JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Combination of HBO and Memantine in Focal Cerebral Ischemia: Is There a Synergistic Effect?
Mol. Neurobiol.
PUBLISHED: 08-29-2014
Show Abstract
Hide Abstract
Hyperbaric oxygen (HBO) therapy and memantine, a non-competitive NMDA antagonist, are both promising treatment strategies for improving stroke prognosis. However, HBO's narrow therapeutic time window (<6 h post-stroke) and the adverse effect of high-dose MEM administration limits the use of these therapeutic interventions. In this study, we investigated whether or not MEM could prolong the narrow therapeutic window of HBO treatment. Transient focal cerebral ischemia was induced in male Sprague-Dawley rats by middle cerebral artery occlusion (MCAO) for 120 min. MCAO produced neurobehavioral deficits, increased infarction volume, increased Evans blue (EB) content and levels of pro-inflammatory factors, as well as depleted glutathione (GSH), and reduced catalase (CAT) and superoxide dismutase (SOD) activity in the ischemic ipsilateral hemisphere. The combination of 5 mg/kg MEM treatment 15 min after the onset of ischemic event and HBO therapy 12 h post-reperfusion significantly restored neurologic scores, EB concentration and IL-10 levels, as well as significantly decreased infarct volume and increased antioxidant activity. These results imply that the combination of MEM and HBO therapy not only prolongs the therapeutic window of HBO treatment, but also lowers the dosage requirement of MEM. The mechanism underlying the neuroprotective effects of the combined treatment may lie in alleviated blood-brain barrier (BBB) permeability, inhibited inflammatory response, and up-regulation of the antioxidant enzyme activity.
Related JoVE Video
Cannabinoid Receptor CB1 Is Involved in Nicotine-Induced Protection Against A?1-42 Neurotoxicity in HT22 Cells.
J. Mol. Neurosci.
PUBLISHED: 08-04-2014
Show Abstract
Hide Abstract
Emerging evidences suggest that nicotine exerts a neuroprotective effect on Alzheimer's disease (AD), yet the precise mechanism is not fully elucidated. Here, HT22 cells were exposed to amyloid beta protein fragment (A?)1-42 to mimic the pathological process of neuron in AD. We hypothesized that cannabinoid receptor CB1 is involved in the nicotine-induced neuroprotection against A?1-42 injury in HT22 cells. CB1 expression in HT22 cells was investigated by immunocytochemistry and Western blot. The injury of HT22 cells was evaluated by cellular morphology, cell viability, and lactate dehydrogenase (LDH) release. The apoptosis of HT22 cells was assessed by flow cytometry and expressions of Bcl-2 and Bax. The results demonstrated that nicotine markedly upregulated CB1 expression, increased cell viability, ameliorated cellular morphology, decreased LDH release, and reduced the apoptotic rate of HT22 cells exposed to A?1-42 for 24 h, while the blockade of CB1 or the inhibition of protein kinase C (PKC) partially reversed the neuroprotection. Furthermore, the blockade of CB1 reversed nicotine-induced PKC activation in HT22 cells exposed to A?1-42. These results suggest that CB1 is involved in the nicotine-induced neuroprotection against A?1-42 neurotoxicity, and the neuroprotection may be dependent on the activation of PKC.
Related JoVE Video
Impaired Adiponectin Signaling Contributes to Disturbed Catabolism of Branched-Chain Amino Acids in Diabetic Mouse.
Diabetes
PUBLISHED: 07-30-2014
Show Abstract
Hide Abstract
The branched-chain amino acids (BCAA) accumulated in type 2 diabetes mellitus are independent contributors to insulin resistance. The activity of branched-chain ?-keto acid dehydrogenase (BCKD) complex, rate-limiting enzyme in BCAA catabolism, is reduced in diabetic states, which contributes to elevated BCAA concentrations. However, the mechanisms underlying decreased BCKD activity remain poorly understood. Here we demonstrate that mitochondrial phosphatase 2C (PP2Cm), a newly identified BCKD phosphatase which increases BCKD activity, was significantly down-regulated in ob/ob and type 2 diabetic mice. Interestingly, in adiponectin knockout (APN(-/-)) mice fed with high-fat-diet (HD), PP2Cm expression and BCKD activity were significantly decreased, whereas BCKD kinase (BDK) which inhibits BCKD activity was markedly increased. Concurrently, plasma BCAA and branched-chain ?-keto acids (BCKA) were significantly elevated. APN treatment markedly reverted PP2Cm, BDK, BCKD activity, BCAA and BCKA levels in HD-fed APN(-/-) and diabetic animals. Additionally, increased BCKD activity caused by APN administration was partially but significantly inhibited in PP2Cm knockout mice. Finally, APN-mediated up-regulation of PP2Cm expression and BCKD activity were abolished when adenosine monophosphate-activated protein kinase (AMPK) was inhibited. Collectively, we have provided the first direct evidence that APN is a novel regulator of PP2Cm and systematic BCAA levels, suggesting that targeting APN may be a pharmacological approach to ameliorating BCAA catabolism in the diabetic state.
Related JoVE Video
Anandamide protects HT22 cells exposed to hydrogen peroxide by inhibiting CB1 receptor-mediated type 2 NADPH oxidase.
Oxid Med Cell Longev
PUBLISHED: 07-17-2014
Show Abstract
Hide Abstract
Endogenous cannabinoid anandamide (AEA) protects neurons from oxidative injury in rodent models; however the mechanism of AEA-induced neuroprotection remains to be determined. Activation of neuronal NADPH oxidase 2 (Nox2) contributes to oxidative damage of the brain, and inhibition of Nox2 can attenuate cerebral oxidative stress. We aimed to determine whether the neuronal Nox2 was involved in protection mediated by AEA.
Related JoVE Video
Rocuronium blockade reversal with sugammadex vs. neostigmine: randomized study in Chinese and Caucasian subjects.
BMC Anesthesiol
PUBLISHED: 07-12-2014
Show Abstract
Hide Abstract
This study compared efficacy and safety of the selective relaxant binding agent sugammadex (2 mg/kg) with neostigmine (50 ?g/kg) for neuromuscular blockade (NMB) reversal in Chinese and Caucasian subjects.
Related JoVE Video
Neuronostatin attenuates myocardial contractile function through inhibition of sarcoplasmic reticulum Ca2+-ATPase in murine heart.
Cell. Physiol. Biochem.
PUBLISHED: 06-27-2014
Show Abstract
Hide Abstract
Neuronostatin, derived from the somatostatin preprohormone, was recently identified to be produced by several tissues exerting a role in cardiovascular regulation and metabolism. Nonetheless, the precise mechanism behind neuronostatin-elicited myocardial responses remains elusive.
Related JoVE Video
Resveratrol Attenuates the Blood-Brain Barrier Dysfunction by Regulation of the MMP-9/TIMP-1 Balance after Cerebral Ischemia Reperfusion in Rats.
J. Mol. Neurosci.
PUBLISHED: 06-21-2014
Show Abstract
Hide Abstract
The collapse of the blood-brain barrier (BBB) is one of the fundamental pathophysiology changes during cerebral ischemia reperfusion injury. Resveratrol has been recently reported to reduce cerebral ischemic damage by regulating the matrix metalloproteinase-9 (MMP-9). But, more direct evidence for the explanation of the BBB protected by resveratrol against cerebral ischemia reperfusion is still lacking. Therefore, the present study was aimed to investigate the regulation of BBB integrity by resveratrol after cerebral ischemia reperfusion and to determine the role of the MMP-9 and its endogenous inhibitor TIMP-1 balance in this process. Cerebral ischemia was induced by middle cerebral artery occlusion in rats. The BBB function was evaluated by brain water content and the Evans blue dye extravasation; the activities of MMP-9 and TIMP-1 were detected by using gelatin zymography analysis, and cellular apoptosis was examined by TUNEL staining. We confirmed that resveratrol reduced the cerebral ischemia reperfusion damage, brain edema, and Evans blue dye extravasation. Moreover, we found that resveratrol improved the balance of MMP-9/TIMP-1 in terms of their expressions and activities. A TIMP-1 neutralizing antibody reversed those neuroprotective effects of resveratrol. In conclusion, resveratrol attenuated the cerebral ischemia by maintaining the integrity of BBB via regulation of MMP-9 and TIMP-1.
Related JoVE Video
Critical role of matrix metalloprotease-9 in chronic high fat diet-induced cerebral vascular remodelling and increase of ischaemic brain injury in mice†.
Cardiovasc. Res.
PUBLISHED: 06-15-2014
Show Abstract
Hide Abstract
About one-third of American adults and 20% of teenagers are obese. Obesity and its associated metabolic disturbances including hyperlipidaemia are risk factors for cardiovascular diseases including stroke. They can worsen neurological outcome after stroke. We determined whether obesity and hyperlipidaemia could induce cerebral vascular remodelling via matrix metalloproteases (MMP) and whether this remodelling affected neurological outcome after brain ischaemia.
Related JoVE Video
Inhibition of N-myc downstream-regulated gene-2 is involved in an astrocyte-specific neuroprotection induced by sevoflurane preconditioning.
Anesthesiology
PUBLISHED: 05-29-2014
Show Abstract
Hide Abstract
Mechanism of sevoflurane preconditioning-induced cerebral ischemic tolerance is unclear. This study investigates the role of N-myc downstream-regulated gene-2 (NDRG2) in the neuroprotection of sevoflurane preconditioning in ischemic model both in vivo and in vitro.
Related JoVE Video
Effective glycaemic control critically determines insulin cardioprotection against ischaemia/reperfusion injury in anaesthetized dogs.
Cardiovasc. Res.
PUBLISHED: 05-20-2014
Show Abstract
Hide Abstract
Experimental evidence has shown significant cardioprotective effects of insulin, whereas clinical trials produced mixed results without valid explanations. This study was designed to examine the effect of hyperglycaemia on insulin cardioprotective action in a preclinical large animal model of myocardial ischaemia/reperfusion (MI/R).
Related JoVE Video
TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury.
Basic Res. Cardiol.
