JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
In Vitro Study of CaTiO3-Hydroxyapatite Composites for Bone Tissue Engineering.
ASAIO J.
PUBLISHED: 09-20-2014
Show Abstract
Hide Abstract
A biocomposite composed of hydroxyapatite (HAp) and CaTiO3 was fabricated to study the phase stability, mechanical strength, and biocompatibility for bone tissue engineering. To investigate the optimal concentrations for the biocomposite, different HAp concentrations (0%, 50%, 70%, and 100%) were mixed with CaTiO3 and sintered in a microwave furnace. X-ray diffraction patterns of CaTiO3/HAp composites indicated the phase stability of CaTiO3/HAp. Mechanical properties were characterized by Vickers hardness, Young modulus, fracture toughness, brittleness, and compressive strength. MC3T3-E1 cells were used for in vitro studies to investigate the biocompatibility of CaTiO3/HAp composites, using 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay and immunofluorescence. The in vitro studies confirmed the highest cell viability on 70HAp at 1, 3, and 7 days. Collagen Type I, osteopontin, and osteocalcin expressions were evaluated by Western blotting and a strong signal of collagen Type I and osteopontin expression was shown by cells grown on 70HAp and 100HAp. Interestingly, osteocalcin signal was found only on 70HAp at day 7. The expression of alkaline phosphatase and osteopontin confirmed that the 70HAp expressed the strongest fluorescent signal as compared with pure materials. Thus considering the biological properties, 70HAp biocomposite was found ideal for bone tissue engineering.
Related JoVE Video
Platelet-rich plasma encapsulation in hyaluronic acid/gelatin-BCP hydrogel for growth factor delivery in BCP sponge scaffold for bone regeneration.
J Biomater Appl
PUBLISHED: 09-20-2014
Show Abstract
Hide Abstract
Microporous calcium phosphate based synthetic bone substitutes are used for bone defect healing. Different growth factor loading has been investigated for enhanced bone regeneration. The platelet is a cellular component of blood which naturally contains a pool of necessary growth factors that mediate initiation, continuation, and completion of cellular mechanism of healing. In this work, we have investigated the encapsulation and immobilization of platelet-rich plasma (PRP) with natural polymers like hyaluronic acid (HA) and gelatin (Gel) and loading them in a biphasic calcium phosphate (BCP) scaffold, for a synthetic-allologous hybrid scaffold. Effect of PRP addition in small doses was evaluated for osteogenic potential in vitro and in vivo. BCP (10%) mixed HA-Gel hydrogel with or without PRP, was loaded into a BCP sponge scaffold. We investigated the hydrogel-induced improvement in mechanical property and PRP-mediated enhancement in biocompatibility. In vitro studies for cytotoxicity, cell attachment, and proliferation were carried out using MC3T3-E1 pre-osteoblast cells. In in vitro studies, the cell count, cell proliferation, and cell survival were higher in the scaffold with PRP loading than without PRP. However, in the in vivo studies using a rat model, the PRP scaffold was not superior to the scaffold without PRP. This discrepancy was investigated in terms of the interaction of PRP in the in vivo environment.
Related JoVE Video
Electronic health records implementation: an evaluation of information system impact and contingency factors.
Int J Med Inform
PUBLISHED: 06-24-2014
Show Abstract
Hide Abstract
This paper provides a review of EHR (electronic health record) implementations around the world and reports on findings including benefits and issues associated with EHR implementation.
Related JoVE Video
In Vitro and In Vivo Studies of BMP-2-Loaded PCL-Gelatin-BCP Electrospun Scaffolds.
Tissue Eng Part A
PUBLISHED: 06-18-2014
Show Abstract
Hide Abstract
To confirm the effect of recombinant human bone morphogenetic protein-2 (BMP-2) for bone regeneration, BMP-2-loaded polycaprolactone (PCL)-gelatin (Gel)-biphasic calcium phosphate (BCP) fibrous scaffolds were fabricated using the electrospinning method. The electrospinning process to incorporate BCP nanoparticles into the PCL-Gel scaffolds yielded an extracellular matrix-like microstructure that was a hybrid system composed of nano- and micro-sized fibers. BMP-2 was homogeneously loaded on the PCL-Gel-BCP scaffolds for enhanced induction of bone growth. BMP-2 was initially released at high levels, and then showed sustained release behavior for 31 days. Compared with the PCL-Gel-BCP scaffold, the BMP-2-loaded PCL-Gel-BCP scaffold showed improved cell proliferation and cell adhesion behavior. Both scaffold types were implanted in rat skull defects for 4 and 8 weeks to evaluate the biological response under physiological conditions. Remarkable bone regeneration was observed in the BMP-2/PCL-Gel-BCP group. These results suggest that BMP-2-loaded PCL-Gel-BCP scaffolds should be considered for potential bone tissue engineering applications.
