JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Virus-Induced Alterations in Primary Metabolism Modulate Susceptibility to Tobacco rattle virus in Arabidopsis.
Plant Physiol.
PUBLISHED: 11-01-2014
Show Abstract
Hide Abstract
During compatible virus infections, plants respond by reprogramming gene expression and metabolite accumulation. While gene expression studies are profuse, our knowledge of the metabolic changes that occur in the presence of the virus is limited. Here we combine gene expression and metabolite profiling in Arabidopsis thaliana infected with Tobacco rattle virus (TRV) in order to investigate the influence of primary metabolism on virus infection. Our results revealed that primary metabolism is reconfigured in many ways during TRV infection, as reflected by significant changes in the levels of sugars and amino acids. Multivariate data analysis revealed that these alterations were particularly conspicuous at the time points of maximal accumulation of TRV although infection time was the dominant source of variance during the process. Furthermore, TRV caused changes in lipid and fatty acid (FA) composition in infected leaves. We found that several Arabidopsis mutants deficient in branched-chain amino acid catabolism or fatty acid metabolism possessed altered susceptibility to TRV. Finally, we showed that increments in the putrescine content in TRV-infected plants correlated with enhanced tolerance to freezing stress in TRV-infected plants, and that impairment of putrescine biosynthesis promoted virus multiplication. Our results thus provide an interesting overview for a better understanding of the relationship between primary metabolism and virus infection.
Related JoVE Video
Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance.
New Phytol.
PUBLISHED: 02-26-2013
Show Abstract
Hide Abstract
Plants have evolved efficient defence mechanisms to defend themselves from pathogen attack. Although many studies have focused on the transcriptional regulation of defence responses, less is known about the involvement of microRNAs (miRNAs) as post-transcriptional regulators of gene expression in plant immunity. This work investigates miRNAs that are regulated by elicitors from the blast fungus Magnaporthe oryzae in rice (Oryza sativa). Small RNA libraries were constructed from rice tissues and subjected to high-throughput sequencing for the identification of elicitor-responsive miRNAs. Target gene expression was examined by microarray analysis. Transgenic lines were used for the analysis of miRNA functioning in disease resistance. Elicitor treatment is accompanied by dynamic alterations in the expression of a significant number of miRNAs, including new members of annotated miRNAs. Novel miRNAs from rice are proposed. We report a new rice miRNA, osa-miR7695, which negatively regulates an alternatively spliced transcript of OsNramp6 (Natural resistance-associated macrophage protein 6). This novel miRNA experienced natural and domestication selection events during evolution, and its overexpression in rice confers pathogen resistance. This study highlights an miRNA-mediated regulation of OsNramp6 in disease resistance, whilst illustrating the existence of a novel regulatory network that integrates miRNA function and mRNA processing in plant immunity.
Related JoVE Video
Analysis of the melon (Cucumis melo) small RNAome by high-throughput pyrosequencing.
BMC Genomics
PUBLISHED: 04-12-2011
Show Abstract
Hide Abstract
Melon (Cucumis melo L.) is a commercially important fruit crop that is cultivated worldwide. The melon research community has recently benefited from the determination of a complete draft genome sequence and the development of associated genomic tools, which have allowed us to focus on small RNAs (sRNAs). These are short, non-coding RNAs 21-24 nucleotides in length with diverse physiological roles. In plants, they regulate gene expression and heterochromatin assembly, and control protection against virus infection. Much remains to be learned about the role of sRNAs in melon.
Related JoVE Video
High-throughput sequencing of RNA silencing-associated small RNAs in olive (Olea europaea L.).
PLoS ONE
PUBLISHED: 03-08-2011
Show Abstract
Hide Abstract
Small RNAs (sRNAs) of 20 to 25 nucleotides (nt) in length maintain genome integrity and control gene expression in a multitude of developmental and physiological processes. Despite RNA silencing has been primarily studied in model plants, the advent of high-throughput sequencing technologies has enabled profiling of the sRNA component of more than 40 plant species. Here, we used deep sequencing and molecular methods to report the first inventory of sRNAs in olive (Olea europaea L.). sRNA libraries prepared from juvenile and adult shoots revealed that the 24-nt class dominates the sRNA transcriptome and atypically accumulates to levels never seen in other plant species, suggesting an active role of heterochromatin silencing in the maintenance and integrity of its large genome. A total of 18 known miRNA families were identified in the libraries. Also, 5 other sRNAs derived from potential hairpin-like precursors remain as plausible miRNA candidates. RNA blots confirmed miRNA expression and suggested tissue- and/or developmental-specific expression patterns. Target mRNAs of conserved miRNAs were computationally predicted among the olive cDNA collection and experimentally validated through endonucleolytic cleavage assays. Finally, we use expression data to uncover genetic components of the miR156, miR172 and miR390/TAS3-derived trans-acting small interfering RNA (tasiRNA) regulatory nodes, suggesting that these interactive networks controlling developmental transitions are fully operational in olive.