PUBLISHED: 05-07-2014
Show Abstract
Hide Abstract
NLRP3 inflammasome is necessary for initiating acute sterile inflammation. Recent studies have demonstrated that NLRP3 inflammasome is up-regulated and mediates myocardial ischemia/reperfusion (MI/R) injury. However, the signaling pathways that lead to the activation of NLRP3 inflammasome by MI/R injury have not been fully elucidated. C57BL/6J mice were subjected to 30 min ischemia and 3 or 24 h reperfusion. The ischemic heart exhibited enhanced inflammasome activation as evidenced by increased NLRP3 expression and caspase-1 activity and increased IL-1? and IL-18 production. Intramyocardial NLRP3 siRNA injection or an intraperitoneal injection of BAY 11-7028, an inflammasome inhibitor, attenuated macrophage and neutrophil infiltration and decreased MI/R injury, as measured by cardiomyocyte apoptosis and infarct size. The ischemic heart also exhibited enhanced interaction between Txnip and NLRP3, which has been shown to be a mechanism for activating NLRP3. Intramyocardial Txnip siRNA injection also decreased infarct size and NLRP3 activation. In vitro experiments revealed that NLRP3 was expressed in cardiac microvascular endothelial cells (CMECs), but was hardly expressed in cardiomyocytes. Simulated ischemia/reperfusion (SI/R) stimulated NLRP3 inflammasome activation in CMECs, but not in cardiomyocytes. Moreover, CMECs subjected to SI/R injury increased interactions between Txnip and NLRP3. Txnip siRNA diminished NLRP3 inflammasome activation and SI/R-induced injury, as measured by LDH release and caspase-3 activity in CMECs. ROS scavenger dissociated TXNIP from NLRP3 and inhibited the activation of NLRP3 inflammasome in the CMECs. For the first time, we demonstrated that TXNIP-mediated NLRP3 inflammasome activation in CMECs was a novel mechanism of MI/R injury. Interventions that block Txnip/NLRP3 signaling to inhibit the activation of NLRP3 inflammasomes may be novel therapies for mitigating MI/R injury.
Related JoVE Video
Ginsenoside Rd attenuates tau protein phosphorylation via the PI3K/AKT/GSK-3? pathway after transient forebrain ischemia.
Neurochem. Res.
PUBLISHED: 04-25-2014
Show Abstract
Hide Abstract
Phosphorylated tau was found to be regulated after cerebral ischemia and linked to high risk for the development of post-stroke dementia. Our previous study showed that ginsenoside Rd (Rd), one of the main active ingredients in Panax ginseng, decreased tau phosphorylation in Alzheimer model. As an extending study, here we investigated whether Rd could reduce tau phosphorylation and sequential cognition impairment after ischemic stroke. Sprague-Dawley rats were subjected to focal cerebral ischemia. The tau phosphorylation of rat brains were analyzed following ischemia by Western blot and animal cognitive functions were examined by Morris water maze and Novel object recognition task. Ischemic insults increased the levels of phosphorylated tau protein at Ser199/202 and PHF-1 sites and caused animal memory deficits. Rd treatment attenuated ischemia-induced enhancement of tau phosphorylation and ameliorated behavior impairment. Furthermore, we revealed that Rd inhibited the activity of Glycogen synthase kinase-3? (GSK-3?), the most important kinase involving tau phosphorylation, but enhanced the activity of protein kinase B (PKB/AKT), a key kinase suppressing GSK-3? activity. Moreover, we found that LY294002, an antagonist for phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway, abolished the inhibitory effect of Rd on GSK-3? activity and tau phosphorylation. Taken together, our findings provide the first evidence that Rd may reduce cerebral ischemia-induced tau phosphorylation via the PI3K/AKT/GSK-3? pathway.
Related JoVE Video
Tumour necrosis factor-? inhibition with lenalidomide alleviates tissue oxidative injury and apoptosis in ob/ob obese mice.
Clin. Exp. Pharmacol. Physiol.
PUBLISHED: 04-08-2014
Show Abstract
Hide Abstract
Lenalidomide (Revlimid; Selleck Chemicals, Houston, TX, USA), an analogue of thalidomide, possesses potent cytokine modulatory capacity through inhibition of cytokines such as tumour necrosis factor (TNF)-?, a cytokine pivotal for the onset and development of complications in obesity and diabetes mellitus. The present study was designed to evaluate the effect of lenalidomide on oxidative stress, protein and DNA damage in multiple organs in an ob/ob murine model of obesity. To this end, C57BL/6 lean and ob/ob obese mice were administered lenalidomide (50 mg/kg per day, p.o.) for 5 days. Oxidative stress, protein and DNA damage were assessed using the conversion of reduced glutathione (GSH) to oxidized glutathione (GSSG), carbonyl formation and Comet assay, respectively. Apoptosis was evaluated using caspase 3 activity, and levels of Bax, Bcl-2, Bip, caspase 8, caspase 9 and TNF-? were assessed using western blot analysis. Lenalidomide treatment did not affect glucose clearance in lean or ob/ob mice. Obese mice exhibited a reduced GSH/GSSG ratio in the liver, gastrocnemius skeletal muscle and small intestine, as well as enhanced protein carbonyl formation, DNA damage and caspase 3 activity in the liver, kidney, skeletal muscle and intestine; these effects were alleviated by lenalidomide, with the exception of obesity-associated DNA damage in the liver and kidney. Western blot analysis revealed elevated TNF-?, Bax, Bcl-2, Bip, caspase 8 and caspase 9 in ob/ob mice with various degrees of reversal by lenalidomide treatment. Together, these data indicate that lenalidomide protects against obesity-induced tissue injury and protein damage, possibly in association with antagonism of cytokine production and cytokine-induced apoptosis and oxidative stress.
Related JoVE Video
Acute insulin resistance mediated by advanced glycation endproducts in severely burned rats.
Crit. Care Med.
PUBLISHED: 03-28-2014
Show Abstract
Hide Abstract
Hyperglycemia often occurs in severe burns; however, the underlying mechanisms and importance of managing postburn hyperglycemia are not well recognized. This study was designed to investigate the dynamic changes of postburn hyperglycemia and the underlying mechanisms and to evaluate whether early glycemic control is beneficial in severe burns.
Related JoVE Video
The Role of SUMO-Conjugating Enzyme Ubc9 in the Neuroprotection of Isoflurane Preconditioning Against Ischemic Neuronal Injury.
Mol. Neurobiol.
PUBLISHED: 03-24-2014
Show Abstract
Hide Abstract
Preconditioning with volatile anesthetics can create an ischemia tolerance against cerebral ischemia-reperfusion injury. We investigated whether ubiquitin conjugase 9 (Ubc9), the E2 conjugase for SUMOylation, is associated with neuroprotection induced by isoflurane preconditioning (IsoPC). In vitro, Ubc9 protein expression was evaluated at 4 and 24 h after reoxygenation. The role of Ubc9 in the neuroprotective effect was assessed in the presence or absence of Ubc9 small interfering RNA (siRNA). In vivo, rats were preconditionally exposed for 1 h to 2 % isoflurane for five consecutive days followed by middle cerebral artery occlusion. Neurobehavioral scores and infarction volume were determined at different times after reperfusion. The role of Ubc9 in ischemic tolerance was evaluated by intracerebroventricular microinjection with the Ubc9 siRNA. We showed that isoflurane preconditioning improved the cell viability of the SH-SY5Y cells that were challenged by oxygen-glucose deprivation. It also reduced brain infarct volumes and improved neurologic outcomes in the focal cerebral ischemic rat. The expression of Ubc9 was upregulated by isoflurane preconditioning. Knockdown of Ubc9 significantly attenuated the isoflurane preconditioning-induced neuroprotective effects. Isoflurane preconditioning-induced neuroprotection against ischemic injuries is mediated by Ubc9. These results suggest a novel mechanism for isoflurane preconditioning-induced tolerance to cerebral ischemia.
Related JoVE Video
N-myc downstream-regulated gene 2 expression is associated with glucose transport and correlated with prognosis in breast carcinoma.
Breast Cancer Res.
PUBLISHED: 03-11-2014
Show Abstract
Hide Abstract
N-myc downstream-regulated gene 2 (NDRG2), a novel tumour suppressor and cell stress-related gene, is involved in many cell metabolic processes, such as hormone, ion and fluid metabolism. We investigated whether NDRG2 is involved in any glucose-dependent energy metabolism, as well as the nature of its correlation with breast carcinoma.
Related JoVE Video
Electroacupuncture Attenuates Cerebral Ischemia-Reperfusion Injury in Diabetic Mice Through Adiponectin Receptor 1-Mediated Phosphorylation of GSK-3?
Mol. Neurobiol.
PUBLISHED: 03-06-2014
Show Abstract
Hide Abstract
Diabetes mellitus substantially increases the risk of stroke and enhances brain's vulnerability to ischemia insult. Electroacupuncture (EA) pretreatment was proved to induce cerebral ischemic tolerance in normal stroke models. Whether EA could attenuate cerebral ischemia injury in diabetic mice and the possible underlying mechanism are still unrevealed. Male C57BL/6 mice were subjected to streptozotocin (STZ) for diabetic models. After inducing focal cerebral ischemia model, the levels of plasma and cerebral adiponectin (APN) were measured as well as the expression of cerebral adiponectin receptor 1 (AdipoR1) and 2 (AdipoR2). The neurobehavioral score, infarction volume, and cellular apoptosis were evaluated with or without AdipoR1 short interfering RNA (siRNA). The role of phosphorylation of glycogen synthesis kinase 3 beta (GSK-3?) at Ser-9 in the EA pretreatment was also assessed. EA pretreatment increased both plasma and cerebral APN levels and enhanced neuronal AdipoR1 in diabetic mice. In addition, EA reduced infarct size, improved neurological outcomes, and inhibited cell apoptosis after reperfusion. These beneficial effects were reversed by AdipoR1 knockdown. Furthermore, EA increased GSK-3? phosphorylation (p-GSK-3?) in the ipsilateral penumbra. Augmented p-GSK-3? induced neuroprotective effects similar to those of EA pretreatment. In contrast, dampened p-GSK-3? could reverse the neuroprotective effects of EA. In addition, the increase in p-GSK-3? by EA was abolished by AdipoR1 knockdown. We conclude that EA pretreatment increases the production of APN, which induce protective effects against cerebral ischemia-reperfusion injury through neuronal AdipoR1-mediated phosphorylation of GSK-3? in diabetic mice.
