JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Expansion of Dysfunctional Tim-3-Expressing Effector Memory CD8+ T Cells during Simian Immunodeficiency Virus Infection in Rhesus Macaques.
J. Immunol.
PUBLISHED: 10-27-2014
Show Abstract
Hide Abstract
The T cell Ig- and mucin domain-containing molecule-3 (Tim-3) negative immune checkpoint receptor demarcates functionally exhausted CD8(+) T cells arising from chronic stimulation in viral infections like HIV. Tim-3 blockade leads to improved antiviral CD8(+) T cell responses in vitro and, therefore, represents a novel intervention strategy to restore T cell function in vivo and protect from disease progression. However, the Tim-3 pathway in the physiologically relevant rhesus macaque SIV model of AIDS remains uncharacterized. We report that Tim-3(+)CD8(+) T cell frequencies are significantly increased in lymph nodes, but not in peripheral blood, in SIV-infected animals. Tim-3(+)PD-1(+)CD8(+) T cells are similarly increased during SIV infection and positively correlate with SIV plasma viremia. Tim-3 expression was found primarily on effector memory CD8(+) T cells in all tissues examined. Tim-3(+)CD8(+) T cells have lower Ki-67 content and minimal cytokine responses to SIV compared with Tim-3(-)CD8(+) T cells. During acute-phase SIV replication, Tim-3 expression peaked on SIV-specific CD8(+) T cells by 2 wk postinfection and then rapidly diminished, irrespective of mutational escape of cognate Ag, suggesting non-TCR-driven mechanisms for Tim-3 expression. Thus, rhesus Tim-3 in SIV infection partially mimics human Tim-3 in HIV infection and may serve as a novel model for targeted studies focused on rejuvenating HIV-specific CD8(+) T cell responses.
Related JoVE Video
Albuminuria Is Associated with Elevated Acute Phase Reactants and Proinflammatory Markers in HIV-Infected Patients Receiving Suppressive Combination Antiretroviral Therapy.
AIDS Res. Hum. Retroviruses
PUBLISHED: 09-11-2014
Show Abstract
Hide Abstract
Abstract Albuminuria among HIV-infected individuals has been found to be associated with cardiovascular disease (CVD) and mortality. Inflammation has been associated with albuminuria. The pathophysiology of albuminuria in HIV-infected individuals is poorly understood. We investigated the association of albuminuria with inflammatory biomarkers among HIV-infected individuals on combination antiretroviral therapy (cART). This is a cross-sectional analysis of participants enrolled in the Hawaii Aging with HIV-Cardiovascular Cohort. Plasma inflammatory biomarkers were assessed using the Milliplex Human Cardiovascular disease multiplex assays. A random urine sample was collected for albumin measurement. Albuminuria was defined as urine albumin-to-creatinine ratio of ?30?mg/g. Framingham risk score was calculated and divided into three classes. Simple and multivariable logistic regression analyses were utilized to assess the correlation between plasma inflammatory biomarkers and albuminuria and were adjusted for Framingham risk category. Among 111 HIV-infected patients [median (IQR) age of 52 (46-57) years, 86% male, median (IQR) CD4 count of 489 (341-638) cells/mm(3), 85% with HIV RNA <50 copies/ml], 18 subjects (16.2%) had moderately increased albuminuria (albuminuria range between 30 and 300?mg/g) and 2 subjects (1.8%) had severely increased albuminuria (albuminuria more than 300?mg/g). In multivariable logistic models, sE-selectin, sVCAM-1, CRP, SAA, and SAP remained significantly associated with albuminuria after adjustment of CVD risk factors. This study showed an association between inflammation and albuminuria independent of previously reported risk factors for albuminuria in HIV-infected subjects who were on combination antiretroviral therapy (cART). Chronic inflammation despite potent antiretroviral treatment may contribute to higher rates of albuminuria among HIV-infected patients.
Related JoVE Video
Galectin-9 is rapidly released during acute HIV-1 infection and remains sustained at high levels despite viral suppression even in elite controllers.
AIDS Res. Hum. Retroviruses
PUBLISHED: 05-28-2014
Show Abstract
Hide Abstract
Galectin-9 (Gal-9) is a ?-galactosidase-binding lectin that promotes apoptosis, tissue inflammation, and T cell immune exhaustion, and alters HIV infection in part through engagement with the T cell immunoglobulin mucin domain-3 (Tim-3) receptor and protein disulfide isomerases (PDI). Gal-9 was initially thought to be an eosinophil attractant, but is now known to mediate multiple complex signaling events that affect T cells in both an immunosuppressive and inflammatory manner. To understand the kinetics of circulating Gal-9 levels during HIV infection we measured Gal-9 in plasma during HIV acquisition, in subjects with chronic HIV infection with differing virus control, and in uninfected individuals. During acute HIV infection, circulating Gal-9 was detected as early as 5 days after quantifiable HIV RNA and tracked plasma levels of interleukin (IL)-10, tumor necrosis factor (TNF)-?, and IL-1?. In chronic HIV infection, Gal-9 levels positively correlated with plasma HIV RNA levels (r=0.29; p=0.023), and remained significantly elevated during suppressive antiretroviral therapy (median: 225.3?pg/ml) and in elite controllers (263.3?pg/ml) compared to age-matched HIV-uninfected controls (54?pg/ml). Our findings identify Gal-9 as a novel component of the first wave of the cytokine storm in acute HIV infection that is sustained at elevated levels in virally suppressed subjects and suggest that Gal-9:Tim-3 crosstalk remains active in elite controllers and antiretroviral (ARV)-suppressed subjects, potentially contributing to ongoing inflammation and persistent T cell dysfunction.