Related JoVE Video
High-throughput sequencing of Hop stunt viroid-derived small RNAs from cucumber leaves and phloem.
Mol. Plant Pathol.
PUBLISHED: 05-08-2010
Show Abstract
Hide Abstract
Small RNA (sRNA)-guided processes, referred to as RNA silencing, regulate endogenous and exogenous gene expression. In plants and some animals, these processes are noncell autonomous and can operate beyond the site of initiation. Viroids, the smallest self-replicating plant pathogens known, are inducers, targets and evaders of this regulatory mechanism and, consequently, the presence of viroid-derived sRNAs (vd-sRNAs) is usually associated with viroid infection. However, the pathways involved in the biogenesis of vd-sRNAs are largely unknown. Here, we analyse, by high-throughput pyrosequencing, the profiling of the Hop stunt viroid (HSVd) vd-sRNAs recovered from the leaves and phloem of infected cucumber (Cucumis sativus) plants. HSVd vd-sRNAs are mostly 21 and 22 nucleotides in length and derived equally from plus and minus HSVd RNA strands. The widespread distribution of vd-sRNAs across the genome reveals that the totality of the HSVd RNA genome contributes to the formation of vd-sRNAs. Our sequence data suggest that viroid-derived double-stranded RNA functions as one of the main precursors of vd-sRNAs. Remarkably, phloem vd-sRNAs accumulated preferentially as 22-nucleotide species with a consensus sequence over-represented. This bias in size and sequence in the HSVd vd-sRNA population recovered from phloem exudate suggests the existence of a selective trafficking of vd-sRNAs to the phloem tissue of infected cucumber plants.
Related JoVE Video
Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes.
Virology
PUBLISHED: 04-23-2009
Show Abstract
Hide Abstract
Plant virus infection involves the production of viral small RNAs (vsRNAs) with the potential to associate with distinct Argonaute (AGO)-containing silencing complexes and mediate diverse silencing effects on RNA and chromatin. We used multiplexed, high-throughput pyrosequencing to profile populations of vsRNAs from plants infected with viruses from different genera. Sense and antisense vsRNAs of 20 to 24 nucleotides (nts) spread throughout the entire viral genomes in an overlapping configuration; virtually all genomic nucleotide positions were represented in the data set. We present evidence to suggest that every genomic position could be a putative cleavage site for vsRNA formation, although viral genomes contain specific regions that serve as preferential sources of vsRNA production. Hotspots for vsRNAs of 21-, 22-, and 24-nt usually coincide in the same genomic regions, indicating similar target affinities among Dicer-like (DCL) enzymes. In the light of our results, the overall contribution of perfectly base paired double-stranded RNA and imperfectly base paired structures within single-stranded RNA to vsRNA formation is discussed. Our census of vsRNAs extends the current view of the distribution and composition of vsRNAs in virus-infected plants, and contributes to a better understanding of vsRNA biogenesis.
Related JoVE Video
Two strawberry miR159 family members display developmental-specific expression patterns in the fruit receptacle and cooperatively regulate Fa-GAMYB.
New Phytol.
Show Abstract
Hide Abstract
• We have reported previously that the gibberellin (GA) content in strawberry receptacle is high, peaking at specific stages, pointing to a role of this hormone in fruit development. In Arabidopsis, miR159 levels are dependent on GA concentration. This prompted us to investigate the role of two members of the miR159 family and their putative strawberry target gene, GAMYB, in relation to changes in GA content during the course of fruit development. • The highest expression level of the two Fa-MIR159 genes was in the fruits receptacle tissue, with dramatic changes observed throughout development. The lowest levels of total mature miR159 (a and b) were observed during the white stage of receptacle development, which was concurrent with the highest expression of Fa-GAMYB. A functional interaction between miR159 and Fa-GAMYB has been demonstrated in receptacle tissue. • The application of bioactive GA (i.e. GA(3) ) to strawberry plants caused the down-regulated expression of Fa-MIR159a, but the expression of Fa-MIR159b was not affected significantly. Clear discrepancies between Fa-MIR159b and mature Fa-miR159b levels were indicative of post-transcriptional regulation of Fa-MIR159b gene expression. • We propose that Fa-miR159a and Fa-miR159b interact with Fa-GAMYB during the course of strawberry receptacle development, and that they act in a cooperative fashion to respond, in part, to changes in GA endogenous levels.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.