Related JoVE Video
Heavy metal scavenger metallothionein attenuates ER stress-induced myocardial contractile anomalies: role of autophagy.
Toxicol. Lett.
PUBLISHED: 01-17-2014
Show Abstract
Hide Abstract
Endoplasmic reticulum (ER) stress increases the risk of cardiovascular morbidity and mortality although the underlying mechanism remains elusive. This study was designed to examine the impact of cardiac over-expression of metallothionein, a cysteine-rich heavy metal scavenger, on ER stress-induced changes in myocardial function and underlying mechanism involved with a focus on autophagy. Wild-type friendly virus B (FVB) and metallothionein transgenic mice were subjected to the ER stress inducer tunicamycin (1 mg/kg). Our results showed that ER stress led to compromised echocardiographic and cardiomyocyte contractile function, intracellular Ca(2+) mishandling. Tunicamycin promoted ER stress and oxidative stress, increased left ventricular end systolic and diastolic diameter, as well as suppressed fractional shortening and whole heart contractility, the effects of which were significantly attenuated or ablated by metallothionein. Levels of the autophagy markers such as phosphorylated ULK1, Atg5, Atg7, LC3B and the autophagy adaptor p62 were significantly upregulated. These ER stress-induced changes in myocardial function, autophagy and autophagy signaling were distinctly mitigated or alleviated by metallothionein. Inhibition of autophagy using 3-methyladenine in vitro reversed ER stress-induced cardiomyocyte contractile defects. Meanwhile, ER stress-induced cardiomyocyte dysfunction was attenuated by the antioxidant N-acetylcysteine. Collectively, these findings suggested that metallothionein protects against ER stress-induced cardiac anomalies possibly through attenuation of cardiac autophagy.
Related JoVE Video
Electroacupuncture pretreatment inhibits NADPH oxidase-mediated oxidative stress in diabetic mice with cerebral ischemia.
Brain Res.
PUBLISHED: 01-16-2014
Show Abstract
Hide Abstract
We investigated the protective effect of electroacupuncture (EA) on cerebral ischemic injury in diabetic mice, and explored the role of NADPH oxidase-mediated oxidative stress. Male C57BL/6 mice were injected streptozotocin to induce diabetes. The mice were pretreated with EA at acupoint "Baihui" for 30 min. Two hours after the end of EA pretreatment, focal cerebral ischemia was induced following 24h reperfusion. The neurobehavioral scores and infarction volumes, malondialdehyde (MDA), reactive oxygen species (ROS), and activation of NADPH oxidase were determined in the presence or absence of the NADPH oxidase inhibitor apocynin or activator tetrabromocinnamic acid (TBCA). EA pretreatment reduced infarct size and improved neurological outcomes 24h after reperfusion in the diabetic mice. EA also decreased cerebral MDA and ROS levels compared with the control group, and inhibited the NADPH oxidase activation. The beneficial effects were abolished by TBCA while pretreatment with apocynin mimicked the neuroprotective and anti-oxidative effects of EA. Our results demonstrated that EA attenuated cerebral ischemic injury by inhibiting NAPDH oxidase-mediated oxidative damage in diabetic mice. These results suggest a novel mechanism of EA pretreatment-induced tolerance in diabetic cerebral ischemia.
Related JoVE Video
Effects of cannabinoid receptor type 2 on endogenous myocardial regeneration by activating cardiac progenitor cells in mouse infarcted heart.
Sci China Life Sci
PUBLISHED: 01-15-2014
Show Abstract
Hide Abstract
Cannabinoid receptor type 2 (CB2) activation is recently reported to promote proliferation of some types of resident stem cells (e.g., hematopoietic stem/progenitor cell or neural progenitor cell). Resident cardiac progenitor cell (CPC) activation and proliferation are crucial for endogenous cardiac regeneration and cardiac repair after myocardial infarction (MI). This study aims to explore the role and possible mechanisms of CB2 receptor activation in enhancing myocardial repair. Our results revealed that CB2 receptor agonist AM1241 can significantly increase CPCs by c-kit and Runx1 staining in ischemic myocardium as well as improve cardiomyocyte proliferation. AM1241 also decreased serum levels of MDA, TNF-? and IL-6 after MI. In addition, AM1241 can ameliorate left ventricular ejection fraction and fractional shortening, and reduce fibrosis. Moreover, AM1241 treatment markedly increased p-Akt and HO-1 expression, and promoted Nrf-2 nuclear translocation. However, PI3K inhibitor wortmannin eliminated these cardioprotective roles of AM1241. In conclusion, AM1241 could induce myocardial regeneration and improve cardiac function, which might be associated with PI3K/Akt/Nrf2 signaling pathway activation. Our findings may provide a promising strategy for cardiac endogenous regeneration after MI.
Related JoVE Video
Electroacupuncture decreases cognitive impairment and promotes neurogenesis in the APP/PS1 transgenic mice.
BMC Complement Altern Med
PUBLISHED: 01-10-2014
Show Abstract
Hide Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disease for which there is currently no effective treatment. The purpose of this study was to investigate whether repeated electroacupuncture (EA) stimulation would improve cognitive function and the pathological features of AD in amyloid precursor protein (APP)/presenilin 1 (PS1) double transgenic mice.
Related JoVE Video
Transcatheter versus surgical closure of perimembranous ventricular septal defects in children: a randomized controlled trial.
J. Am. Coll. Cardiol.
PUBLISHED: 01-06-2014
Show Abstract
Hide Abstract
The objective of this study was to evaluate the safety and efficacy of the surgical versus transcatheter approach to correct perimembranous ventricular septal defects (pmVSDs) in a prospective, randomized, controlled clinical trial.
Related JoVE Video
Electroacupuncture attenuates reference memory impairment associated with astrocytic NDRG2 suppression in APP/PS1 transgenic mice.
Mol. Neurobiol.
PUBLISHED: 01-05-2014
Show Abstract
Hide Abstract
Electroacupuncture (EA) has demonstrated therapeutic potential for the treatment of Alzheimer's disease (AD). A previous study reported that N-myc downstream-regulated gene 2 (NDRG2) was upregulated in the brain of patients with AD. In the present study, we investigated the effects of repeated EA administration on reference memory impairment and the role of NDRG2 in an amyloid precursor protein (APP)/presenilin-1 (PS1) double transgenic mouse model. Age-matched wild-type and transgenic mice were treated with EA (once per day for 30 min) for 4 weeks (four courses of 5 days EA administration and 2 days rest) beginning at 10 months of age. At seven and ten postnatal months of age and following a 4-week EA treatment regime, mice received training in the Morris water maze (MWM) and a probe test. Brain tissue was analyzed via Western blot and double-label immunofluorescence. Beginning at 7 months of age, APP/PS1 mice began to exhibit deficits in reference memory in the MWM test, an impairment associated with upregulation of glial fibrillary acidic protein (GFAP) and NDRG2. Four weeks of EA administration significantly ameliorated cognitive impairments and suppressed GFAP and NDRG2 upregulation. In conclusion, our findings demonstrated that EA administration can alleviate reference memory deficits and suppress NDRG2 upregulation in an AD transgenic mouse model. This study provides supportive evidence for EA as an effective therapeutic intervention for AD, as well as NDRG2 as a novel target for AD treatment.
Related JoVE Video
Neuroprotective gases--fantasy or reality for clinical use?
Prog. Neurobiol.
PUBLISHED: 01-03-2014
Show Abstract
Hide Abstract
The neuroprotective properties for certain medical gases have been observed for decades, leading to extensive research that has been widely reported and continues to garner interest. Common gases including oxygen, hydrogen, carbon dioxide and nitric oxide, volatile anesthetics such as isoflurane, sevoflurane, halothane, enflurane and desflurane, non-volatile anesthetics such as xenon and nitrous oxide, inert gases such as helium and argon, and even gases classically considered to be toxic (e.g., hydrogen sulfide and carbon monoxide) have all been supported by the evidence alluding to their use as potential neuroprotective agents. A wide range of neural injury types such as ischemic/hemorrhagic, stroke, subarachnoid hemorrhage, traumatic brain injury, perinatal hypoxic-ischemic brain injuries, neurodegenerative disease as well as spinal cord ischemia have been used as platforms for studying the neuroprotective effects of these gases, yet until now, none of the gases has been widely introduced into clinical use specifically for protection against neural injury. Insufficient clinical data together with contradictory paradigms and results further hinders the clinical trials. However, pre-clinical models suggest that despite the various classes of gases and the broad range of injuries to which medical gases confer, protection, several underlying mechanisms for their neuroprotective properties are similar. In this review, we summarize the literature concerning the neuroprotective effect of each gas and its underlying mechanisms, extract common targets reported for the neuroprotective effects of different gases, highlight the conflicting observations from clinical trials and further discuss the possible hindrances impeding clinical applications in order to propose future research perspectives and therapeutic exploitations.
Related JoVE Video
Rosmarinic acid ameliorates PTSD-like symptoms in a rat model and promotes cell proliferation in the hippocampus.
Prog. Neuropsychopharmacol. Biol. Psychiatry
PUBLISHED: 01-03-2014
Show Abstract
Hide Abstract
Rosmarinic acid (RA) is an important component of Chinese herbal medicine treatments and has been demonstrated to exert therapeutic effects in mood disorders. The present study was designed to assess the effects of RA on post-traumatic stress disorder (PTSD)-like symptoms, hippocampal cell proliferation and phosphorylation extracellular regulated protein kinases (pERK1/2) expression. We found that administration of RA (10mg/kg) alleviated PTSD-like symptoms in rats exposed to an enhanced single prolonged stress (ESPS) paradigm and restored hippocampal proliferation and pERK1/2 expression. Interestingly, the effects of RA were inhibited by the blockage of the ERK signaling. These data support the use of RA for treating PTSD and indicate that the ERK1/2 signaling cascade may play a critical role in the therapeutic efficacy of RA in treating such conditions.
Related JoVE Video
Genistein attenuates brain damage induced by transient cerebral ischemia through up-regulation of ERK activity in ovariectomized mice.
Int. J. Biol. Sci.
