JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Effect of hydroxyapatite nanoparticles on osmotic responses of pig iliac endothelial cells.
Cryobiology
PUBLISHED: 08-08-2014
Show Abstract
Hide Abstract
In order to fully explore the potential applications of nanoparticles in biopreservation, it is necessary to study the effect of nanoparticles on cell membrane permeabilities. The aim of this study is therefore to comparatively evaluate the osmotic responses of pig iliac endothelial cells in the absence and presence of commercially available hydroxyapatite nanoparticles. The results indicate that, after the introduction of 0.0 1 wt% hydroxyapatite nanoparticles, the dependence of cell membrane hydraulic conductivity (Lp) on temperature still obeys the Arrhenius relationship, while the reference value of the hydraulic conductivity of the cell membrane at 273.15K (Lpg) and the activation energy for water transport across cell membrane (ELp) change from 0.77 × 10(-14)m/Pa/s and 15.65 kJ/mol to 0.65 × 10(-14)m/Pa/s and 26.14 kJ/mol. That is to say, the reference value of the hydraulic conductivity of the cell membrane has been slightly decreased while the activation energy for water transport across cell membrane has been greatly enhanced, and thus it implies that the hydraulic conductivity of cell membrane are more sensitive to temperature in the presence of nanoparticles. These findings are of potential significance to the optimization of nanoparticles-aided cryopreservation.
Related JoVE Video
Ultrasound-assisted magnetic solid-phase extraction based ionic liquid-coated Fe3O4@graphene for the determination of nitrobenzene compounds in environmental water samples.
Analyst
PUBLISHED: 02-28-2014
Show Abstract
Hide Abstract
An ultrasound-assisted magnetic solid-phase extraction procedure with the [C7MIM][PF6] ionic liquid-coated Fe3O4-grafted graphene nanocomposite as the magnetic adsorbent has been developed for the determination of five nitrobenzene compounds (NBs) in environmental water samples, in combination with high performance liquid chromatography-photodiode array detector (HPLC-PDA). Several significant factors that affect the extraction efficiency, such as the types of magnetic nanoparticle and ionic liquid, the volume of ionic liquid and the amount of magnetic nanoparticles, extraction time, ionic strength, and solution pH, were investigated. With the assistance of ultrasound, adsorbing nitrobenzene compounds by ionic liquid and self-aggregating ionic liquid onto the surface of the Fe3O4-grafted graphene proceeded synchronously, which made the extraction achieved the maximum within 20 min using only 144 ?L [C7MIM][PF6] and 3 mg Fe3O4-grafted graphene. Under the optimized conditions, satisfactory linearities were obtained for all NBs with correlation coefficients larger than 0.9990. The mean recoveries at two spiked levels ranged from 80.35 to 102.77%. Attributed to the convenient magnetic separation, the Fe3O4-grafted graphene could be recycled many times. The proposed method was demonstrated to be feasible, simple, solvent-saving and easy to operate for the trace analysis of NBs in environmental water samples.
Related JoVE Video
Identifying the proton transfer reaction mechanism via a proton-bound dimeric intermediate for esomeprazoles by a kinetic method combined with density functional theory calculations.
Rapid Commun. Mass Spectrom.
PUBLISHED: 01-13-2014
Show Abstract
Hide Abstract
Esomeprazole analogs are a class of important proton pump inhibitors for the treatment of gastro-esophageal reflux diseases. Understanding the fragmentation reaction mechanism of the protonated esomeprazole analogs will facilitate the characterization of their complex metabolic fate in humans. In this paper, the kinetic method and theoretical calculations were applied to evaluate the fragmentation of protonated esomeprazole analogs.
Related JoVE Video
Ultrasound-assisted magnetic SPE based on Fe3O4-grafted graphene for the determination of polychlorinated biphenyls in water samples.
J Sep Sci
PUBLISHED: 07-15-2013
Show Abstract
Hide Abstract
An ultrasound-assisted magnetic SPE procedure with an Fe3 O4 -grafted graphene nanocomposite as the magnetic adsorbent has been developed to determine seven polychlorinated biphenyls (PCBs; PCB28, PCB52, PCB101, PCB118, PCB138, PCB153, and PCB180) simultaneously in 200 mL environmental water samples, in combination with GC-MS/MS. Several factors related to magnetic SPE efficiencies, such as the superparamagnetic intensity and amount of adsorbent, extraction time, sample pH, and desorption conditions were investigated. With the assistance of ultrasound, the extraction achieved the maximum within only 20 s, attributed to the powerful adsorptive ability of the magnetic adsorbent toward the PCBs. Under the optimized conditions, an excellent linearity was observed in the range of 0.1-100 ng/L for PCB28, 0.2-100 ng/L for PCB52, and 0.5-100 ng/L for the other five PCBs with the correlation coefficients ranging from 0.9988 to 0.9996. The mean recoveries at spiked levels of 5.0 and 10.0 ng/L were 84.9-108.5%, the coefficients of variations were <6.5%. With convenient magnetic separation, the synthesized magnetic adsorbent could be recycled more than ten times. The proposed method was demonstrated to be feasible, simple, rapid, and easy to operate for the trace analysis of the PCBs in environmental water samples.
Related JoVE Video
Single electron redox via an ion-neutral complex in the fragmentation of protonated benzoylferrocenes.
Rapid Commun. Mass Spectrom.
PUBLISHED: 01-18-2013
Show Abstract
Hide Abstract
Ferrocene derivatives have become very popular molecules for biological applications. Although considerable experimental and theoretical calculation studies have demonstrated that ferrocene derivatives are easily oxidized during electrospray ionization (ESI), the details of the single electron redox reaction for protonated benzoylferrocenes in collision-induced dissociation (CID) mass spectrometry (MS) has not been obtained. Characterizing this mechanism is useful for further understanding the properties of ferrocene-containing biomaterials.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.