Related JoVE Video
A combination of biphasic calcium phosphate scaffold with hyaluronic acid-gelatin hydrogel as a new tool for bone regeneration.
Tissue Eng Part A
PUBLISHED: 03-21-2014
Show Abstract
Hide Abstract
A novel bone substitute was fabricated to enhance bone healing by combining ceramic and polymer materials. In this study, Hyaluronic acid (HyA)-Gelatin (Gel) hydrogel was loaded into a biphasic calcium phosphate (BCP) ceramic, and the resulting scaffold, with unique micro- and macroporous orientation, was evaluated for bone regeneration applications. The fabricated scaffold showed high interconnected porosity, with an average compressive strength of 2.8±0.15?MPa, which is usually recommended for cancellous bone substitution. In vitro cytocompatibility studies were conducted using bone marrow mesenchymal stem cells. The HyA-Gel-loaded BCP scaffold resulted in a significant increase in cell proliferation at 3 (p<0.05) and 7 days (p<0.001) and high alkaline phosphatase activities at 14 and 21 days. Furthermore, the in vivo studies showed that the implanted HyA-Gel-loaded BCP scaffold begins to degrade within 3 months after implantation. Histological sections also confirmed a rapid new bone formation and a high rate of collagen mineralization. A bone matrix formation was confirmed by positive immunohistochemistry staining of osteopontin, osteocalcin, and collagen type I. In vivo expression of extracellular matrix proteins demonstrated that this novel bone substitute holds great promise for use in stimulating new bone regeneration.
Related JoVE Video
Evaluation of the cytocompatibility hemocompatibility in vivo bone tissue regenerating capability of different PCL blends.
J Biomater Sci Polym Ed
PUBLISHED: 01-22-2014
Show Abstract
Hide Abstract
In this study, the optimized formulations of polycaprolactone (PCL) combined with poly(lactic-co-glycolic acid) (PLGA), gelatin (GEL), and biphasic calcium phosphate (BCP) were analyzed in terms of cytocompatibility with bone-related cells, hemocompatibility, and in vivo bone-regenerating capacity to determine their potentials for bone tissue regeneration. Fiber morphology of PCL/GEL and PCL/BCP electrospun mats considerably differs from that of the PCL membrane. Based on the contact angle analyses, the addition of GEL and PLGA was shown to reduce the hydrophobicity of these membranes. The assessment of in vitro cytocompatibility using MC3T3-E1 cells indicated that all of the membranes were suitable for pre-osteoblast proliferation and adhesion, with PCL/BCP having a significantly higher reading after seven days of incubation. The results of the in vitro hemocompatibility of the different fibrous scaffolds suggest that coagulation and platelet adhesion were higher for hydrophobic membranes (PCL and PCL/PLGA), while hemolysis can be associated with fiber morphology. The potential of the membranes for bone regeneration was determined by analyzing the microCT data and tissue sections of samples implanted in 5?mm sized defects (one and two months). Although all of the membranes were suitable for pre-osteoblast proliferation, in vivo bone regeneration after two months was found to be significantly higher in PCL/BCP (p?
Related JoVE Video
Identification of quinones as HER2 inhibitors for the treatment of trastuzumab resistant breast cancer.
Bioorg. Med. Chem. Lett.
PUBLISHED: 09-24-2013
Show Abstract
Hide Abstract
HER2 overexpression is associated with aggressive breast cancer with high recurrence rate and poor patient prognosis. Treatment of HER2 overexpressing patients with the HER2 targeting therapy trastuzumab results in acquired resistance within a year. The HER2/EGFR dual kinase inhibitor lapatinib was shown to inhibit some trastuzumab resistant breast cancer cell lines and is currently in clinical trials. Our group has found two new quinone compounds that show excellent inhibition of breast tumor cells expressing HER2 or the trastuzumab resistant HER2 oncogenic isoform, HER2?16. Compound 4 ((1R,2S,3S)-1,2,3,5,8-pentahydroxy-1,2,3,4-tetrahydroanthracene-9,10-dione) and compound 5 (5,8-dihydroxy-2,3-bis(hydroxymethyl)naphthalene-1,4-dione) showed sub-micromolar inhibition potency against these cell lines. These compounds also inhibit auto-phosphorylation of the Y1248 and Y1068 residues of HER2 and EGFR, respectively.
