the cells with prostaglandins (PG). (PG) D(2) inhibited cell proliferation, but its metabolite, 9?,11?-PGF(2), did not effect CaP cell growth. The AKR1C family members serve as potential therapeutic targets for CaP therapy.
Related JoVE Video
Combinatorial library discovery of small molecule inhibitors of lung cancer proliferation and parathyroid hormone-related protein expression.
Cancer Biol. Ther.
PUBLISHED: 11-15-2010
Show Abstract
Hide Abstract
PTHrP (parathyroid hormone-related protein) is abnormally expressed in a substantial majority of lung cancers, especially non-small cell lung cancers, and plays a key role in tumor progression. Thus, this oncoprotein could be a target for treating patients with lung cancer. This study screened combinatorial libraries of heterocyclic amines for inhibitory effects on PTHrP expression and cell proliferation. Two libraries of over 780,000 bis-cyclic thiourea and guanidine compounds each were tested in BEN lung carcinoma cells. The number of PTHrP inhibitors and the magnitude of the reduction in PTHrP were greater for thioureas. Selected lead thiourea compounds decreased cell PTHrP protein content in dose-dependent fashion, reduced relative abundance of PTHrP mRNA, decreased transcripts derived from the PTHrP P3 promoter and reduced activity of a full length PTHrP promoter luciferase construct. Similar effects on PTHrP mRNA were observed in A549 and H441 lung adenocarcinoma cells and in H727 lung carcinoid cells. However, the compounds only inhibited PTHrP protein levels in BEN cells and H727 cells. The compounds reduced the rate of cell proliferation in BEN cells and H727 cells, but not in lines that showed no inhibition of PTHrP protein. These results suggest that cyclic thiourea compounds inhibit PTHrP expression mediated by the P3 promoter, which is widely used in the majority of PTHrP-expressing cells, and that they may inhibit growth of lung cancer cells through the same mechanism. Further work will be necessary to investigate their mechanism for effects on growth of PTHrP-positive tumors in vivo.
Related JoVE Video
Cell cycle actions of parathyroid hormone-related protein in non-small cell lung carcinoma.
Am. J. Physiol. Lung Cell Mol. Physiol.
PUBLISHED: 07-24-2009
Show Abstract
Hide Abstract
Parathyroid hormone-related protein (PTHrP), a paraneoplastic protein expressed by two-thirds of human non-small cell lung cancers, has been reported to slow progression of lung carcinomas in mouse models and to lengthen survival of patients with lung cancer. This study investigated the effects of ectopic expression of PTHrP on proliferation and cell cycle progression of two human lung adenocarcinoma cell lines that are normally PTHrP negative. Stable transfection with PTHrP decreased H1944 cell DNA synthesis, measured by thymidine incorporation, bromodeoxyuridine uptake, and MTT proliferation assay. A substantial fraction of PTHrP-positive cells was arrested in or slowly progressing through G1. Cyclin D2 and cyclin A2 protein levels were 60-70% lower in PTHrP-expressing cells compared with control cells (P < 0.05, N = 3 independent clones per group), while expression of p27(Kip1), a cyclin-dependent kinase inhibitor, was increased by 35 +/- 9% (mean +/- SE, P < 0.05) in the presence of PTHrP. Expression of other cyclins, including cyclins D1 and D3, and cyclin-dependent kinases was unaffected by PTHrP. PTHrP did not alter the phosphorylation state of Rb, but decreased cyclin-dependent kinase (CDK) 2-cyclin A2 complex formation. Ectopic expression of PTHrP stimulated ERK phosphorylation. In MV522 cells, PTHrP had similar effects on DNA synthesis, cyclin A2 expression, pRb levels, CDK2-cyclin A2 association, and ERK activation. In summary, PTHrP appears to slow progression of lung cancer cells into S phase, possibly by decreasing activation of CDK2. Slower cancer cell proliferation could contribute to slower tumor progression and increased survival of patients with PTHrP-positive lung cancer.
Related JoVE Video
Hypercalcemia in disseminated coccidioidomycosis: expression of parathyroid hormone-related peptide is characteristic of granulomatous inflammation.
Clin. Infect. Dis.
Show Abstract
Hide Abstract
Hypercalcemia is an uncommon complication of disseminated granulomatous infections. The pathogenesis of hypercalcemia associated with infection is not clear.
Related JoVE Video
PTH/PTHrP and vitamin D control antimicrobial peptide expression and susceptibility to bacterial skin infection.
Sci Transl Med
Show Abstract
Hide Abstract
The production of antimicrobial peptides is essential for protection against a wide variety of microbial pathogens and plays an important role in the pathogenesis of several diseases. The mechanisms responsible for expression of antimicrobial peptides are incompletely understood, but a role for vitamin D as a transcriptional inducer of the antimicrobial peptide cathelicidin has been proposed. We show that 1,25-dihydroxyvitamin D(3) (1,25-D3) acts together with parathyroid hormone (PTH), or the shared amino-terminal domain of PTH-related peptide (PTHrP), to synergistically increase cathelicidin and immune defense. Administration of PTH to mouse skin decreased susceptibility to skin infection by group A Streptococcus. Mice on dietary vitamin D(3) restriction that responded with an elevation in PTH have an increased risk of infection if they lack 1,25-D3. These results identify PTH/PTHrP as a variable that serves to compensate for inadequate vitamin D during activation of antimicrobial peptide production.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.