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Stroke has severe consequences in postmenopausal women. As replacement therapy of estrogen have various adverse effects and the undermined outcomes. Genistein, a natural phytoestrogen, has been suggested to be a potential neuroprotective agent for such stroke patients. However, the role of genistein and its underlying mechanism in ovariectomized mice has not yet been evaluated. In the present study, ovariectomized mice were treated with genistein (10 mg/kg) or vehicle daily for two weeks before developing transient cerebral ischemia (middle cerebral artery occlusion). The neurological manifestation was evaluated, and infarct volumes were demonstrated by 2,3,5-triphenyltetrazolium chloride staining at 24 h after reperfusion. In addition, phosphorylation of extracellular signal-regulated kinase (ERK) was detected by Western blotting and immunofluorescence staining, and cellular apoptosis was evaluated in the ischemic penumbra. We found that treatment with genistein reduced infarct volumes, improved neurological outcomes and attenuated cellular apoptosis at 24 h after reperfusion. ERK1/2 showed increased phosphorylation by genistein treatment after reperfusion, and an ERK1/2 inhibitor U0126 abolished this protective effect of genistein in terms of infarct volumes, neurological scores and cellular apoptosis. Our findings indicate that treatment with genistein can reduce the severity of subsequent stroke episodes, and that this beneficial function is associated with ERK activation.
Related JoVE Video
Myocardial protective effect of extracellular superoxide dismutase gene modified bone marrow mesenchymal stromal cells on infarcted mice hearts.
Theranostics
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Extracellular superoxide dismutase (ecSOD) is a unique scavenger of superoxide anions and a promising target of gene therapy for ischemia/reperfusion injury (I/R). However, conventional gene therapies have limitation in effectiveness and efficiency. This study aimed to investigate the protective effects of ecSOD gene modified bone marrow mesenchymal stromal cells (BMSCs) on cardiac function improvement in mice infarcted heart.
Related JoVE Video
Aspirin promotes oligodendrocyte precursor cell proliferation and differentiation after white matter lesion.
Front Aging Neurosci
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Cerebral white matter lesion (WML) is one of the main causes for cognitive impairment and is often caused by chronic cerebral hypoperfusion. A line of evidence has shown that aspirin has neuroprotective effects and produces some benefits in long-term outcome and survival for ischemic stroke patients. However, whether aspirin exerts a protective effect against WML is still largely unknown. Here, we showed that aspirin could promote oligodendrocyte precursor cell (OPC) proliferation and differentiation into oligodendrocytes after WML. Male Sprague-Dawley rats were subjected to permanent bilateral common carotid artery occlusion, a well-established model for WML. Four weeks later, Morris water maze test showed an impairment of learning and memory ability of rat while aspirin treatment improved behavioral performance. Low dose of aspirin (25?mg/kg) was found to elevate the number of OPCs while relatively high doses (100-200?mg/kg) increased that of oligodendrocytes, and ameliorated WML-induced the thinning of myelin, as revealed by the electron microscope. Similarly, our in vitro study also showed that relatively low and high doses of aspirin enhanced OPC proliferation and differentiation into oligodendrocytes, respectively. Furthermore, we revealed that aspirin enhanced extracellular signal-related kinase (ERK) but inhibited RhoA activities. In summary, we provided the first evidence that aspirin can promote oligodendrogenesis and oligodendrocyte myelination after WML, which may involve ERK and RhoA pathways.
Related JoVE Video
Cinepazide maleate protects PC12 cells against oxygen-glucose deprivation-induced injury.
Neurol. Sci.
PUBLISHED: 11-19-2013
Show Abstract
Hide Abstract
Our previous study showed that cinepazide maleate (CM) was as effective and safe as mildronate in the treatment of acute ischemic stroke in a randomized, double-blind, active-controlled phase II multicenter trial, but underlying mechanism(s) is not well understood. As an extending study, here we demonstrated that CM could protect neuronal cells by affecting mitochondrial functions. PC12 cells were exposed to 2.5 h oxygen-glucose deprivation (OGD) followed by a 24 h reoxygenation, and then treated with different concentrations (1, 10, 100 ?M) of CM. Among various concentrations, 10 ?M CM exhibited most significant protection on PC12 cells against OGD injury. CM was found to suppress OGD-induced oxidative stress, as supported by its capability of reducing intracellular reactive oxygen species and malondialdehyde production and enhancing superoxide dismutase activity. Importantly, our results showed that CM could preserve mitochondrial functions, as revealed by its capability of stabilizing mitochondrial membrane potential, improving OGD-induced suppression of mitochondrial respiratory complex activities and enhancing ATP production. In summary, our present study provides the first evidence that CM can protect neuronal cells against OGD injury by preserving mitochondrial functions.
Related JoVE Video
Recombinant human thioredoxin-1 promotes neurogenesis and facilitates cognitive recovery following cerebral ischemia in mice.
Neuropharmacology
PUBLISHED: 10-18-2013
Show Abstract
Hide Abstract
Cerebral ischemia (CI) can induce loss of hippocampal neurons, causing cognitive dysfunction such as learning and memory deficits. In adult mammals, the hippocampal dentate gyrus contains neural stem cells (NSCs) that continuously generate newborn neurons and integrate into the pre-existing networks throughout life, which may ameliorate cognitive dysfunction following CI. Recent studies have demonstrated that recombinant human thioredoxin-1 (rhTrx-1) could promote proliferation of human adipose tissue-derived mesenchymal stem cells and angiogenesis. To investigate whether rhTrx-1 also regulates hippocampal neurogenesis following CI and its underlying mechanisms, adult mice were subjected to bilateral common carotid arteries occlusion (BCCAO) to induce CI and treated with rhTrx-1 before reperfusion. Mice treated with rhTrx-1 showed shortened escape latencies in Morris water maze by 30 days and improvements in spatial memory demonstrated by probe trial test. Enhanced NSCs proliferation was observed at day 14, indicated by BrdU and Ki67 immunostaining. Doublecortin (DCX)(+) cells were also significantly increased following rhTrx-1 treatment. Despite increases in BrdU(+)/NeuN(+) cells by day 30, the double-labeling to total BrdU(+) ratio was not affected by rhTrx-1 treatment. The promotive effects of rhTrx-1 on NSCs proliferation and differentiation were further confirmed in in vitro assays. Western blot revealed increased ERK1/2 phosphorylation after rhTrx-1 treatment, and the ERK inhibitor U0126 abrogated the effects of rhTrx-1 on NSCs proliferation. These results provide initial evidence that rhTrx-1 effects neurogenesis through the ERK signaling pathway and are beneficial for improving spatial learning and memory in adult mice following global CI.
Related JoVE Video
Retrograde Ductal Administration of the Adenovirus-Mediated Gene Leads to Improved Sialaden Hypofunction in Estrogen-Deficient Rats.
Mol. Ther.
PUBLISHED: 07-02-2013
Show Abstract
Hide Abstract
One of the most common oral manifestations of menopause is xerostomia. Oral dryness can profoundly affect quality of life and interfere with basic daily functions, such as chewing, deglutition, and speaking. Although the feeling of oral dryness can be ameliorated after estrogen supplementation, the side effects of estrogen greatly restrict its application. We previously found that N-myc downstream-regulated gene 2 (NDRG2) is involved in estrogen-mediated ion and fluid transport in a cell-based model. In the present study, we used an ovariectomized rat model to mimic xerostomia in menopausal women and constructed two adenovirus vectors bearing NDRG2 to validate their therapeutic potential. Ovariectomized rats exhibited severe sialaden hypofunction, including decreased saliva secretion and ion reabsorption as well as increased water intake. Immunohistochemistry revealed that the expression of NDRG2 and Na(+) reabsorption-related Na(+)/K(+)-ATPase and ENaC decreased in ovariectomized rat salivary glands. We further showed that the localized delivery of NDRG2 improved the dysfunction of Na(+) and Cl(-) reabsorption. In addition, the saliva flow rate and water drinking recovered to normal. This study elucidates the mechanism of estrogen deficiency-mediated xerostomia or sialaden hypofunction and provides a promising strategy for therapeutic intervention.Molecular Therapy (2013); doi:10.1038/mt.2013.286.
Related JoVE Video
Inhibition of notch signaling protects mouse lung against zymosan-induced injury.
Shock
PUBLISHED: 06-29-2013
Show Abstract
Hide Abstract
Notch signaling, a critical pathway in cell fate determination, is well known to be involved in immune and inflammatory reactions, whereas its role in acute lung injury (ALI) remains unclear. Here, we report that notch signal activity is upregulated in lung tissue harvested from an ALI mouse model (induced by zymosan). We showed that notch signal activity in lung tissue was increased 6 h after zymosan injection and peaked at 24 h. Inhibition of notch signaling by either pre- or post-zymosan treatment with N-[N-(3,5-difluorophenacetyl)-l-alanyl]-(S)-phenylglycine t-butyl ester (DAPT) significantly reduced lung injury, characterized by improvement in lung histopathology, lung permeability (protein concentration in bronchoalveolar lavage fluid and lung wet-to-dry weight ratio), lung inflammation (bronchoalveolar lavage fluid cell count, lung myeloperoxidase, and tumor necrosis factor ?), and also alleviated systemic inflammation and tissue damage, thus increasing the 7-day survival rate in zymosan-challenged mice. In conclusion, the role of notch signaling is functionally significant in the development of ALI. Inhibition of notch signaling by pretreatment or posttreatment with DAPT likely exerts its effects in part by mediating the expression of proinflammatory and anti-inflammatory cytokines and influencing tissue neutrophil recruitment. These results also imply that notch inhibitors may help attenuate local inflammatory lung damage.
Related JoVE Video
mTORC1 and mTORC2 play different roles in the functional survival of transplanted adipose-derived stromal cells in hind limb ischemic mice via regulating inflammation in vivo.