Related JoVE Video
Treatment intensification with maraviroc (CCR5 antagonist) leads to declines in CD16-expressing monocytes in cART-suppressed chronic HIV-infected subjects and is associated with improvements in neurocognitive test performance: implications for HIV-associated neurocognit
J. Neurovirol.
PUBLISHED: 05-03-2014
Show Abstract
Hide Abstract
HIV-associated neurocognitive disorders (HAND) continues to be prevalent (30-50 %) despite plasma HIV-RNA suppression with combination antiretroviral therapy (cART). There is no proven therapy for individuals on suppressive cART with HAND. We have shown that the degree of HIV reservoir burden (HIV DNA) in monocytes appear to be linked to cognitive outcomes. HIV infection of monocytes may therefore be critical in the pathogenesis of HAND. A single arm, open-labeled trial was conducted to examine the effect of maraviroc (MVC) intensification on monocyte inflammation and neuropsychological (NP) performance in 15 HIV subjects on stable 6-month cART with undetectable plasma HIV RNA (<48 copies/ml) and detectable monocyte HIV DNA (>10 copies/10(6) cells). MVC was added to their existing cART regimen for 24 weeks. Post-intensification change in monocytes was assessed using multiparametric flow cytometry, monocyte HIV DNA content by PCR, soluble CD163 (sCD163) by an ELISA, and NP performance over 24 weeks. In 12 evaluable subjects, MVC intensification resulted in a decreased proportion of circulating intermediate (median; 3.06 % (1.93, 6.45) to 1.05 % (0.77, 2.26)) and nonclassical (5.2 % (3.8, 7.9) to 3.2 % (1.8, 4.8)) CD16-expressing monocytes, a reduction in monocyte HIV DNA content to zero log10 copies/10(6) cells and in levels of sCD163 of 43 % by 24 weeks. This was associated with significant improvement in NP performance among six subjects who entered the study with evidence of mild to moderate cognitive impairment. The results of this study suggest that antiretroviral therapy with potency against monocytes may have efficacy against HAND.
Related JoVE Video
Elevated levels of full-length and thrombin-cleaved osteopontin during acute dengue virus infection are associated with coagulation abnormalities.
Thromb. Res.
PUBLISHED: 02-21-2014
Show Abstract
Hide Abstract
Dengue virus (DENV) is transmitted by the mosquito vector, and causes a wide range of symptoms that lead to dengue fever (DF) or life-threatening dengue hemorrhagic fever (DHF). The host and viral correlates that contribute to DF and DHF are complex and poorly understood, but appear to be linked to inflammation and impaired coagulation. Full-length osteopontin (FL-OPN), a glycoprotein, and its activated thrombin-cleaved product, trOPN, integrate multiple immunological signals through the induction of pro-inflammatory cytokines.
Related JoVE Video
Concomitant evaluation of PMA+ionomycin-induced kinase phosphorylation and cytokine production in T cell subsets by flow cytometry.
Cytometry A
PUBLISHED: 01-24-2014
Show Abstract
Hide Abstract
Methods to detect intracellular kinase signaling intermediates by flow cytometry have been recently developed. Termed "phospho-flow," these methods employ fluorescence-conjugated monoclonal antibodies that recognize phosphorylated epitopes of intracellular kinases, and may be combined with surface phenotypic markers to observe changes in kinase pathways by cellular subset. Effector functions, like cytokine production, are processes intrinsically linked to intracellular signaling and kinase activity within each cell. Methodologies that would simultaneously detect changes to signaling pathways as well as effector responses at the single-cell level would allow for mapping of the functional consequences induced by signaling pathway modifications. However, there are challenges to developing such a combined protocol, relating to the different kinetics of rapid signaling events and the more prolonged time required to induce and observe cytokine responses. In this report, we describe the development of an assay that accommodates differences in protocol conditions and response kinetics, merging phospho-flow cytometry, and intracellular cytokine staining methods into a single experimental protocol. We examined intracellular ERK1/2 phosphorylation and IFN-? production by CD4+ and CD8+ T cells upon polyclonal stimulation with PMA and ionomycin, while monitoring expression of the cytolytic molecule perforin and the T cell activation marker CD38. We present a method that allows observation of kinase phosphorylation and cytokine production within the same cell after stimuli, while maintaining a stable cellular phenotype. Monitoring of signaling and effector functions in distinct immune subsets provides a platform to investigate and relate intracellular kinase signaling activity to immune cell effector function and phenotype in disease states.
Related JoVE Video
Reduced CD14 expression on classical monocytes and vascular endothelial adhesion markers independently associate with carotid artery intima media thickness in chronically HIV-1 infected adults on virologically suppressive anti-retroviral therapy.
Atherosclerosis
PUBLISHED: 01-10-2014
Show Abstract
Hide Abstract
HIV infection causes systemic immune inflammation, and increases the risk for cardiovascular (CVD) disease even among those on virologically suppressive anti-retroviral treatment (ART). We performed a biostatistical analysis and screen of candidate cellular and plasma biomarkers for association with carotid artery intima-media thickness (CIMT), independent of traditional CVD risk factors such as age, gender, systolic blood pressure (SBP), lipid levels, smoking and diabetes. We conducted a multi-stage analysis based on a cross-sectional study of CVD risk in HIV-infected subjects age >45 years on ART for >6 months. The goal of this analysis was to identify candidate cellular and plasma biomarkers of CIMT in HIV-1 infected adults. We further sought to determine if these candidate biomarkers were independent of traditional CVD risk factors previously identified in HIV negative adults. High-resolution B-mode ultrasound images of the right common carotid common artery (CCA) were obtained. Plasma soluble inflammatory mediators, cytokines and chemokines were detected. Monocytes were defined by CD14/CD16 expression, and CD8+ T-cell activation by CD38/HLA-DR expression. Subjects were a median of 49.5 years old, 87% male, had a CIMT of 0.73 mm, FRS of 6%, a median viral load of 48 copies/mL, and CD4+ T cell count of 479 cells/?L. Soluble VCAM-1, and expansion of CD14dimCD16- monocytes each associated with higher CIMT independently of age and SBP. These factors are distinct components of a shared atherogenic process; 1) vascular endothelial molecular expression and 2) vascular monocytes that enter into the vascular endothelium and promote atherosclerotic plaque.
