JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Amplicon identification using SparsE representation of multiplex PYROsequencing signal (AdvISER-M-PYRO): application to bacterial resistance genotyping.
Bioinformatics
PUBLISHED: 08-30-2014
Show Abstract
Hide Abstract
Pyrosequencing is a cost-effective DNA sequencing technology that has many applications, including rapid genotyping of a broad spectrum of bacteria. When molecular typing requires to genotype multiple DNA stretches, several pyrosequencing primers could be used simultaneously but this would create overlapping primer-specific signals, which are visually uninterpretable. Accordingly, the objective was to develop a new method for signal processing (AdvISER-M-PYRO) to automatically analyze and interpret multiplex pyrosequencing signals. In parallel, the nucleotide dispensation order was improved by developing the SENATOR ('SElecting the Nucleotide dispensATion Order') algorithm.
Related JoVE Video
Antimicrobial resistance in urinary isolates from inpatients and outpatients at a tertiary care hospital in South-Kivu Province (Democratic Republic of Congo).
BMC Res Notes
PUBLISHED: 06-13-2014
Show Abstract
Hide Abstract
The rate of antimicrobial resistant isolates among pathogens causing urinary tract infections (UTIs) in Democratic Republic of Congo (DRC) is not known. The aim of the current study was to determine this rate at the Bukavu Provincial General Hospital (province of South-Kivu, DRC).
Related JoVE Video
Simple technique for in field samples collection in the cases of skin rash illness and subsequent PCR detection of orthopoxviruses and varicella zoster virus.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
In case of outbreak of rash illness in remote areas, clinically discriminating monkeypox (MPX) from severe form of chickenpox and from smallpox remains a concern for first responders.
Related JoVE Video
Rapid and efficient filtration-based procedure for separation and safe analysis of CBRN mixed samples.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Separating CBRN mixed samples that contain both chemical and biological warfare agents (CB mixed sample) in liquid and solid matrices remains a very challenging issue. Parameters were set up to assess the performance of a simple filtration-based method first optimized on separate C- and B-agents, and then assessed on a model of CB mixed sample. In this model, MS2 bacteriophage, Autographa californica nuclear polyhedrosis baculovirus (AcNPV), Bacillus atrophaeus and Bacillus subtilis spores were used as biological agent simulants whereas ethyl methylphosphonic acid (EMPA) and pinacolyl methylphophonic acid (PMPA) were used as VX and soman (GD) nerve agent surrogates, respectively. Nanoseparation centrifugal devices with various pore size cut-off (30 kD up to 0.45 µm) and three RNA extraction methods (Invisorb, EZ1 and Nuclisens) were compared. RNA (MS2) and DNA (AcNPV) quantification was carried out by means of specific and sensitive quantitative real-time PCRs (qPCR). Liquid chromatography coupled to time-of-flight mass spectrometry (LC/TOFMS) methods was used for quantifying EMPA and PMPA. Culture methods and qPCR demonstrated that membranes with a 30 kD cut-off retain more than 99.99% of biological agents (MS2, AcNPV, Bacillus Atrophaeus and Bacillus subtilis spores) tested separately. A rapid and reliable separation of CB mixed sample models (MS2/PEG-400 and MS2/EMPA/PMPA) contained in simple liquid or complex matrices such as sand and soil was also successfully achieved on a 30 kD filter with more than 99.99% retention of MS2 on the filter membrane, and up to 99% of PEG-400, EMPA and PMPA recovery in the filtrate. The whole separation process turnaround-time (TAT) was less than 10 minutes. The filtration method appears to be rapid, versatile and extremely efficient. The separation method developed in this work constitutes therefore a useful model for further evaluating and comparing additional separation alternative procedures for a safe handling and preparation of CB mixed samples.
Related JoVE Video
AdvISER-PYRO: Amplicon Identification using SparsE Representation of PYROsequencing signal.
Bioinformatics
PUBLISHED: 06-14-2013
Show Abstract
Hide Abstract
Converting a pyrosequencing signal into a nucleotide sequence appears highly challenging when signal intensities are low (unitary peak heights ) or when complex signals are produced by several target amplicons. In these cases, the pyrosequencing software fails to provide correct nucleotide sequences. Accordingly, the objective was to develop the AdvISER-PYRO algorithm, performing an automated, fast and reliable analysis of pyrosequencing signals that circumvents those limitations.
Related JoVE Video
A novel splice-site mutation in angiotensin I-converting enzyme (ACE) gene, c.3691+1G>A (IVS25+1G>A), causes a dramatic increase in circulating ACE through deletion of the transmembrane anchor.
PLoS ONE
PUBLISHED: 01-07-2013
Show Abstract
Hide Abstract
Angiotensin-converting enzyme (ACE) (EC 4.15.1) metabolizes many biologically active peptides and plays a key role in blood pressure regulation and vascular remodeling. Elevated ACE levels are associated with different cardiovascular and respiratory diseases.
Related JoVE Video
Development of a pyrosequencing assay for rapid assessment of quinolone resistance in Acinetobacter baumannii isolates.
J. Microbiol. Methods
PUBLISHED: 04-01-2011
Show Abstract
Hide Abstract
Rapid and reliable assessment of Acinetobacter baumannii resistance to quinolones was successfully achieved through pyrosequencing of the gyrA and parC quinolone-resistance determining regions. A strong correlation was found between quinolone resistance and mutations in gyrA codon 83 and/or in the parC gene (codons 80 or 84). Absence of QRDR mutations was associated with susceptibility to quinolones.
