JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Synthesis of a new fluorine-18 glycosylated click cyanoquinoline for the imaging of epidermal growth factor receptor.
J Labelled Comp Radiopharm
PUBLISHED: 08-29-2013
Show Abstract
Hide Abstract
This study reports the radiosynthesis of a new fluorine-18 glycosylated click cyanoquinoline [(18) F]5 for positron emission tomography imaging of epidermal growth factor receptor (EGFR). The tracer was obtained in 47.7?±?7.5% (n?=?3) decay-corrected radiochemical yield from 2-[(18) F]fluoro-2-deoxy-?-d-glucopyranosyl azide, and the overall nondecay-corrected radiochemical yield from aqueous fluoride was 8.6?±?2.3% (n?=?3). An in vitro preliminary cellular uptake study showed selectivity of the tracer for EGFR-positive A431 cell lines versus EGFR-negative MCF-7 cell lines. [(18) F]5 tracer uptake in A431 cells was significantly reduced by addition of the cold isotope analogue compound 5.
Related JoVE Video
Copper-free click--a promising tool for pre-targeted PET imaging.
Chem. Commun. (Camb.)
PUBLISHED: 12-07-2011
Show Abstract
Hide Abstract
The copper-free click (CFC) reaction has been evaluated for its potential application to in vivo pre-targeting for PET imaging. A promising biodistribution profile is demonstrated when employing [(18)F]2-fluoroethylazide ([(18)F]1) and optimisation of the CFC reaction with a series of cyclooctynes shows that reactions proceed efficiently with tantalizing opportunities for application-specific tuning.
Related JoVE Video
Targeting somatostatin receptors: preclinical evaluation of novel 18F-fluoroethyltriazole-Tyr3-octreotate analogs for PET.
J. Nucl. Med.
PUBLISHED: 08-18-2011
Show Abstract
Hide Abstract
The incidence and prevalence of gastroenteropancreatic neuroendocrine tumors has been increasing over the past 3 decades. Because of high densities of somatostatin receptors (sstr)--mainly sstr-2--on the cell surface of these tumors, (111)In-diethylenetriaminepentaacetic acid-octreotide scintigraphy has become an important part of clinical management. (18)F-radiolabeled analogs with suitable pharmacokinetics would permit PET with more rapid clinical protocols.
Related JoVE Video
Synthesis and in vitro evaluation of [18F]fluoroethyl triazole labelled [Tyr3]octreotate analogues using click chemistry.
Bioorg. Med. Chem. Lett.
PUBLISHED: 01-07-2011
Show Abstract
Hide Abstract
A novel class of alkyne linked [Tyr(3)]octreotate analogues have been labelled by a copper catalysed azide-alkyne cycloaddition reaction (CuAAC) to form a 1,4-substituted triazole using the reagent [(18)F]2-fluoroethyl azide. An unexpected variability in reactivity during the CuAAC reaction was observed for each alkyne analogue which has been investigated. Two lead alkyne linked [Tyr(3)]octreotate analogues, G-TOCA (3a) and ?AG-TOCA (5a) have been identified to be highly reactive in the click reaction showing complete conversion to the [(18)F]2-fluoroethyl triazole linked [Tyr(3)]octreotate analogues FET-G-TOCA (3b) and FET-?AG-TOCA (5b) under mild conditions and with short synthesis times (5 min at 20 °C). As well as ease of synthesis, in vitro binding to the pancreatic tumour AR42J cells showed that both FET-G-TOCA and FET-?AG-TOCA have high affinity for the somatostatin receptor with IC(50) of 4.0±1.4, and 1.6±0.2 nM, respectively.
Related JoVE Video
Synthesis of a series of phenylacetic acid 1-?-O-acyl glucosides and comparison of their acyl migration and hydrolysis kinetics with the corresponding acyl glucuronides.
Org. Biomol. Chem.