Related JoVE Video
Increased frequency of Tim-3 expressing T cells is associated with symptomatic West Nile virus infection.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
More than a decade after West Nile virus (WNV) entered North America, and despite a significant increase in reported cases during the 2012 and 2013 seasons, no treatment or vaccine for humans is available. Although antiviral T cells contribute to the control of WNV, little is known about their regulation during acute infection. We analyzed the expression of Tim-3 and PD-1, two recently identified T cell negative immune checkpoint receptors, over the course of WNV infection. Symptomatic WNV+ donors exhibited higher frequencies of Tim-3+ cells than asymptomatic subjects within naïve/early differentiated CD28+/-CD57-CD4+ and differentiated CD28-CD57-CD8+ T cells. Our study links Tim-3-expression on T cells during acute WNV infection with the development of symptomatic disease, suggesting Tim-3 and its ligands could be targeted therapeutically to alter anti-WNV immunity and improve disease outcome.
Related JoVE Video
Monocytes expand with immune dysregulation and is associated with insulin resistance in older individuals with chronic HIV.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Rates of insulin resistance are increased in HIV-infected patients on stable antiretroviral therapy (ART). Such increase may partially be due to HIV-induced immune dysregulation involving monocytes (MO) and its subsets.
Related JoVE Video
T Cell Ig and Mucin Domain-Containing Protein 3 Is Recruited to the Immune Synapse, Disrupts Stable Synapse Formation, and Associates with Receptor Phosphatases.
J. Immunol.
PUBLISHED: 12-13-2013
Show Abstract
Hide Abstract
CD8(+) CTLs are adept at killing virally infected cells and cancer cells and releasing cytokines (e.g., IFN-?) to aid this response. However, during cancer and chronic viral infections, such as with HIV, this CTL response is progressively impaired due to a process called T cell exhaustion. Previous work has shown that the glycoprotein T cell Ig and mucin domain-containing protein 3 (Tim-3) plays a functional role in establishing T cell exhaustion. Tim-3 is highly upregulated on virus and tumor Ag-specific CD8(+) T cells, and antagonizing Tim-3 helps restore function of CD8(+) T cells. However, very little is known of how Tim-3 signals in CTLs. In this study, we assessed the role of Tim-3 at the immunological synapse as well as its interaction with proximal TCR signaling molecules in primary human CD8(+) T cells. Tim-3 was found within CD8(+) T cell lipid rafts at the immunological synapse. Blocking Tim-3 resulted in a significantly greater number of stable synapses being formed between Tim-3(hi)CD8(+) T cells and target cells, suggesting that Tim-3 plays a functional role in synapse formation. Further, we confirmed that Tim-3 interacts with Lck, but not the phospho-active form of Lck. Finally, Tim-3 colocalizes with receptor phosphatases CD45 and CD148, an interaction that is enhanced in the presence of the Tim-3 ligand, galectin-9. Thus, Tim-3 interacts with multiple signaling molecules at the immunological synapse, and characterizing these interactions could aid in the development of therapeutics to restore Tim-3-mediated immune dysfunction.
Related JoVE Video
LINE-1 Retrotransposable Element DNA Accumulates in HIV-1-Infected Cells.
J. Virol.
PUBLISHED: 10-02-2013
Show Abstract
Hide Abstract
Type 1 long-interspersed nuclear elements (L1s) are autonomous retrotransposable elements that retain the potential for activity in the human genome but are suppressed by host factors. Retrotransposition of L1s into chromosomal DNA can lead to genomic instability, whereas reverse transcription of L1 in the cytosol has the potential to activate innate immune sensors. We hypothesized that HIV-1 infection would compromise cellular control of L1 elements, resulting in the induction of retrotransposition events. Here, we show that HIV-1 infection enhances L1 retrotransposition in Jurkat cells in a Vif- and Vpr-dependent manner. In primary CD4(+) cells, HIV-1 infection results in the accumulation of L1 DNA, at least the majority of which is extrachromosomal. These data expose an unrecognized interaction between HIV-1 and endogenous retrotransposable elements, which may have implications for the innate immune response to HIV-1 infection, as well as for HIV-1-induced genomic instability and cytopathicity.
Related JoVE Video
Plasma Monocyte Chemoattractant Protein-1 and Tumor Necrosis Factor-? Levels Predict the Presence of Coronary Artery Calcium in HIV-Infected Individuals Independent of Traditional Cardiovascular Risk Factors.