Related JoVE Video
Functional nanofiber mat of polyvinyl alcohol/gelatin containing nanoparticles of biphasic calcium phosphate for bone regeneration in rat calvaria defects.
J Biomed Mater Res A
PUBLISHED: 05-18-2013
Show Abstract
Hide Abstract
New biodegradable mats was successfully obtained by functional polyvinyl alcohol (PVA)/Gelatin (GE) blend fiber mats containing different BCP amounts (20, 40, and 50 w/v%) of biphasic calcium phosphate (BCP) nanoparticles for bone regeneration. BCP nanoparticles were loaded and dispersed successfully in the PVA/GE fibrous matrix. The addition of BCP was found to have increased fiber diameter, tensile strength, osteoblast cell adhesion, proliferation, and protein expression. Compared to the others, the 50% BCP-loaded electrospun PVA/GE fibers had the most favorable mechanical properties, cell attachment and growth, and protein expression. In vivo bone formation was examined using rat models, and increased bone formation was observed for the 50% BCP-loaded electrospun PVA/GE blends within 2 and 4 weeks. This result suggests that the 50% BCP-PVA/GE composite nanofiber mat has high potential for use in the field of bone regeneration and tissue engineering.
Related JoVE Video
Electrospinning of polyvinyl alcohol/gelatin nanofiber composites and cross-linking for bone tissue engineering application.
J Biomater Appl
PUBLISHED: 06-16-2011
Show Abstract
Hide Abstract
A three-dimensional polymer composite system consisting of polyvinyl alcohol/gelatin (PVA/GE) was fabricated via the electrospinning method and physically cross linked by methanol treatment. The effects of cross-linking between PVA/GE blend on physical, mechanical, and biological properties were investigated. After treating with methanol, PVA/GE mats become dense, hard, and aggregative with increased resistance to water dissolution. Osteoblasts like MG-63 cells were seeded on the surfaces of the cross linked PVA/GE mats and were found to attach firmly by expressing philopodial extensions. In addition, MTT assay and Western Blot analysis confirmed that the cells readily proliferated on the cross linked PVA/GE scaffolds. The osteoblast cell-matrix interaction demonstrated that the active biocompatibility of the mats was facilitated by using GE and cross-linking. In conclusion, our results suggest that cross-linked PVA/GE scaffolds hold promise for tissue engineering applications, especially in the field of artificial bone implant.
Related JoVE Video
Prevalence of HIV type 1 antiretroviral drug resistance mutations in Vietnam: a multicenter study.
AIDS Res. Hum. Retroviruses
PUBLISHED: 03-31-2011
Show Abstract
Hide Abstract
The prevalence of HIV-1 drug resistance mutations (DRMs) was determined for a cross-section of individuals (n=8654) in five centers across Vietnam (Hanoi, Hai Phong, Da Nang, Khanh Hoa, and Can Tho) between 2008 and 2009. Following serological screening for HIV infection, HIV-1 viral load was determined, using an in-house real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay. Samples with quantifiable viral loads [all either commercial sex workers (CSW) or intravenous drug users (IDU)] underwent DRM analysis. Sequences were obtained for 92 treatment-naive individuals, the majority of whom were infected with HIV-1 CRF01_AE (99%), with one instance of subtype A1 also detected. DRMs were detected in seven treatment-naive individuals (7.6%). The most common DRMs observed were M184V, V75A/M, M41L, and K65R (NRTI) and K103N, G190A, and Y181C (NNRTI). Overall, the data from this first multicenter survey of DRMs in Vietnam indicate that the problem of transmitted drug resistance is of major concern in the highest-risk groups of IDU and CSW.
Related JoVE Video
Fabrication of polyvinyl alcohol/gelatin nanofiber composites and evaluation of their material properties.