PUBLISHED: 12-08-2010
Show Abstract
Hide Abstract
We report the synthesis of the 1-?-O-acyl glucoside conjugates of phenylacetic acid (PAA), R- and S-?-methyl-PAA and ?,?-dimethyl-PAA, and measurement of their transacylation and hydrolysis reactivity by NMR methods. These are analogues of acyl glucuronides, the transacylation kinetics of which could be important in adverse drug effects. One aim of this work was to investigate whether, as previously postulated, the free carboxylate group of the acyl glucuronides plays a part in the mechanism of the internal acyl migration. In addition, such acyl glucosides are known to be endogenous biochemicals in their own right and investigation of their acyl migration propensities is novel. Our previously described selective acylation procedure has proved highly successful for 1-?-O-acyl glucuronide synthesis and when subsequently applied to 6-O-trityl glucose, it gave good yields and excellent anomeric selectivity. Mild acidolysis of the O-trityl intermediates gave the desired acyl glucosides in excellent yield with essentially complete ?-selectivity. Measurement of the acyl glucoside transacylation kinetics by (1)H NMR spectroscopy, based simply on the disappearance of the 1-?-isomer in aqueous buffer at pH 7.4, showed marked differences depending on the degree of methyl substitution. Further kinetic modelling of the isomerisation and hydrolysis reactions of the acyl glucosides showed considerable differences in kinetics for the various isomeric reactions. Reactions involving the -CH(2)OH group, presumably via a 6-membered ring ortho-ester intermediate, are facile and the ?-glucoside anomers are significantly more reactive than their ?-counterparts. By comparison with degradation rates for the corresponding acyl glucuronides, it can be inferred that substitution of the carboxylate by -CH(2)OH in the acyl glucosides has a significant effect on acyl migration for those compounds, especially for rapidly transacylating molecules, and that thus the charged glucuronide carboxylate is a factor in the kinetics.
Related JoVE Video
High-performance liquid chromatography/mass spectrometric and proton nuclear magnetic resonance spectroscopic studies of the transacylation and hydrolysis of the acyl glucuronides of a series of phenylacetic acids in buffer and human plasma.
Rapid Commun. Mass Spectrom.
PUBLISHED: 09-28-2010
Show Abstract
Hide Abstract
The use of high-performance liquid chromatography/mass spectrometry (HPLC/MS) and proton nuclear magnetic resonance ((1)H NMR) spectroscopy for the kinetic analysis of acyl glucuronide (AG) isomerisation and hydrolysis of the 1-?-O-acyl glucuronides (1-?-O-AG) of phenylacetic acid, (R)- and (S)-?-methylphenylacetic acid and ?,?-dimethylphenylacetic acid is described and compared. Each AG was incubated in both aqueous buffer, at pH 7.4, and control human plasma at 37°C. Aliquots of these incubations, taken throughout the reaction time-course, were analysed by HPLC/MS and (1)H NMR spectroscopy. In buffer, transacylation reactions predominated, with relatively little hydrolysis to the free aglycone observed. In human plasma incubations the calculated rates of reaction were much faster than for buffer and, in contrast to the observations in buffer, hydrolysis to the free aglycone was a significant contributor to the overall reaction.A diagnostic analytical methodology based on differential mass spectrometric fragmentation of 1-?-O-AGs compared to the 2-, 3- and 4-positional isomers, which enables selective determination of the former, was confirmed and applied. These findings show that HPLC/MS offers a viable alternative to the more commonly used NMR spectroscopic approach for the determination of the transacylation and hydrolysis reactions of these AGs, with the major advantage of having the capability to do so in a complex biological matrix such as plasma.
Related JoVE Video
Synthesis, transacylation kinetics and computational chemistry of a set of arylacetic acid 1beta-O-acyl glucuronides.
Org. Biomol. Chem.
PUBLISHED: 04-27-2009
Show Abstract
Hide Abstract
Many widely-used non-steroidal anti-inflammatory agents (NSAIDs), e.g. ibuprofen, are extensively metabolised as their acyl glucuronides (AGs), and the reactivity of these AGs raises important questions regarding drug safety and toxicity. In order to understand better the structure-reactivity of these metabolites, we have performed a detailed study of the synthesis, structural analysis and computed transacylation reactivity of a set of acyl glucuronides (AGs) of phenylacetic acids with varying alpha-substitution. A selective acylation procedure was used to prepare all the desired 1-(phenyl)acetyl-beta-D-glucopyranuronic acids 9, 12, 13 and 15 as single 1beta-anomers in good yields. Their reactivity was measured using 1H NMR spectroscopy in pH 7.4 buffer: the dominance of transacylation over hydrolysis in this system was confirmed together with the measurement of half-lives of the 1beta-isomers of the AGs. The half-lives ranged from 20 min for compound 9 to 23 h for 15. The lack of any significant concentration dependence of the reactivity suggests that the main mechanism is intramolecular. A novel computational chemistry and modelling study was performed on both the ground states of the AGs and the transition states for acyl migration to search for correlations with the kinetic data and to probe the mechanistic detail of the acyl transfer. An excellent degree of correlation was found between the calculated activation energies and the rates of transacylation. Especially, transition state analysis provided for the first time a firm mechanistic explanation for the slower kinetics of the (S)-isomer AG 13 compared to the (R)-isomer 12, thus throwing important light on the pharmacokinetic behaviour of marketed NSAIDs.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.