AIDS Res. Hum. Retroviruses
PUBLISHED: 09-21-2013
Show Abstract
Hide Abstract
Abstract Coronary artery calcium (CAC) is a validated subclinical measure of atherosclerosis. Studies in the general population have linked blood inflammatory biomarkers including monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor (TNF)-? with the burden of CAC, but this relationship is often lost following correction for traditional cardiovascular risk factors. We assessed the relationship of various biomarkers to CAC, specifically in HIV-infected individuals on potent antiretroviral therapy (ART). Analyses utilized entry data from participants in the Hawaii Aging with HIV-Cardiovascular (HAHC-CVD) study. Computerized tomography examinations for CAC were obtained locally and analyzed by a central reading center in blinded fashion. Plasma biomarkers were assessed by multiplexing using Milliplex Human Cardiovascular Disease panels. Among a cohort of 130 subjects [88% male, median (IQR) age of 51 (46-57) years, CD4 count of 492 (341-635) cells/mm(3), 86.9% with HIV RNA ?50 copies/ml], CAC was present in 46.9% of subjects. In univariate analyses higher levels of log-transformed MCP-1 and TNF-? were associated with the presence of CAC (p<0.05). In multivariate logistic regression models, MCP-1 and TNF-? remained significant after adjustment for traditional cardiovascular (CVD) risk factors. Similar results were found when analyses were assessed by Framingham risk score categories or when restricted to subjects with plasma HIV RNA ?50 copies/ml. In contrast to findings in the general population, higher MCP-1 and TNF-? predict the presence of CAC independent of traditional CVD risk factors in HIV-infected subjects fully suppressed on ART, suggesting that HIV-mediated immune activation may play a role in CVD risk.
Related JoVE Video
Galectin-9 plasma levels reflect adverse hematological and immunological features in acute dengue virus infection.
J. Clin. Virol.
PUBLISHED: 05-15-2013
Show Abstract
Hide Abstract
Dengue virus (DENV) infection remains a major public health burden worldwide. Soluble mediators may play a critical role in the pathogenesis of acute DENV infection. Galectin-9 (Gal-9) is a soluble ?-galactoside-binding lectin, with multiple immunoregulatory and inflammatory properties.
Related JoVE Video
CD57 expression and cytokine production by T cells in lesional and unaffected skin from patients with psoriasis.
PLoS ONE
PUBLISHED: 02-28-2013
Show Abstract
Hide Abstract
The immunopathogenic mechanisms leading to psoriasis remain unresolved. CD57 is a marker of replicative inability and immunosenescence on CD8+ T cells and the proportion of CD57 expressing CD8+ T cells is increased in a number of inflammatory conditions.
Related JoVE Video
Expansion in CD39? CD4? immunoregulatory t cells and rarity of Th17 cells in HTLV-1 infected patients is associated with neurological complications.
PLoS Negl Trop Dis
PUBLISHED: 02-07-2013
Show Abstract
Hide Abstract
HTLV-1 infection is associated with several inflammatory disorders, including the neurodegenerative condition HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). It is unclear why a minority of infected subjects develops HAM/TSP. CD4? T cells are the main target of infection and play a pivotal role in regulating immunity to HTLV and are hypothesized to participate in the pathogenesis of HAM/TSP. The CD39 ectonucleotidase receptor is expressed on CD4? T cells and based on co-expression with CD25, marks T cells with distinct regulatory (CD39?CD25?) and effector (CD39?CD25?) function. Here, we investigated the expression of CD39 on CD4? T cells from a cohort of HAM/TSP patients, HTLV-1 asymptomatic carriers (AC), and matched uninfected controls. The frequency of CD39? CD4? T cells was increased in HTLV-1 infected patients, regardless of clinical status. More importantly, the proportion of the immunostimulatory CD39?CD25? CD4? T-cell subset was significantly elevated in HAM/TSP patients as compared to AC and phenotypically had lower levels of the immunoinhibitory receptor, PD-1. We saw no difference in the frequency of CD39?CD25? regulatory (Treg) cells between AC and HAM/TSP patients. However, these cells transition from being anergic to displaying a polyfunctional cytokine response following HTLV-1 infection. CD39?CD25? T cell subsets predominantly secreted the inflammatory cytokine IL-17. We found that HAM/TSP patients had significantly fewer numbers of IL-17 secreting CD4? T cells compared to uninfected controls. Taken together, we show that the expression of CD39 is upregulated on CD4? T cells HAM/TSP patients. This upregulation may play a role in the development of the proinflammatory milieu through pathways both distinct and separate among the different CD39 T cell subsets. CD39 upregulation may therefore serve as a surrogate diagnostic marker of progression and could potentially be a target for interventions to reduce the development of HAM/TSP.
Related JoVE Video
Sequential staining improves detection of CCR2 and CX3CR1 on monocytes when simultaneously evaluating CCR5 by multicolor flow cytometry.
Cytometry A
PUBLISHED: 01-22-2013
Show Abstract
Hide Abstract
Chemokines and their receptors play an essential role within the immune system by dictating cellular migration. In vivo, receptor-ligand interactions rarely occur in isolation as cellular recruitment and migration are complex and highly coordinated processes often involving networks of multiple chemokines and multiple receptors. Simultaneous detection of multiple chemokine receptors on the single cell level is necessary to allow immunophenotyping studies that will help understand the intricacies of these networks. Chemokine receptors undergo a basal level of ongoing internalization, intracellular trafficking, and recycling back to the cell surface, even in the absence of the ligand. In the presence of ligand, receptor-ligand interactions enhance receptor internalization, reducing the cell surface receptor concentration, making precise determination of intrinsic levels challenging. Using multicolor flow cytometry, we sought to evaluate and optimize the simultaneous detection of cell surface expression levels of CCR2, CX3CR1, and CCR5 in primary human monocytes using a single antibody panel. We observed that staining for CCR2 alone or for CX3CR1 alone showed greater expression levels than when the cells were stained with the full panel of antibodies. Fluorescent-minus-one (FMO) controls revealed that ligation of the CCR5 monoclonal antibody to the receptor interfered with detection of CX3CR1 and CCR2. Sequential addition of antibodies during the staining procedure was sufficient to restore the detection levels, suggesting close proximity and possible functional interactions between CCR2/CCR5 and CX3CR1/CCR5 in monocytes. This study highlights the importance of optimizing staining procedures and using proper controls when simultaneously evaluating expression levels of multiple chemokine receptors by flow cytometry. Concurrent assessment of multiple receptors will provide insight and greater understanding of the complex interactions involved in cellular migration.