Stem Cells
PUBLISHED: 06-26-2013
Show Abstract
Hide Abstract
Poor cell survival severely limits the beneficial effects of stem cell therapy for peripheral arterial disease (PAD). This study was designed to investigate the role of mammalian target of rapamycin (mTOR) in the survival and therapeutic function of transplanted murine adipose-derived stromal cells (mADSCs) in a murine PAD model. mADSCs (1.0 × 10(7)) were isolated from dual-reporter firefly luciferase and enhanced green fluorescent protein-positive transgenic mice, intramuscularly implanted into the hind limb of C57BL/6 mice after femoral artery ligation/excision, and monitored using noninvasive bioluminescence imaging (BLI). Although engrafted mADSCs produced antiapoptotic/proangiogenic effects in vivo by modulating the inflammatory and angiogenic cytokine response involving the mTOR pathway, longitudinal BLI revealed progressive death of post-transplant mADSCs within ~4 weeks in the ischemic hind limb. Selectively targeting mTOR complex-1 (mTORC1) using low-dose rapamycin treatment with mADSCs attenuated proinflammatory cytokines (interleukin [IL]-1? and tumor necrosis factor-alpha [TNF-?]) expression and neutrophil/macrophage infiltration, which overtly promoted mADSCs viability and antiapoptotic/proangiogenic efficacy in vivo. However, targeting dual mTORC1/mTORC2 using PP242 or high-dose rapamycin caused IL-1?/TNF-? upregulation and anti-inflammatory IL-10, IL-6, and vascular endothelial growth factor/vascular endothelial growth factor receptor 2 downregulation, undermining the survival and antiapoptotic/proangiogenic action of mADSCs in vivo. Furthermore, low-dose rapamycin abrogated TNF-? secretion by mADSCs and rescued the cells from hypoxia/reoxygenation-induced death in vitro, while PP242 or high-dose rapamycin exerted proinflammatory effects and promoted cell death. In conclusion, mTORC1 and mTORC2 may differentially regulate inflammation and affect transplanted mADSCs functional survival in ischemic hind limb. These findings uncover that mTOR may evolve into a promising candidate for mechanism-driven approaches to facilitate the translation of cell-based PAD therapy.
Related JoVE Video
Glycogen Synthase Kinase-3? Is Involved in Electroacupuncture Pretreatment via the Cannabinoid CB1 Receptor in Ischemic Stroke.
Mol. Neurobiol.
PUBLISHED: 06-15-2013
Show Abstract
Hide Abstract
We have previously shown that electroacupuncture (EA) pretreatment produces neuroprotective effects, which were mediated through an endocannabinoid signal transduction mechanism. Herein, we have studied the possible contribution of the phosphorylated form of glycogen synthase kinase-3? (GSK-3?) in EA pretreatment-induced neuroprotection via the cannabinoid CB1 receptor (CB1R). Focal transient cerebral ischemia was induced by middle cerebral artery occlusion in rats. Phosphorylation of GSK-3? at Ser-9 [p-GSK-3? (Ser-9)] was evaluated in the penumbra tissue following reperfusion. Infarct size and neurological score were assessed in the presence of either PI3K inhibitors or a GSK-3? inhibitor 72 h after reperfusion. Cellular apoptosis was evidenced by TUNEL staining and determination of the Bax/Bcl-2 ratio 24 h after reperfusion. The present study showed that EA pretreatment increased p-GSK-3?(Ser-9) 2 h after reperfusion in the ipsilateral penumbra. Augmented phosphorylation of GSK-3? induced similar neuroprotective effects as did EA pretreatment. By contrast, inhibition of PI3K dampened the levels of p-GSK-3?(Ser-9), and reversed not only the neuroprotective effect but also the anti-apoptotic effect following EA pretreatment. Regulation of GSK-3? by EA pretreatment was abolished following treatment with a CB1R antagonist and CB1R knockdown, whereas two CB1R agonists enhanced the phosphorylation of GSK-3?. Therefore we conclude that EA pretreatment protects against cerebral ischemia/reperfusion injury through CB1R-mediated phosphorylation of GSK-3?.
Related JoVE Video
Hemopexin induces neuroprotection in the rat subjected to focal cerebral ischemia.
BMC Neurosci
PUBLISHED: 05-31-2013
Show Abstract
Hide Abstract
The plasma protein hemopexin (HPX) exhibits the highest binding affinity to free heme. In vitro experiments and gene-knock out technique have suggested that HPX may have a neuroprotective effect. However, the expression of HPX in the brain was not well elucidated and its expression after cerebral ischemia-reperfusion injury was also poorly studied. Furthermore, no in vivo data were available on the effect of HPX given centrally on the prognosis of focal cerebral ischemia.
Related JoVE Video
Different propofol-remifentanil or sevoflurane-remifentanil bispectral index levels for electrocorticographic spike identification during epilepsy surgery.
Anesthesiology
PUBLISHED: 05-08-2013
Show Abstract
Hide Abstract
Medical therapy, the cornerstone of managing epilepsy, still fails a substantial portion of patients. Little information is available regarding the potential impact of different bispectral index (BIS) levels on electrocorticographic spike identification for surgical epileptic foci resection.
Related JoVE Video
The Neuroprotective Effects of Isoflurane Preconditioning in a Murine Transient Global Cerebral Ischemia-Reperfusion Model: The Role of the Notch Signaling Pathway.
Neuromolecular Med.
PUBLISHED: 04-21-2013
Show Abstract
Hide Abstract
Inhalational anesthetic preconditioning can induce neuroprotective effects, and the notch signaling pathway plays an important role in neural progenitor cell differentiation and the inflammatory response after central nervous system injury. This study evaluated whether the neuroprotective effect of isoflurane preconditioning is mediated by the activation of the notch signaling pathway. Mice were divided into two groups consisting of those that did or did not receive preconditioning with isoflurane. The expression levels of notch-1, notch intracellular domain (NICD), and hairy and enhancer of split (HES-1) were measured in mice subjected to transient global cerebral ischemia-reperfusion injury. The notch signaling inhibitor DAPT and conditional notch-RBP-J knockout mice were used to investigate the mechanisms of isoflurane preconditioning-induced neuroprotection. Immunohistochemical staining, real-time polymerase chain reaction assays, and Western blotting were performed. Isoflurane preconditioning induced neuroprotection against global cerebral ischemia. Preconditioning up-regulated the expression of notch-1, HES-1, and NICD after ischemic-reperfusion. However, these molecules were down-regulated at 72 h after ischemic-reperfusion. The inhibition of notch signaling activity by DAPT significantly attenuated the isoflurane preconditioning-induced neuroprotection, and similar results were obtained using notch knockout mice. Our results demonstrate that the neuroprotective effects of isoflurane preconditioning are mediated by the pre-activation of the notch signaling pathway.
Related JoVE Video
Activation of STAT3 is involved in neuroprotection by electroacupuncture pretreatment via cannabinoid CB1 receptors in rats.
Brain Res.
PUBLISHED: 04-11-2013
Show Abstract
Hide Abstract
Pretreatment with electroacupuncture (EA) attenuates cerebral ischemic injury through the endocannabinoid system, although the molecular mechanisms mediate this neuroprotection are unknown. It is well-known that signal transducer and activator of transcription 3 (STAT3) plays an essential role in cell survival and proliferation. Therefore, we investigated whether STAT3 is involved in EA pretreatment-induced neuroprotection via cannabinoid CB1 receptors (CB1R) after transient focal cerebral ischemia in rats. Two hours after EA pretreatment, focal cerebral ischemia was induced by middle cerebral artery occlusion (MACO) for 120 min. The expression of pSTAT3(Ser727), which is necessary for STAT3 activation, was examined in the ipsilateral ischemic penumbra. Infarct volumes and neurological scores were evaluated at 72 h after MACO in the presence or absence of the STAT3 inhibitor peptide (PpYLKTK). Neuronal apoptosis and the Bax/Bcl-2 ratio were also evaluated 24h after reperfusion. Our results showed that EA pretreatment significantly enhanced neuronal expression of pSTAT3(Ser727) in the ischemic penumbra 6h after reperfusion. Moreover, EA pretreatment reduced infarct volume, improved neurological outcome, inhibited neuronal apoptosis and decreased the Bax/Bcl-2 ratio following reperfusion. The beneficial effects of EA were attenuated by PpYLKTK administered 30 min before MACO, and PpYLKTK effectively reversed the increase in pSTAT3(Ser727) expression. Furthermore, CB1R antagonist or CB1R knockdown with siRNA blocked the elevation of pSTAT3(Ser727) expression by EA pretreatment, whereas the two CB1R agonists increased STAT3 activation. In conclusion, EA pretreatment enhances STAT3 activation via CB1R to protect against cerebral ischemia, suggesting that STAT3 activation may be a novel target for stroke intervention.
Related JoVE Video
Cardioprotective effect of remote ischemic postconditioning on children undergoing cardiac surgery: a randomized controlled trial.
Paediatr Anaesth
PUBLISHED: 04-02-2013
Show Abstract
Hide Abstract
Remote ischemic postconditioning (RPostC) is a noninvasive intervention that has demonstrated cardioprotection and neuroprotection in animal studies.
Related JoVE Video
NDRG2 is involved in anti-apoptosis induced by electroacupuncture pretreatment after focal cerebral ischemia in rats.
Neurol. Res.
PUBLISHED: 04-02-2013
Show Abstract
Hide Abstract
We first reported that electroacupuncture (EA) pretreatment at the Baihui acupoint (GV20) induces ischemic tolerance. Our recent study demonstrated that N-Myc downstream-regulated gene 2 (NDRG2) expression was up-regulated following transient focal cerebral ischemia. Therefore, we investigated whether NDRG2 was involved in the ischemic tolerance induced by EA pretreatment in rats.
Related JoVE Video
A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia.
J. Clin. Invest.
PUBLISHED: 03-21-2013
Show Abstract
Hide Abstract
Neuropathic pain is characterized by mechanical allodynia induced by low-threshold myelinated A?-fiber activation. The original gate theory of pain proposes that inhibitory interneurons in the lamina II of the spinal dorsal horn (DH) act as "gate control" units for preventing the interaction between innocuous and nociceptive signals. However, our understanding of the neuronal circuits underlying pain signaling and modulation in the spinal DH is incomplete. Using a rat model, we have shown that the convergence of glycinergic inhibitory and excitatory A?-fiber inputs onto PKC?+ neurons in the superficial DH forms a feed-forward inhibitory circuit that prevents A? input from activating the nociceptive pathway. This feed-forward inhibition was suppressed following peripheral nerve injury or glycine blockage, leading to inappropriate induction of action potential outputs in the nociceptive pathway by A?-fiber stimulation. Furthermore, spinal blockage of glycinergic synaptic transmission in vivo induced marked mechanical allodynia. Our findings identify a glycinergic feed-forward inhibitory circuit that functions as a gate control to separate the innocuous mechanoreceptive pathway and the nociceptive pathway in the spinal DH. Disruption of this glycinergic inhibitory circuit after peripheral nerve injury has the potential to elicit mechanical allodynia, a cardinal symptom of neuropathic pain.