J. Biomed. Mater. Res. Part B Appl. Biomater.
PUBLISHED: 08-26-2010
Show Abstract
Hide Abstract
Electrospinning of polyvinyl alcohol (PVA), gelatin (GE), and a PVA/GE blend was conducted with the aim of fabricating biodegradable scaffolds for tissue engineering. The process parameters including the concentration of GE in PVA/GE blends, electrical field, and tip-to-collector distance (TCD) were investigated. Electrospinning processes were conducted at three different GE concentrations (PVA/GE = 2/8, 6/4, and 8/2), and the voltage and TCD were varied from 18 to 24 kV and 7 to 20 cm, respectively. The average diameter of the electrospun PVA, GE, and PVA/GE blend fibers ranged from 50 to 150 nm. The TCD had significant effects on the average diameter of the PVA/GE nanofiber, while changes in the voltage did not significantly affect the diameter of the PVA/GE nanofiber. The miscibility of the PVA/GE blend fibers was examined by differential scanning calorimetry, and X-ray diffraction was used to determine the crystallinity of the membrane. Tensile strength was measured to evaluate the physical properties of the membrane. Based on the combined results of this study, the PVA/GE membrane holds great promise for use in tissue engineering applications, especially in bone or drug delivery systems.
Related JoVE Video
Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering.
J Biomater Sci Polym Ed
Show Abstract
Hide Abstract
In order to augment bone formation, a new biodegradable scaffold system was fabricated using different ratios of hydroxyapatite (HAp) blended with synthetic polymer polycaprolactone (PCL) and natural polymer gelatin (GE) followed by electrospinning method. Three different concentrations of HAp were used in PCL/GE to obtain a blend of 10, 30, and 50% (w/v) HAp-PCL/GE. These HAp-loaded PCL/GE blends were then compared with PCL/GE blends by different mechanical and biological in vitro and in vivo studies to understand the applicability of the system. Scanning electron microscopy, X-ray diffraction analysis, and tensile strength measurement were done to obtain physical properties. Fifty Percent HAp-PCL/GE blends possessed the highest mechanical strength. In vitro cytotoxicity and proliferation of osteoblast cells on the PCL/GE and HAp-PCL/GE scaffolds were examined and shown that addition of HAp in PCL/GE was beneficial by increasing cell viability (>85%) proliferation and cell-surface attachment. Expression of collagen and osteopontin was also found higher in 50% HAp-PCL/GE blends than the others. On the other hand, in vivo bone formation was examined using rat models and increased bone formation was observed in 50% HAp-PCL/GE blends within 6 weeks. Based on the combined results of this study, HAp-PCL/GE membranes were found to hold great promise for use in tissue engineering applications, especially in bone tissue engineering.
Related JoVE Video
The Legionella IcmSW complex directly interacts with DotL to mediate translocation of adaptor-dependent substrates.
PLoS Pathog.
Show Abstract
Hide Abstract
Legionella pneumophila is a Gram-negative bacterium that replicates within human alveolar macrophages by evasion of the host endocytic pathway through the formation of a replicative vacuole. Generation of this vacuole is dependent upon the secretion of over 275 effector proteins into the host cell via the Dot/Icm type IVB secretion system (T4SS). The type IV coupling protein (T4CP) subcomplex, consisting of DotL, DotM, DotN, IcmS and IcmW, was recently defined. DotL is proposed to be the T4CP of the L. pneumophila T4SS based on its homology to known T4CPs, which function as inner-membrane receptors for substrates. As a result, DotL is hypothesized to play an integral role(s) in the L. pneumophila T4SS for the engagement and translocation of substrates. To elucidate this role, a genetic approach was taken to screen for dotL mutants that were unable to survive inside host cells. One mutant, dotLY725Stop, did not interact with the type IV adaptor proteins IcmS/IcmW (IcmSW) leading to the identification of an IcmSW-binding domain on DotL. Interestingly, the dotLY725Stop mutant was competent for export of one class of secreted effectors, the IcmSW-independent substrates, but exhibited a specific defect in secretion of IcmSW-dependent substrates. This differential secretion illustrates that DotL requires a direct interaction with the type IV adaptor proteins for the secretion of a major class of substrates. Thus, by identifying a new target for IcmSW, we have discovered that the type IV adaptors perform an additional role in the export of substrates by the L. pneumophila Dot/Icm T4SS.
Related JoVE Video
Hepatitis C virus in Vietnam: high prevalence of infection in dialysis and multi-transfused patients involving diverse and novel virus variants.