Related JoVE Video
Activation associated ERK1/2 signaling impairments in CD8+ T cells co-localize with blunted polyclonal and HIV-1 specific effector functions in early untreated HIV-1 infection.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
We recently observed that a large proportion of activated (CD38(+)HLA-DR(+)) CD8(+) T cells from recently HIV-1-infected adults are refractory to phosphorylation of ERK1/2 kinases (p-ERK1/2-refractory). Given that the ERK1/2 pathway mediates intracellular signaling critical for multiple T cell functions, including key effector functions, the loss of ERK1/2 responsiveness may have broad consequences for CD8(+) T cell function. In the current study, we hypothesized that the p-ERK1/2-refractory population, localized largely within the activated CD38(+)HLA-DR(+) CD8(+) T cell population, would display impairments in CD8(+) T cell effector functions, such as cytokine production and degranulation, compared to CD8(+) p-ERK1/2-responsive cells. We further hypothesized that the p-ERK1/2-refractory phenotype is persistent over time during untreated infection, and would correlate with poorer virologic control, in a manner independent of CD8(+) T cell activation level. We performed single-cell resolution, flow cytometric assays of phospho-kinase responses paired to intracellular cytokine staining in one assay to examine IFN-?, perforin and CD107? responses in CD8(+) T cells by ERK1/2 signaling profile. On a per cell basis, p-ERK1/2-refractory cells, which fall predominantly within the activated CD8(+) T cell compartment, produced less IFN-? in response to polyclonal or HIV-1 antigen-specific stimulation, and expressed lower levels of perforin and CD107?. The p-ERK1/2 refractory cell population displayed minimal overlap with the PD-1 and Tim-3 inhibitory exhaustion markers and predicted high viral load independent of activation, suggesting that ERK1/2 may be a unique marker and point of intervention for improving CD8(+) T cell function. Blunted effector functions, secondary to ERK1/2 signaling deficits concentrated within activated CD8(+) T cells, may contribute to immunodeficiency and underlie the predictive capacity of CD8(+) T cell activation on HIV-1 disease progression. (270/300).
Related JoVE Video
IL-1? Enriched Monocytes Mount Massive IL-6 Responses to Common Inflammatory Triggers among Chronically HIV-1 Infected Adults on Stable Anti-Retroviral Therapy at Risk for Cardiovascular Disease.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Chronic infection by HIV increases the risk of cardiovascular disease (CVD) despite effective antiretroviral therapy (ART). The mechanisms linking HIV to CVD have yet to be fully elucidated. High plasma levels of the pro-inflammatory cytokine IL-6, which may be triggered by IL-1?, is a biomarker of CVD risk in HIV-negative adults, and of all-cause mortality in HIV disease. Monocytes play a pivotal role in atherosclerosis, and may be major mediators of HIV-associated inflammation. We therefore hypothesized that monocytes from HIV-infected adults would display high inflammatory responses. Employing a 10-color flow cytometry intracellular cytokine staining assay, we directly assessed cytokine and chemokine responses of monocytes from the cryopreserved peripheral blood of 33 chronically HIV-1 infected subjects. Participants were 45 years or older, on virologically suppressive ART and at risk for CVD. This group was compared to 14 HIV-negative subjects matched for age and gender, with similar CVD risk. We simultaneously detected intracellular expression of IL-1?, IL-6, IL-8 and TNF in blood monocytes in the basal state and after stimulation by triggers commonly found in the blood of treated, chronically HIV-infected subjects: lipopolysaccharide (LPS) and oxidized low-density lipoprotein (oxLDL). In the absence of stimulation, monocytes from treated HIV-infected subjects displayed a high frequency of cells producing IL-1? (median 19.5%), compared to low levels in HIV-uninfected persons (0.9% p<0.0001). IL-8, which is induced by IL-1?, was also highly expressed in the HIV-infected group in the absence of stimulation, 43.7% compared to 1.9% in HIV-uninfected subjects, p<0.0001. Strikingly, high basal expression of IL-1? by monocytes predicted high IL-6 levels in the plasma, and high monocyte IL-6 responses in HIV-infected subjects. Hyper-inflammatory IL-1? enriched monocytes may be a major source of IL-6 production and systemic inflammation in HIV-infected adults, and may contribute to the risk for all-cause mortality and cardiovascular disease in treated HIV infection.
Related JoVE Video
HIV-1 infection abrogates CD8+ T cell mitogen-activated protein kinase signaling responses.