Related JoVE Video
NDRG2: a newly identified mediator of insulin cardioprotection against myocardial ischemia-reperfusion injury.
Basic Res. Cardiol.
PUBLISHED: 02-10-2013
Show Abstract
Hide Abstract
The N-myc downstream-regulated gene 2 (NDRG2) is involved in cell apoptosis and survival. Although reported to be highly expressed in the cardiac tissue, the biological function of NDRG2 in the heart remains to be established. Insulin exerts protective effects against myocardial ischemia/reperfusion (I/R) injury through the PI3K/Akt pathway. Here, we examined the changes in phosphorylation of NDRG2, a novel substrate and phosphoprotein of Akt, in insulin-induced protection against myocardial I/R. Rat hearts were subjected to 30 min regional ischemia followed by reperfusion with or without insulin at the onset of reperfusion. Reperfusion with insulin inhibited myocardial apoptosis and reduced infarct size, as well as significantly up-regulated myocardial Akt and NDRG2 phosphorylation levels compared with the I/R group. These effects of insulin were blocked by pretreatment with the PI3K inhibitor wortmannin or Akt inhibitor. To further ascertain the role of NDRG2 in insulin-induced cardioprotection, cardiomyocytes were transduced with a lentivirus encoding shRNA targeting NDRG2 (loss-of-function), which rendered the cells more susceptible to I/R injury and significantly blunted the anti-apoptotic effect of insulin. Moreover, the NDRG2 shRNA lentivirus was tested in vivo, and NDRG2 knockdown aggravated myocardial I/R injury and attenuated the insulin-mediated cardioprotection against I/R injury. Taken together, these results suggest a novel role of PI3K/Akt/NDRG2 signaling in the cardioprotective effect of insulin.
Related JoVE Video
Glutamate transporter type 3 knockout leads to decreased heart rate possibly via parasympathetic mechanism.
Transgenic Res.
PUBLISHED: 01-30-2013
Show Abstract
Hide Abstract
Parasympathetic tone is a dominant neural regulator for basal heart rate. Glutamate transporters (EAAT) via their glutamate uptake functions regulate glutamate neurotransmission in the central nervous system. We showed that EAAT type 3 (EAAT3) knockout mice had a slower heart rate than wild-type mice when they were anesthetized. We design this study to determine whether non-anesthetized EAAT3 knockout mice have a slower heart rate and, if so, what may be the mechanism for this effect. Young adult EAAT3 knockout mice had slower heart rates than those of their littermate wild-type mice no matter whether they were awake or anesthetized. This difference was abolished by atropine, a parasympatholytic drug. Carbamylcholine chloride, a parasympathomimetic drug, equally effectively reduced the heart rates of wild-type and EAAT3 knockout mice. Positive immunostaining for EAAT3 was found in the area of nuclei deriving fibers for vagus nerve. There was no positive staining for the EAATs in the sinoatrial node. These results suggest that EAAT3 knockout mice have a slower heart rate at rest. This effect may be caused by an increased parasympathetic tone possibly due to increased glutamate neurotransmission in the central nervous system. These findings indicate that regulation of heart rate, a vital sign, is one of the EAAT biological functions.
Related JoVE Video
EMMPRIN is an independent negative prognostic factor for patients with astrocytic glioma.
PLoS ONE
PUBLISHED: 01-29-2013
Show Abstract
Hide Abstract
Extracellular matrix metalloproteinase inducer (EMMPRIN), also known as CD147, is a member of the immunoglobulin superfamily that is present on the surface of tumor cells and stimulates adjacent fibroblasts to produce matrix metalloproteinases (MMPs). It has been proved to be associated with tumor invasion and metastasis in various human malignancies. In our study, the protein expression level of EMMPRIN in 306 cases of astrocytic glioma is investigated by immunohistochemistry assay. Statistical analysis was utilized to evaluate the association of EMMPRIN with clinicopathological characteristics and prognosis of patients. It was proved that EMMPRIN protein expression was increased in glioma compared with that in normal brain tissue. Moreover, EMMPRIN immunohistochemical staining was correlated with WHO grade and Karnofsky performance score for strong positive EMMPRIN staining is more frequently detected in glioma of advanced grade or low KPS score. It is also demonstrated that EMMPRIN could be an independent negative prognostic factor in glioma for patients with glioma of strong EMMPRIN staining tend to have high risk of death. These results proved that EMMPRIN is associated with prognosis of glioma, which may also suggest the potential role of EMMPRIN in glioma management.
Related JoVE Video
M9, a novel region of amino-Nogo-A, attenuates cerebral ischemic injury by inhibiting NADPH oxidase-derived superoxide production in mice.
CNS Neurosci Ther
PUBLISHED: 01-27-2013
Show Abstract
Hide Abstract
In acute stroke, neurological damage is due to oxidative stress and neuronal apoptotic death. This study investigated whether Nogo-A 290-562 residues region (M9), fused to the transduction domain of the HIV trans-activator (TAT) protein, is neuroprotective against cerebral ischemia and the mechanisms.
Related JoVE Video
NDRG2 is a novel p53-associated regulator of apoptosis in C6-originated astrocytes exposed to oxygen-glucose deprivation.
PLoS ONE
PUBLISHED: 01-17-2013
Show Abstract
Hide Abstract
N-myc downstream-regulated gene 2 (NDRG2) has been documented to be a pro-differentiative and anti-proliferative gene in cancer research. Our previous study found a significant NDRG2 up-regulation in reactive astrocytes of penumbra after transient focal cerebral ischemia, which was parallel to the enhancement of TUNEL-positive signals. However, it is still uncertain whether NDRG2 participates in cellular apoptosis induced by ischemia-reperfusion injury in brain. In this study, we investigated the role of NDRG2 in cellular apoptosis induced by oxygen-glucose deprivation (OGD) in IL-6-differentiated C6 glioma cells. The results showed that NDRG2 was up-regulated and translocated from the cytoplasm to the nucleus after OGD exposure. NDRG2 over-expression exhibited an anti-proliferative effect and increased the Bax/Bcl-2 ratio after OGD exposure, while NDRG2 silencing promoted the cellular proliferation and attenuated the up-regulation of Bax/Bcl-2 ratio. The pro-apoptotic effect of p53 was verified by the results in which p53 silencing greatly reduced the percentage of OGD-induced apoptotic cells. p53 silencing also reduced the OGD-induced NDRG2 up-regulation. However, over-expression of p53 did not further improve the NDRG2 up-regulation. In conclusion, NDRG2 is a p53-associated regulator of apoptosis in C6-originated astrocytes after OGD exposure. These findings bring insight to the roles of NDRG2 in ischemic-hypoxic injury and provide potential targets for future clinical therapies on stroke.
Related JoVE Video
A novel domain of amino-Nogo-A protects HT22 cells exposed to oxygen glucose deprivation by inhibiting NADPH oxidase activity.
Cell. Mol. Neurobiol.
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
This study aimed to investigate the protective effect of the M9 region (residues 290-562) of amino-Nogo-A fused to the human immunodeficiency virus trans-activator TAT in an in vitro model of ischemia-reperfusion induced by oxygen-glucose deprivation (OGD) in HT22 hippocampal neurons, and to investigate the role of NADPH oxidase in this protection. Transduction of TAT-M9 was analyzed by immunofluorescence staining and western blot. The biologic activity of TAT-M9 was assessed by its effects against OGD-induced HT22 cell damage, compared with a mutant M9 fusion protein or vehicle. Cellular viability and lactate dehydrogenase (LDH) release were assessed. Neuronal apoptosis was evaluated by flow cytometry. The Bax/Bcl-2 ratio was determined by western blotting. Reactive oxygen species (ROS) levels and NADPH oxidase activity were also measured in the presence or absence of an inhibitor or activator of NADPH oxidase. Our results confirmed the delivery of the protein into HT22 cells by immunofluorescence and western blot. Addition of 0.4 ?mol/L TAT-M9 to the culture medium effectively improved neuronal cell viability and reduced LDH release induced by OGD. The fusion protein also protected HT22 cells from apoptosis, suppressed overexpression of Bax, and inhibited the reduction in Bcl-2 expression. Furthermore, TAT-M9, as well as apocynin, decreased NADPH oxidase activity and ROS content. The protective effects of the TAT-M9 were reversed by TBCA, an agonist of NADPH oxidase. In conclusion, TAT-M9 could be successfully transduced into HT22 cells, and protected HT22 cells against OGD damage by inhibiting NADPH oxidase-mediated oxidative stress. These findings suggest that the TAT-M9 protein may be an efficient therapeutic agent for neuroprotection.
Related JoVE Video
Impaired mitochondrial biogenesis due to dysfunctional adiponectin-AMPK-PGC-1? signaling contributing to increased vulnerability in diabetic heart.
Basic Res. Cardiol.
