JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Quantitative Detection of Potassium Ions and Adenosine Triphosphate via a Nanochannel-Based Electrochemical Platform Coupled with G-Quadruplex Aptamers.
Anal. Chem.
PUBLISHED: 10-21-2014
Show Abstract
Hide Abstract
The development of synthetic nanopores and nanochannels that mimick ion channels in living organisms for biosensing applications has been, and still remains, a great challenge. Although the biological applications of nanopores and nanochannels have achieved considerable development as a result of nanotechnology advancements, there are few reports of a facile way to realize those applications. Herein, a nanochannel-based electrochemical platform was developed for the quantitative detection of biorelated small molecules such as potassium ions (K(+)) and adenosine triphosphate (ATP) in a facile way. For this purpose, K(+) or ATP G-quadruplex aptamers were covalently assembled onto the inner wall of porous anodic alumina (PAA) nanochannels through a Schiff reaction between -CHO groups in the aptamer and amino groups on the inner wall of the PAA nanochannels under mild reaction conditions. Conformational switching of the aptamers confined in the nanochannels occurs in the presence of the target molecules, resulting in increased steric hindrance in the nanochannels. Changes in steric hindrance in the nanochannels were monitored by the anodic current of indicator molecules transported through the nanochannels. As a result, quantitative detection of K(+) and ATP was realized with a concentration ranging from 0.005 to 1.0 mM for K(+) and 0.05 to 10.0 mM for ATP. The proposed platform displayed significant selectivity, good reproducibility, and universality. Moreover, this platform showed its potential for use in the detection of other aptamer-based analytes, which could promote its development for use in biological detection and clinical diagnosis.
Related JoVE Video
Fabricating a reversible and regenerable electrochemical biosensor for quantitative detection of antibody by using "triplex-stem" DNA molecular switch.
Anal. Chim. Acta
PUBLISHED: 05-15-2014
Show Abstract
Hide Abstract
A reversible and regenerable electrochemical biosensor is fabricated for quantitative detection of antibody based on "triplex-stem" molecular switches. A hairpin-shaped oligonucleotide (hairpin DNA) labeled with ferrocene (Fc) at the 3'-end is fixed on the gold electrode serving as a signal transduction probe. Its hairpin structure leads Fc close to the surface of gold electrode and produces a strong current signal (on-state). A single-strand oligonucleotide modified with two digoxin molecules on the two arm segments (capture DNA) interact with hairpin DNA with the help of Ag(+) ions. The "triplex-stem" DNA forms, which separates Fc from the electrode and reduces the electrochemical signal (off-state). Binding of digoxin antibody to digoxin releases capture DNA from the hairpin DNA, creating an effective "off-on" current signal switch. The stability of the "triplex-stem" structure of hairpin/capture DNA is critical to the signal switch and the sensitivity of the method, which can be adjusted conveniently and efficiently by changing Ag(+) concentrations. Based on the "off-on" current signal switch, this biosensor is used to detect digoxin antibody sensitively in blood serum. The linear range is 1.0-500 pg with a correlation coefficient of 0.996, and the detection limit is 0.4 pg. Also, this biosensor shows excellent reversibility and reproducibility, which are significant requirements for practical biosensor applications.
Related JoVE Video
Detection of C677T mutation of MTHFR in subject with coronary heart disease by hairpin probe with enzymatic color on microarray.
Biosens Bioelectron
PUBLISHED: 04-04-2011
Show Abstract
Hide Abstract
Molecular beacon (MB) is especially suited for detection of single nucleotide polymorphism (SNP), and the type of MB immobilized on the surface of microarray in particular, may detect multi-sample and multi-locus. However, the majority of MB needs to be labeled with fluorescence and quenching molecules on the two ends of the probe, and observed the reaction of fluorescence or complicated electrochemical signal produced hybridization of MB and target sequence by complex and expensive instruments. The "molecular beacon" and microarray designed appropriately in our study can produce visible light response signal induced by amplification effect of enzymatic color, and are avoided with the marker of fluorescence and quenching molecules and expensive instruments. The "molecular beacon" without fluorescence and quenching molecules is entitled as "hairpin DNA probe" by us for only the "hairpin" structure of traditional molecular beacon is adopted. The merits of two techniques, molecular beacon and amplification effect of enzymatic color, are successfully combined, and the technique is simple, sensitive and specific, to detect and compare the methylenetetrahydrofolate reductase (MTHFR) Gene C677T mutation of subjects between coronary heart disease (CHD) and control group. The results showed that MTHFR Gene C677T polymorphism is an independent risk factor for CHD.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.