J. Virol.
PUBLISHED: 09-21-2011
Show Abstract
Hide Abstract
Mitogen-activated protein kinase (MAPK) signaling pathways are dynamic and sensitive regulators of T cell function and differentiation. Altered MAPK signaling has been associated with the inflammatory and autoimmune diseases lupus and arthritis and with some pathogenic viral infections. HIV-1 infection is characterized by chronic immune inflammation, aberrantly heightened CD8(+) T cell activation levels, and altered T cell function. The relationship between MAPK pathway function, HIV-1-induced activation (CD38 and HLA-DR), and exhaustion (Tim-3) markers in circulating CD8(+) T cells remains unknown. Phosphorylation of the MAPK effector proteins ERK and p38 was examined by "phosflow" flow cytometry in 79 recently HIV-1-infected, antiretroviral-treatment-naïve adults and 21 risk-matched HIV-1-negative controls. We identified a subset of CD8(+) T cells refractory to phorbol 12-myristate 13-acetate plus ionomycin-induced ERK1/2 phosphorylation (referred to as p-ERK1/2-refractory cells) that was greatly expanded in HIV-1-infected adults. The CD8(+) p-ERK1/2-refractory cells were highly activated (CD38(+) HLA-DR(+)) but not exhausted (Tim-3 negative), tended to have low CD8 expression, and were enriched in intermediate and late transitional memory states of differentiation (CD45RA(-) CD28(-) CD27(+/-)). Targeting MAPK pathways to restore ERK1/2 signaling may normalize immune inflammation levels and restore CD8(+) T cell function during HIV-1 infection.
Related JoVE Video
Identification of human endogenous retrovirus-specific T cell responses in vertically HIV-1-infected subjects.
J. Virol.
PUBLISHED: 08-31-2011
Show Abstract
Hide Abstract
Human endogenous retrovirus (HERV)-specific T cell responses in HIV-1-infected adults have been reported. Whether HERV-specific immunity exists in vertically HIV-1-infected children is unknown. We performed a cross-sectional analysis of HERV-specific T cell responses in 42 vertically HIV-1-infected children. HERV (-H, -K, and -L family)-specific T cell responses were identified in 26 of 42 subjects, with the greatest magnitude observed for the responses to HERV-L. These HERV-specific T cell responses were inversely correlated with the HIV-1 plasma viral load and positively correlated with CD4(+) T cell counts. These data indicate that HERV-specific T cells may participate in controlling HIV-1 replication and that certain highly conserved HERV-derived proteins may serve as promising therapeutic vaccine targets in HIV-1-infected children.
Related JoVE Video
Strong human endogenous retrovirus-specific T cell responses are associated with control of HIV-1 in chronic infection.
J. Virol.
PUBLISHED: 04-27-2011
Show Abstract
Hide Abstract
Eight percent of the human genome is composed of human endogenous retroviruses (HERVs), which are thought to be inactive remnants of ancient infections. Previously, we showed that individuals with early HIV-1 infection have stronger anti-HERV T cell responses than uninfected controls. In this study, we investigated whether these responses persist in chronic HIV-1 infection and whether they have a role in the control of HIV-1. Peripheral blood mononuclear cells (PBMCs) from 88 subjects diagnosed with HIV-1 infection for at least 1 year (median duration of diagnosis, 13 years) were tested for responses against HERV peptides in gamma interferon (IFN-?) enzyme immunospot (ELISPOT) assays. Individuals who control HIV-1 viremia without highly active antiretroviral therapy (HAART) had stronger and broader HERV-specific T cell responses than HAART-suppressed patients, virologic noncontrollers, immunologic progressors, and uninfected controls (P < 0.05 for each pairwise comparison). In addition, the magnitude of the anti-HERV T cell response was inversely correlated with HIV-1 viral load (r(2) = 0.197, P = 0.0002) and associated with higher CD4(+) T cell counts (r(2) = 0.072, P = 0.027) in untreated patients. Flow cytometric analyses of an HLA-B51-restricted CD8(+) HERV response in one HIV-1-infected individual revealed a less activated and more differentiated phenotype than that stimulated by a homologous HIV-1 peptide. HLA-B51 tetramer dual staining within this individual confirmed two different T cell populations corresponding to these HERV and HIV-1 epitopes, ruling out cross-reactivity. These findings suggest a possible role for anti-HERV immunity in the control of chronic HIV-1 infection and provide support for a larger effort to design an HIV-1 vaccine that targets conserved antigens such as HERV.
Related JoVE Video
HTLV-1 tax specific CD8+ T cells express low levels of Tim-3 in HTLV-1 infection: implications for progression to neurological complications.
PLoS Negl Trop Dis
PUBLISHED: 02-27-2011
Show Abstract
Hide Abstract
The T cell immunoglobulin mucin 3 (Tim-3) receptor is highly expressed on HIV-1-specific T cells, rendering them partially "exhausted" and unable to contribute to the effective immune mediated control of viral replication. To elucidate novel mechanisms contributing to the HTLV-1 neurological complex and its classic neurological presentation called HAM/TSP (HTLV-1 associated myelopathy/tropical spastic paraparesis), we investigated the expression of the Tim-3 receptor on CD8(+) T cells from a cohort of HTLV-1 seropositive asymptomatic and symptomatic patients. Patients diagnosed with HAM/TSP down-regulated Tim-3 expression on both CD8(+) and CD4(+) T cells compared to asymptomatic patients and HTLV-1 seronegative controls. HTLV-1 Tax-specific, HLA-A*02 restricted CD8(+) T cells among HAM/TSP individuals expressed markedly lower levels of Tim-3. We observed Tax expressing cells in both Tim-3(+) and Tim-3(-) fractions. Taken together, these data indicate that there is a systematic downregulation of Tim-3 levels on T cells in HTLV-1 infection, sustaining a profoundly highly active population of potentially pathogenic T cells that may allow for the development of HTLV-1 complications.
Related JoVE Video
A comprehensive ex vivo functional analysis of human NKT cells reveals production of MIP1-? and MIP1-?, a lack of IL-17, and a Th1-bias in males.