PUBLISHED: 01-09-2013
Show Abstract
Hide Abstract
Impaired mitochondrial biogenesis causes skeletal muscle damage in diabetes. However, whether and how mitochondrial biogenesis is impaired in the diabetic heart remains largely unknown. Whether adiponectin (APN), a potent cardioprotective molecule, regulates cardiac mitochondrial function has also not been previously investigated. In this study, electron microscopy revealed significant mitochondrial disorders in ob/ob cardiomyocytes, including mitochondrial swelling and cristae disorientation and breakage. Moreover, mitochondrial biogenesis of ob/ob cardiomyocytes is significantly impaired, as evidenced by reduced Ppargc-1a/Nrf-1/Tfam mRNA levels, mitochondrial DNA content, ATP content, citrate synthase activity, complexes I/III/V activity, AMPK phosphorylation, and increased PGC-1? acetylation. Since APN is an upstream activator of AMPK and APN plasma levels are significantly reduced in ob/ob mice, we further tested the hypothesis that reduced APN in ob/ob mice is causatively related to mitochondrial biogenesis impairment. One week of APN treatment of ob/ob mice activated AMPK, reduced PGC-1? acetylation, increased mitochondrial biogenesis, and attenuated mitochondrial disorders. In contrast, knocking out APN inhibited AMPK-PGC-1? signaling and impaired both mitochondrial biogenesis and function. The ob/ob mice exhibited lower survival rates and exacerbated myocardial injury after MI, when compared to controls. APN supplementation improved mitochondrial biogenesis and attenuated MI injury, an effect that was almost completely abrogated by the AMPK inhibitor compound C. In high glucose/high fat treated neonatal rat ventricular myocytes, siRNA-mediated knockdown of PGC-1? blocked gAd-enhanced mitochondrial biogenesis and function and attenuated protection against hypoxia/reoxygenation injury. In conclusion, hypoadiponectinemia impaired AMPK-PGC-1? signaling, resulting in dysfunctional mitochondrial biogenesis that constitutes a novel mechanism for rendering diabetic hearts more vulnerable to enhanced MI injury.
Related JoVE Video
SirT1 mediates hyperbaric oxygen preconditioning-induced ischemic tolerance in rat brain.
J. Cereb. Blood Flow Metab.
PUBLISHED: 01-09-2013
Show Abstract
Hide Abstract
Our previous studies have shown that hyperbaric oxygen preconditioning (HBO-PC) induces tolerance to cerebral ischemia/reperfusion (I/R). This study aimed to investigate whether SirT1, a class III histone deacetylase, is involved in neuroprotection elicited by HBO-PC in animal and cell culture models of ischemia. Rats were subjected to middle cerebral artery occlusion for 120?minutes after HBO-PC (once a day for 5 days). Primary cultured cortical neurons were exposed to 2?hours of HBO-PC after 2?hours of oxygen-glucose deprivation (OGD). We showed that HBO-PC increased SirT1 protein and mRNA expression, promoted neurobehavioral score, reduced infarct volume, and improved morphology at 24?hours and 7 days after cerebral I/R. Neuroprotection of HBO-PC was attenuated by SirT1 inhibitor EX527 and SirT1 knockdown by short interfering RNA (siRNA), whereas it was mimicked by SirT1 activator resveratrol. Furthermore, HBO-PC enhanced SirT1 expression and cell viability and reduced lactate dehydrogenase release 24?hours after OGD/re-oxygenation. The neuroprotective effect of HBO-PC was emulated through upregulating SirT1 and, reversely, attenuated through downregulating SirT1. The modulation of SirT1 was made by adenovirus infection carrying SirT1 or SirT1 siRNA. Besides, SirT1 increased B-cell lymphoma 2 (Bcl-2) expression and decrease cleaved caspase 3. These results indicate that SirT1 mediates HBO-PC-induced tolerance to cerebral I/R through inhibition of apoptosis.
Related JoVE Video
Effects of sevoflurane on self-renewal capacity and differentiation of cultured neural stem cells.
Neurochem. Res.
PUBLISHED: 01-05-2013
Show Abstract
Hide Abstract
Sevoflurane anesthesia in infant rats can result in long-term cognitive impairment, possibly by inhibiting neurogenesis. The hippocampus is critical for memory consolidation and is one of only two mammalian brain regions where neural stem cells (NSCs) are renewed continuously throughout life. To elucidate the pathogenesis of sevoflurane-induced cognitive dysfunction, we measured the effects of clinical sevoflurane doses on the survival, proliferation, and differentiation of hippocampal NSCs. Neural stem cells were isolated from Sprague-Dawley rat embryos, expanded in vitro, and exposed to sevoflurane at 0.5, 1, or 1.5 minimal alveolar concentration (MAC) for 1 or 6 h. Two days after treatment, cell viability, cytotoxicity, and apoptosis rate were estimated by WST-1 assay, lactate dehydrogenase (LDH) activity, and TdT-mediated dUTP-biotin nick end labeling (TUNEL), respectively, while proliferation rate was assessed by 5-ethynyl-2-deoxyuridine (BrdU) incorporation and Ki67 staining. Differentiation was assayed 7 days after treatment by immunocytochemistry and Western blots of neuron and glial markers. The phosphorylation level of p44/42 extracellular regulated kinases (ERK1/2) was measured in the proliferation and differentiation phases respectively. Sevoflurane at 1 MAC or 1.5 MAC for 1 h increased viable cell number whereas a 6 h exposure at these same concentrations suppressed proliferation and promoted apoptotic death (P < 0.01). Sevoflurane had no effect on NSC differentiation, and a sub-clinical concentration (0.5 MAC) altered neither proliferation nor viability. The phosphorylation level of ERK1/2 increased after 1 h of 1 MAC or 1.5 MAC of sevoflurane exposure in the proliferation phase, but not in the differentiation phase. Brief (1 h) exposure to sevoflurane at clinical concentrations enhanced proliferation of cultured NSCs possibly mediated by ERK1/2, but a 6 h exposure suppressed proliferation and induced apoptosis. Prolonged sevoflurane exposure may decrease the self-renewal capacity of hippocampal NSCs, resulting in cognitive deficits.
Related JoVE Video
Ginsenoside Rd promotes glutamate clearance by up-regulating glial glutamate transporter GLT-1 via PI3K/AKT and ERK1/2 pathways.
Front Pharmacol
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Ginsenoside Rd (Rd), one of the main active ingredients in Panax ginseng, has been showed to protect against ischemic cerebral damage both in vitro and in vivo. However, the underlying mechanism of Rd is largely unknown. Excessive extracellular glutamate causes excitatory toxicity, leading to cell death, and neurodegenerative processes after brain ischemia. The clearance of extracellular glutamate by astrocytic glutamate transporter GLT-1 is essential for neuronal survival after stroke. Here we investigated the effects of Rd on the levels of extracellular glutamate and the expression of GLT-1 in vivo and in vitro. After rat middle cerebral artery occlusion, Rd significantly increased the mRNA and protein expression levels of GLT-1, and reduced the burst of glutamate as revealed by microdialysis. Consistently, specific glutamate uptake by cultured astrocytes was elevated after Rd exposure. Furthermore, we showed that Rd increased the levels of phosphorylated protein kinase B (PKB/Akt) and phospho-ERK1/2 (p-ERK1/2) in astrocyte culture after oxygen-glucose deprivation. Moreover, the effect of Rd on GLT-1 expression and glutamate uptake can be abolished by PI3K/AKT agonist LY294002 or ERK1/2 inhibitor PD98059. Taken together, our findings provide the first evidence that Rd can promote glutamate clearance by up-regulating GLT-1 expression through PI3K/AKT and ERK1/2 pathways.
Related JoVE Video
Cortical inhibition deficits in recent onset PTSD after a single prolonged trauma exposure.
Neuroimage Clin
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
A variety of structural abnormalities have been described in post traumatic stress disorder (PTSD), but only a few studies have focused on cortical thickness alterations in recent onset PTSD. In this study, we adopted surface-based morphometry (SBM), which enables an exploration of global structural changes throughout the brain, in order to compare cortical thickness alterations in recent onset PTSD patients, trauma-exposed subjects but without PTSD, and normal controls. Moreover, we used region of interest (ROI) partial correlation analysis to evaluate the correlation among PTSD symptom severity and significant changes of cortical thickness. The widespread cortical thickness reduction relative to the normal controls were found in bilateral inferior and superior parietal lobes, frontal lobes, hippocampus, cingulate cortex, and right lateral occipital lobes in trauma survivors, whereas cortical thickness was only increased in left calcarine cortex in PTSD group. The average cortical thickness of hippocampus and cingulate cortex decreased by 10.75% and 9.09% in PTSD, 3.48% and 2.86% in non PTSD. We further demonstrated that the cortical thicknesses of bilateral ACC and PCC, superior frontal lobes, and hippocampus are negatively correlated with CAPS scores in all trauma survivors. Our study results suggest that stress widens cortical thinning regions and causes more serious effect in recent onset PTSD than non PTSD. It also shows that the cortical thinning in recent onset PTSD predicts the symptom severity.
Related JoVE Video
ED50 and recovery times after propofol in rats with graded cirrhosis.
Anesth. Analg.
PUBLISHED: 10-14-2011
Show Abstract
Hide Abstract
Patients with end-stage liver disease have increased sensitivity to general anesthetics. In this study, we sought to quantify sensitivity to propofol as a function of the degree of liver disease, in a rat model of cirrhosis.
Related JoVE Video
Limb remote postconditioning alleviates cerebral reperfusion injury through reactive oxygen species-mediated inhibition of delta protein kinase C in rats.
Anesth. Analg.
PUBLISHED: 08-24-2011
Show Abstract
Hide Abstract
Remote ischemic postconditioning (RPostC) is an emerging concept for cerebral infarction protection, and its potential protective mechanisms have not been well established. We attempted to investigate the implications of reactive oxygen species (ROS) and ? protein kinase C (?PKC) in neuroprotection induced by RPostC in a rat model of focal cerebral ischemia, and also to explore a possible relationship between ROS and ?PKC.
Related JoVE Video
Ginsenoside rd in experimental stroke: superior neuroprotective efficacy with a wide therapeutic window.
Neurotherapeutics
PUBLISHED: 06-08-2011
Show Abstract
Hide Abstract
Ginsenoside Rd (Rd), one of the main active ingredients in Panax ginseng, has been demonstrated to protect against ischemic cerebral damage in vitro and in vivo. In this study, we aimed to further define the preclinical characteristics of Rd. We show that Rd passes the intact blood-brain barrier and exerts protection in both transient and permanent middle cerebral artery occlusion (MCAO) in rats. In the dose-response study, Rd (10-50 mg/Kg) significantly reduced the infarct volume on postoperative days (PODs) 1, 3, and 7. This protection was associated with an improved neurological outcome for as many as 6 weeks after transient MCAO, as assessed by modified neurological severity score, modified sticky-tape test, and corner test. For comparison, Rd was significantly more effective than edaravone and slightly more effective than N-tert-butyl-alpha-phenylnitrone (PBN). In the therapeutic window study, Rd exhibited remarkable neuroprotection, even when administered for as many as 4 h after the recirculation of transient MCAO or after the onset of permanent MCAO. Furthermore, in female rats or 16-month-old male rats, the salutary effects of Rd were also observed. These findings suggest Rd is a promising neuroprotectant and provide support for future clinical studies to confirm whether Rd is beneficial in ischemic stroke.