Related JoVE Video
Development and validation of a real-time quantitative PCR assay for rapid identification of Bacillus anthracis in environmental samples.
Appl. Microbiol. Biotechnol.
PUBLISHED: 06-14-2010
Show Abstract
Hide Abstract
A real-time polymerase chain reaction (PCR) assay was developed for rapid identification of Bacillus anthracis in environmental samples. These samples often harbor Bacillus cereus bacteria closely related to B. anthracis, which may hinder its specific identification by resulting in false positive signals. The assay consists of two duplex real-time PCR: the first PCR allows amplification of a sequence specific of the B. cereus group (B. anthracis, B. cereus, Bacillus thuringiensis, Bacillus weihenstephanensis, Bacillus pseudomycoides, and Bacillus mycoides) within the phosphoenolpyruvate/sugar phosphotransferase system I gene and a B. anthracis specific single nucleotide polymorphism within the adenylosuccinate synthetase gene. The second real-time PCR assay targets the lethal factor gene from virulence plasmid pXO1 and the capsule synthesis gene from virulence plasmid pXO2. Specificity of the assay is enhanced by the use of minor groove binding probes and/or locked nucleic acids probes. The assay was validated on 304 bacterial strains including 37 B. anthracis, 67 B. cereus group, 54 strains of non-cereus group Bacillus, and 146 Gram-positive and Gram-negative bacteria strains. The assay was performed on various environmental samples spiked with B. anthracis or B. cereus spores. The assay allowed an accurate identification of B. anthracis in environmental samples. This study provides a rapid and reliable method for improving rapid identification of B. anthracis in field operational conditions.
Related JoVE Video
Automated cell disruption is a reliable and effective method of isolating RNA from fresh snap-frozen normal and malignant oral mucosa samples.
Clin. Chem. Lab. Med.
PUBLISHED: 08-14-2009
Show Abstract
Hide Abstract
This study compared automated vs. manual tissue grinding in terms of RNA yield obtained from oral mucosa biopsies.
Related JoVE Video
Development and validation of a triplex real-time PCR for rapid detection and specific identification of M. avium sub sp. paratuberculosis in faecal samples.
Vet. Microbiol.
PUBLISHED: 07-22-2009
Show Abstract
Hide Abstract
A triplex real-time (TRT-PCR) assay was developed to ensure a rapid and reliable detection of Mycobacterium avium subsp. paratuberculosis (Map) in faecal samples and to allow routine detection of Map in farmed livestock and wildlife species. The TRT-PCR assay was designed using IS900, ISMAP02 and f57 molecular targets. Specificity of TRT-PCR was first confirmed on a panel of control mycobacterial Map and non-Map strains and on faecal samples from Map-negative cows (n=35) and from Map-positive cows (n=20). The TRT-PCR assay was compared to direct examination after Ziehl-Neelsen (ZN) staining and to culture on 197 faecal samples collected serially from five calves experimentally exposed to Map over a 3-year period during the sub-clinical phase of the disease. The data showed a good agreement between culture and TRT-PCR (kappa score=0.63), with the TRT-PCR limit of detection of 2.5 x 10(2)microorganisms/g of faeces spiked with Map. ZN agreement with TRT-PCR was not good (kappa=0.02). Sequence analysis of IS900 amplicons from three single IS900 positive samples confirmed the true Map positivity of the samples. Highly specific IS900 amplification suggests therefore that each single IS900 positive sample from experimentally exposed animals was a true Map-positive specimen. In this controlled experimental setting, the TRT-PCT was rapid, specific and displayed a very high sensitivity for Map detection in faecal samples compared to conventional methods.
Related JoVE Video
Duplex quantitative real-time PCR assay for the detection and discrimination of the eggs of Toxocara canis and Toxocara cati (Nematoda, Ascaridoidea) in soil and fecal samples.
Parasit Vectors
Show Abstract
Hide Abstract
Toxocarosis is a zoonotic disease caused by Toxocara canis (T. canis) and/or Toxocara cati (T. cati), two worldwide distributed roundworms which are parasites of canids and felids, respectively. Infections of humans occur through ingestion of embryonated eggs of T. canis or T. cati, when playing with soils contaminated with dogs or cats feces. Accordingly, the assessment of potential contamination of these areas with these roundworms eggs is paramount.
Related JoVE Video
Rapid detection methods for Bacillus anthracis in environmental samples: a review.
Appl. Microbiol. Biotechnol.
Show Abstract
Hide Abstract
Bacillus anthracis is a Gram-positive, spore-forming bacterium, which causes anthrax, an often lethal disease of animals and humans. Although the disease has been well studied since the nineteenth century, it has witnessed a renewed interest during the past decade, due to its use as a bioterrorist agent in the fall of 2001 in the USA. A number of techniques aimed at rapidly detecting B. anthracis, in environmental samples as well as in point-of-care settings for humans suspected of exposure to the pathogen, are now available. These technologies range from culture-based methods to portable DNA amplification devices. Despite recent developments, specific identification of B. anthracis still remains difficult because of its phenotypic and genotypic similarities with other Bacillus species. Accordingly, many efforts are being made to improve the specificity of B. anthracis identification. This mini-review discusses the current challenges around B. anthracis identification, not only in reach-back laboratories but also in the field (in operational conditions).
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.