PLoS ONE
PUBLISHED: 08-11-2010
Show Abstract
Hide Abstract
NKT cells contribute to the modulation of immune responses and are believed to be important in the pathogenesis of autoimmune and infectious diseases, as well as cancer. Variations in the composite NKT cytokine response may determine individual disease susceptibility or severity. Due to low frequencies in peripheral blood, knowledge of the breadth of ex vivo human NKT cell functions has been limited. To bridge this gap, we studied highly purified NKT cells from PBMC of healthy donors and assessed the production of 27 effector functions using sensitive Elispot and multiplex bead assays. We found the ex vivo human NKT cell response is predominantly comprised of the chemokines MIP1-?, and MIP1-? as well as the Th1 cytokines IFN-? and TNF-?. Although lower in magnitude, there was also significant production of IL-2, IL-4, and perforin after mitogen stimulation. Surprisingly, little/no IL-5, IL-6, IL-10, or IL-13 was detected, and no subjects NKT cells produced IL-17. Comparison of the NKT functional profiles between age-matched male and female subjects revealed similar IL-4 responses, but higher frequencies of cells producing IFN-? and MIP1-?, from males. There were no gender differences in the circulating NKT subset distribution. These findings implicate chemokines as a major mechanism by which NKT cells control responses in humans. In addition, the panoply of Th2 and Th17 cytokine secretion by NKT cells from healthy donors may not be as pronounced as previously believed. NKT cells may therefore contribute to the gender bias found in many diseases.
Related JoVE Video
IL-2 immunotherapy to recently HIV-1 infected adults maintains the numbers of IL-17 expressing CD4+ T (T(H)17) cells in the periphery.
J. Clin. Immunol.
PUBLISHED: 04-21-2010
Show Abstract
Hide Abstract
Little is known about the manipulation of IL-17 producing CD4+ T cells (T(H)17) on a per-cell basis in humans in vivo. Previous studies on the effects of IL-2 on IL-17 secretion in non-HIV models have shown divergent results. We hypothesized that IL-2 would mediate changes in IL-17 levels among recently HIV-1-infected adults receiving anti-retroviral therapy. We measured cytokine T cell responses to CD3/CD28, HIV-1 Gag, and CMV pp65 stimulation, and changes in multiple CD4+ T cell subsets. Those who received IL-2 showed a robust expansion of naive and total CD4+ T cell counts and T-reg counts. However, after IL-2 treatment, the frequency of T(H)17 cells declined, while counts of T(H)17 cells did not change due to an expansion of the CD4+ naïve T cell population (CD27+CD45RA+). Counts of HIV-1 Gag-specific T cells declined modestly, but CMV pp65 and CD3/CD28 stimulated populations did not change. Hence, in contrast with recent studies, our results suggest IL-2 is not a potent in vivo regulator of T(H)17 cell populations in HIV-1 disease. However, IL-2-mediated T-reg expansions may selectively reduce responses to certain antigen-specific populations, such as HIV-1 Gag.
Related JoVE Video
Functionally distinct subsets of human NK cells and monocyte/DC-like cells identified by coexpression of CD56, CD7, and CD4.
Blood
PUBLISHED: 10-05-2009
Show Abstract
Hide Abstract
The lack of natural killer (NK) cell-specific markers, as well as the overlap among several common surface antigens and functional properties, has obscured the delineation between NK cells and dendritic cells. Here, novel subsets of peripheral blood CD3/14/19(neg) NK cells and monocyte/dendritic cell (DC)-like cells were identified on the basis of CD7 and CD4 expression. Coexpression of CD7 and CD56 differentiates NK cells from CD56+ monocyte/DC-like cells, which lack CD7. In contrast to CD7+CD56+ NK cells, CD7(neg)CD56+ cells lack expression of NK cell-associated markers, but share commonalities in their expression of various monocyte/DC-associated markers. Using CD7, we observed approximately 60% of CD4+CD56+ cells were CD7(neg) cells, indicating the actual frequency of activated CD4+ NK cells is much lower in the blood than previously recognized. Functionally, only CD7+ NK cells secrete gamma interferon (IFNgamma) and degranulate after interleukin-12 (IL-12) plus IL-18 or K562 target cell stimulation. Furthermore, using CD7 to separate CD56+ NK cells and CD56+ myeloid cells, we demonstrate that unlike resting CD7+CD56+ NK cells, the CD7(neg)CD56+ myeloid cells stimulate a potent allogeneic response. Our data indicate that CD7 and CD56 coexpression discriminates NK cells from CD7(neg)CD56+ monocyte/DC-like cells, thereby improving our ability to study the intricacies of NK-cell subset phenotypes and functions in vivo.
Related JoVE Video
Interleukin-10-secreting T cells define a suppressive subset within the HIV-1-specific T-cell population.
Eur. J. Immunol.
PUBLISHED: 04-23-2009
Show Abstract
Hide Abstract
Recent studies have indicated that Treg contribute to the HIV type 1 (HIV-1)-related immune pathogenesis. However, it is not clear whether T cells with suppressive properties reside within the HIV-1-specific T-cell population. Here, PBMC from HIV-1-infected individuals were stimulated with a 15-mer Gag peptide pool, and HIV-1-specific T cells were enriched by virtue of their secretion of IL-10 or IFN-gamma using immunomagnetic cell-sorting. Neither the IL-10-secreting cells nor the IFN-gamma-secreting cells expressed the Treg marker FOXP3, yet the IL-10-secreting cells potently suppressed anti-CD3/CD28-induced CD4(+) as well as CD8(+) T-cell proliferative responses. As shown by intracellular cytokine staining, IL-10- and IFN-gamma-producing T cells represent distinct subsets of the HIV-1-specific T cells. Our data collectively suggest that functionally defined HIV-1-specific T-cell subsets harbor potent immunoregulatory properties that may contribute to HIV-1-associated T-cell dysfunction.
Related JoVE Video
Tregs control the development of symptomatic West Nile virus infection in humans and mice.