PLoS ONE
Show Abstract
Hide Abstract
Hepatitis C virus (HCV) is a genetically diverse pathogen infecting approximately 2-3% of the worlds population. Herein, we describe results of a large, multicentre serological and molecular epidemiological study cataloguing the prevalence and genetic diversity of HCV in five regions of Vietnam; Ha Noi, Hai Phong, Da Nang, Khanh Hoa and Can Tho. Individuals (n=8654) with varying risk factors for infection were analysed for the presence of HCV Ab/Ag and, in a subset of positive specimens, for HCV RNA levels (n=475) and genotype (n=282). In lower risk individuals, including voluntary blood donors, military recruits and pregnant women, the prevalence of infection was 0.5% (n=26/5250). Prevalence rates were significantly higher (p<0.001) in intravenous drug users (IDUs; 55.6%, n=556/1000), dialysis patients (26.6%, n=153/575) commercial sex workers (CSWs; 8.7%, n=87/1000), and recipients of multiple blood transfusions (6.0%, n=32/529). The prevalence of HCV in dialysis patients varied but remained high in all regions (11-43%) and was associated with the receipt of blood transfusions [OR: 2.08 (1.85-2.34), p=0.001], time from first transfusion [OR: 1.07 (1.01-1.13), p=0.023], duration of dialysis [OR: 1.31 (1.19-1.43), p<0.001] and male gender [OR: 1.60 (1.06-2.41), p=0.026]. Phylogenetic analysis revealed high genetic diversity, particularly amongst dialysis and multi-transfused patients, identifying subtypes 1a (33%), 1b (27%), 2a (0.4%), 3a (0.7%), 3b (1.1%), 6a (18.8%), 6e (6.0%), 6h (4.6%), 6l (6.4%) and 2 clusters of novel genotype 6 variants (2.1%). HCV genotype 1 predominated in Vietnam (60%, n=169/282) but the proportion of infections attributable to genotype 1 varied between regions and risk groups and, in the Southern part of Vietnam, genotype 6 viruses dominated in dialysis and multi-transfused patients (73.9%). This study confirms a high prevalence of HCV infection in Vietnamese IDUs and, notably, reveals high levels of HCV infection associated with dialysis and blood transfusion.
Related JoVE Video
A multicentre molecular analysis of hepatitis B and blood-borne virus coinfections in Viet Nam.
PLoS ONE
Show Abstract
Hide Abstract
Hepatitis B (HBV) infection is endemic in Viet Nam, with up to 8.4 million individuals estimated to be chronically infected. We describe results of a large, multicentre seroepidemiological and molecular study of the prevalence of HBV infection and blood-borne viral coinfections in Viet Nam. Individuals with varying risk factors for infection (n = 8654) were recruited from five centres; Ha Noi, Hai Phong, Da Nang, Khanh Hoa and Can Tho. A mean prevalence rate of 10.7% was observed and levels of HBsAg were significantly higher in injecting drug users (IDUs) (17.4%, n = 174/1000) and dialysis patients (14.3%, n = 82/575) than in lower-risk groups (9.4%; p<0.001). Coinfection with HIV was seen in 28% of HBV-infected IDUs (n = 49/174) and 15.2% of commercial sex workers (CSWs; n = 15/99). HCV infection was present in 89.8% of the HBV-HIV coinfected IDUs (n = 44/49) and 40% of HBV-HIV coinfected CSWs (n = 16/40). Anti-HDV was detected in 10.7% (n = 34/318) of HBsAg positive individuals. Phylogenetic analysis of HBV S gene (n = 187) showed a predominance of genotype B4 (82.6%); genotypes C1 (14.6%), B2 (2.7%) and C5 (0.5%) were also identified. The precore mutation G1896A was identified in 35% of all specimens, and was more frequently observed in genotype B (41%) than genotype C (3%; p<0.0001). In the immunodominant a region of the surface gene, point mutations were identified in 31% (n = 58/187) of sequences, and 2.2% (n = 4/187) and 5.3% (n = 10/187) specimens contained the major vaccine escape mutations G145A/R and P120L/Q/S/T, respectively. 368 HBsAg positive individuals were genotyped for the IL28B SNP rs12979860 and no significant association between the IL28B SNP and clearance of HBsAg, HBV viral load or HBeAg was observed. This study confirms the high prevalence of HBV infection in Viet Nam and also highlights the significant levels of blood-borne virus coinfections, which have important implications for hepatitis-related morbidity and development of effective management strategies.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.