J. Clin. Invest.
PUBLISHED: 03-31-2009
Show Abstract
Hide Abstract
West Nile virus (WNV) causes asymptomatic infection in most humans, but for undefined reasons, approximately 20% of immunocompetent individuals develop West Nile fever, a potentially debilitating febrile illness, and approximately 1% develop neuroinvasive disease syndromes. Notably, since its emergence in 1999, WNV has become the leading cause of epidemic viral encephalitis in North America. We hypothesized that CD4+ Tregs might be differentially regulated in subjects with symptomatic compared with those with asymptomatic WNV infection. Here, we show that in 32 blood donors with acute WNV infection, Tregs expanded significantly in the 3 months after index (RNA+) donations in all subjects. Symptomatic donors exhibited lower Treg frequencies from 2 weeks through 1 year after index donation yet did not show differences in systemic T cell or generalized inflammatory responses. In parallel prospective experimental studies, symptomatic WNV-infected mice also developed lower Treg frequencies compared with asymptomatic mice at 2 weeks after infection. Moreover, Treg-deficient mice developed lethal WNV infection at a higher rate than controls. Together, these results suggest that higher levels of peripheral Tregs after infection protect against severe WNV disease in immunocompetent animals and humans.
Related JoVE Video
A decreased frequency of regulatory T cells in patients with common variable immunodeficiency.
PLoS ONE
PUBLISHED: 03-09-2009
Show Abstract
Hide Abstract
Common variable immunodeficiency disorder (CVID) is a heterogeneous syndrome, characterized by deficient antibody production and recurrent bacterial infections in addition abnormalities in T cells. CD4(+)CD25(high) regulatory T cells (Treg) are essential modulators of immune responses, including down-modulation of immune response to pathogens, allergens, cancer cells and self-antigens.
Related JoVE Video
High CD8+ T cell activation marks a less differentiated HIV-1 specific CD8+ T cell response that is not altered by suppression of viral replication.
PLoS ONE
PUBLISHED: 02-09-2009
Show Abstract
Hide Abstract
The relationship of elevated T cell activation to altered T cell differentiation profiles, each defining features of HIV-1 infection, has not been extensively explored. We hypothesized that anti-retroviral suppression of T cell activation levels would lead to alterations in the T cell differentiation of total and HIV-1 specific CD8+ T cell responses among recently HIV-1 infected adults.
Related JoVE Video
Age-related expansion of Tim-3 expressing T cells in vertically HIV-1 infected children.
PLoS ONE
Show Abstract
Hide Abstract
As perinatally HIV-1-infected children grow into adolescents and young adults, they are increasingly burdened with the long-term consequences of chronic HIV-1 infection, with long-term morbidity due to inadequate immunity. In progressive HIV-1 infection in horizontally infected adults, inflammation, T cell activation, and perturbed T cell differentiation lead to an "immune exhaustion", with decline in T cell effector functions. T effector cells develop an increased expression of CD57 and loss of CD28, with an increase in co-inhibitory receptors such as PD-1 and Tim-3. Very little is known about HIV-1 induced T cell dysfunction in vertical infection. In two perinatally antiretroviral drug treated HIV-1-infected groups with median ages of 11.2 yr and 18.5 yr, matched for viral load, we found no difference in the proportion of senescent CD28(-)CD57(+)CD8(+) T cells between the groups. However, the frequency of Tim-3(+)CD8(+) and Tim-3(+)CD4(+) exhausted T cells, but not PD-1(+) T cells, was significantly increased in the adolescents with longer duration of infection compared to the children with shorter duration of HIV-1 infection. PD-1(+)CD8(+) T cells were directly associated with T cell immune activation in children. The frequency of Tim-3(+)CD8(+) T cells positively correlated with HIV-1 plasma viral load in the adolescents but not in the children. These data suggest that Tim-3 upregulation was driven by both HIV-1 viral replication and increased age, whereas PD-1 expression is associated with immune activation. These findings also suggest that the Tim-3 immune exhaustion phenotype rather than PD-1 or senescent cells plays an important role in age-related T cell dysfunction in perinatal HIV-1 infection. Targeting Tim-3 may serve as a novel therapeutic approach to improve immune control of virus replication and mitigate age related T cell exhaustion.
Related JoVE Video
Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity.
Blood
Show Abstract
Hide Abstract
Natural killer (NK) cells are innate lymphocytes that play an important role against viral infections and cancer. This effect is achieved through a complex mosaic of inhibitory and activating receptors expressed by NK cells that ultimately determine the magnitude of the NK-cell response. The T-cell immunoglobulin- and mucin domain-containing (Tim)-3 receptor was initially identified as a T-helper 1-specific type I membrane protein involved in regulating T-cell responses. Human NK cells transcribe the highest amounts of Tim-3 among lymphocytes. Tim-3 protein is expressed on essentially all mature CD56(dim)CD16(+) NK cells and is expressed heterogeneously in the immature CD56(bright)CD16(-) NK-cell subset in blood from healthy adults and in cord blood. Tim-3 expression was induced on CD56(bright)CD16(-) NK cells after stimulation with IL-15 or IL-12 and IL-18 in vitro, suggesting that Tim-3 is a maturation marker on NK cells. Whereas Tim-3 has been used to identify dysfunctional T cells, NK cells expressing high amounts of Tim-3 are fully responsive with respect to cytokine production and cytotoxicity. However, when Tim-3 was cross-linked with antibodies it suppressed NK cell-mediated cytotoxicity. These findings suggest that NK-cell responses may be negatively regulated when NK cells encounter target cells expressing cognate ligands of Tim-3.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.