Related JoVE Video
Activation of cholinergic anti-inflammatory pathway contributes to the protective effects of 100% oxygen inhalation on zymosan-induced generalized inflammation in mice.
J. Surg. Res.
PUBLISHED: 06-02-2011
Show Abstract
Hide Abstract
The 100% oxygen inhalation has been demonstrated to have a protective effect on mice with zymosan-induced generalized inflammation. However, the underlying mechanism is largely unknown. The present study was designed to explore the role of the cholinergic anti-inflammatory pathway in this animal model.
Related JoVE Video
Inhibition of mitochondrial permeability transition pore opening contributes to the neuroprotective effects of ischemic postconditioning in rats.
Brain Res.
PUBLISHED: 06-01-2011
Show Abstract
Hide Abstract
Ischemic postconditioning (IPost) has been shown to attenuate cerebral ischemia-reperfusion injury. However, the mechanism remains elusive. Because opening of the mitochondrial permeability transition pore (MPTP) is a crucial determinant of cell death after ischemia-reperfusion, we hypothesized that the neuroprotective effect of IPost may be associated with inhibition of MPTP opening. In part 1 of this study, pentobarbital-anesthetized rats subjected to middle cerebral artery occlusion for 90 min, followed by reperfusion for 72 h, were assigned to receive one of the following treatments: three cycles of IPost (15s each), intracerebroventricular injection of saline (control), administration of the MPTP inhibitor cyclosporin A (CsA) (2 ?mol/L, 15 ?L) or its vehicle alcohol, administration of the MPTP opener atractyloside (Atr) (2 mmol/L, 15 ?L), or IPost plus CsA/Atr treatment. Neurological deficit scores (NDS) and infarct volumes were assessed. Mitochondrial ultrastructure and swelling were also examined after reperfusion. In part 2, control and IPost groups underwent ischemia (90 min) and reperfusion (15 min). CsA and Atr groups were treated as described in part 1. Brain mitochondria were isolated after reperfusion and MPTP activity was evaluated. IPost or CsA treatment significantly improved NDS and reduced infarction volume, while Atr reversed the neuroprotective effects of IPost, and attenuated the decrease in mitochondrial swelling induced by IPost or CsA. Thus, inhibiting MPTP opening may play a crucial role in the neuroprotective effects of IPost, which may have potential clinical value against cerebral ischemia-reperfusion injury.
Related JoVE Video
?2-adrenergic receptor antagonist butoxamine partly abolishes the protection of 100% oxygen treatment against zymosan-induced generalized inflammation in mice.
Shock
PUBLISHED: 05-28-2011
Show Abstract
Hide Abstract
We have demonstrated that 100% oxygen inhalation is beneficial to zymosan-induced generalized inflammation, and reactive oxygen species may be involved in the protection of oxygen treatment. Other investigators suggest that reactive oxygen species may modulate the sympathetic nervous system activity and ?2-adrenergic receptor (?2AR)-mediated pathway. Moreover, studies have demonstrated that ?2AR agonists are beneficial to sepsis. Therefore, we assessed the effects of ?2AR antagonist butoxamine on the protection of oxygen treatment against zymosan-induced generalized inflammation in mice. Mice were given oxygen treatment by exposure to 100% oxygen for 3 h starting at 4 and 12 h after zymosan injection, respectively. In the mortality study, survival was monitored for 7 days after zymosan injection in mice. At 24 h after zymosan injection, mice were killed, and blood sample and organs were harvested for analysis. We observed that 100% oxygen treatment prevented the abnormal changes in organ histopathology, lactate dehydrogenase and C-reactive protein in serum, inflammatory cytokines in serum and tissue, and arterial blood gas analysis and improved the survival rate in zymosan-challenged mice. We found that pretreatment with ?2AR antagonist butoxamine partly abolished the protection of 100% oxygen inhalation. We also showed that zymosan induced the increase in serum 3-5-cyclic adenosine monophosphate (cAMP) and the decrease in tissue cAMP. However, oxygen treatment increased the cAMP levels in both serum and tissue, which were partly abolished by pretreatment with butoxamine. Thus, 100% oxygen inhalation may protect against zymosan-induced generalized inflammation in mice partly through activation of ?2AR pathway and subsequently enhance cAMP levels in both serum and tissue.
Related JoVE Video
Intracerebroventricular injection of human prostatic acid phosphatase has potent neuroprotective effects against transient focal cerebral ischemia in rats.
Neurosci. Lett.
PUBLISHED: 05-22-2011
Show Abstract
Hide Abstract
Though the potential use of adenosine as a neuroprotective agent has long been realized, there are currently no adenosine-based therapies for the prevention or treatment of cerebral ischemia and reperfusion injury. Prostatic acid phosphatase (PAP), an enzyme that has long served as a diagnostic marker for prostate cancer, has been recently demonstrated to exhibit ecto-5-nucleotidase activity, and dephosphorylate endogenous extracellular AMP to adenosine. We therefore tested the hypothesis that PAP has sustained and potent neuroprotective effects against cerebral ischemia in the rat model of middle cerebral artery occlusion. We found that hPAP produced significant neuroprotection against focal cerebral ischemia, as evident from significant reduction in cerebral infarction and neurological deficits. The therapeutic time window for hPAP in rat focal cerebral ischemia model was limited from 6 h before ischemia to 1.5 h after reperfusion. The present study suggested that PAP is a potential candidate for the prevention and treatment of cerebral ischemic injury, especially during perioperative period.
Related JoVE Video
Reactive oxygen species scavenger inhibits STAT3 activation after transient focal cerebral ischemia-reperfusion injury in rats.
Anesth. Analg.
PUBLISHED: 04-27-2011
Show Abstract
Hide Abstract
Signal transducer and activator of transcription 3 (STAT3) activation in ischemic brain has been verified. However, the mechanism and the role of STAT3 activation after cerebral ischemia-reperfusion are poorly elucidated. In the present study, we sought to test the hypothesis that STAT3 activation after cerebral ischemia-reperfusion was related to reactive oxygen species (ROS) production.
Related JoVE Video
Age-related differences in experimental stroke: possible involvement of mitochondrial dysfunction and oxidative damage.
Rejuvenation Res
PUBLISHED: 04-05-2011
Show Abstract
Hide Abstract
Age is the single most important risk factor for cerebral stroke. Unfortunately, the effect of age on ischemic brain damage is less clear. In this study, we sought to examine the potential influence of aging on the histologic and functional outcomes after ischemia. Juvenile (4 weeks of age), young adult (4 months of age), mid-aged (11-12 months of age), and aged (18-19 months of age) mice were subjected to transient middle cerebral artery occlusion. There was no remarkable difference of infarct volume on postoperative days 1 and 3. However, on postoperative day 7, aged mice exhibited significantly worsened infarct volume compared with juvenile and young mice. Intriguingly, the increase of infarct volume was most prominent in the striatal area rather than in cortex. Accordingly, aged mice displayed a slower and incomplete functional recovery after stroke. We further evaluated the effects of aging on the oxidative damage and mitochondrial dysfunction following ischemia. Brain tissues were assayed for lipid, DNA, and protein peroxidation products, mitochondrial enzyme activities, mitochondrial membrane potential, production of reactive oxygen species, and antioxidant activities. Aging was associated with declined mitochondrial function and antioxidant detoxification following ischemia, thereby inducing a deteriorated oxidative damage. Regional subanalyses demonstrated that, in accordance with infarct area, the pro-oxidant/antioxidant imbalance occurred more prominently in subcortical areas. Collectively, these findings suggest mitochondria-mediated oxidative damage may be involved in the age-related aggravated injury in subcortical areas. Mitochondrial protection could be a promising target for neuroprotective therapy, especially in the aged population.
Related JoVE Video
Preconditioning with repeated hyperbaric oxygen induces myocardial and cerebral protection in patients undergoing coronary artery bypass graft surgery: a prospective, randomized, controlled clinical trial.
J. Cardiothorac. Vasc. Anesth.
PUBLISHED: 03-15-2011
Show Abstract
Hide Abstract
To evaluate the cerebral and myocardial protective effects of hyperbaric oxygen preconditioning in both on-pump and off-pump coronary artery bypass graft surgery.
Related JoVE Video
Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats.
Brain Res.
PUBLISHED: 03-11-2011
Show Abstract
Hide Abstract
Our previous studies have demonstrated that hyperbaric oxygen (HBO) preconditioning induces tolerance to focal cerebral ischemia. The present study aimed to investigate whether autophagy is involved in the neuroprotection elicited by HBO preconditioning in a rat model of transient focal cerebral ischemia. Twenty-four hours after the completion of HBO preconditioning (2.5 atm absolute in 100% oxygen for 60 min per day for 5 consecutive days), male Sprague-Dawley rats were subjected to focal cerebral ischemia by middle cerebral artery occlusion (MCAO) for 120 min. The neurobehavioral score and infarct volume were used to evaluate cerebral ischemic injury. An intracerebroventricular injection of the autophagy inhibitor 3-methyladenine (3-MA) or the autophagy inducer rapamycin was administered before HBO preconditioning or MCAO. We found that after reperfusion the protein expression of LC3-II and Beclin 1 and the formation of autophagosomes were increased by HBO preconditioning or ischemia, but the increase following HBO preconditioning was higher than the increase following ischemia. 3-MA suppressed the increases in LC3-II and Beclin 1 induced by HBO preconditioning and attenuated the neuroprotection of HBO preconditioning against cerebral ischemia. Furthermore, 3-MA treatment before MCAO aggravated subsequent cerebral ischemic injury. In contrast, pretreatment with rapamycin up-regulated LC3-II and Beclin 1 after reperfusion and mimicked the neuroprotective effect of HBO preconditioning. These results indicate that HBO preconditioning elevates autophagic activity, which elicits a neuroprotective effect against ischemic injury in the brain, and suggest a novel mechanism of HBO preconditioning-induced tolerance against transient focal cerebral ischemia.
Related JoVE Video
Sevoflurane preconditioning induces neuroprotection through reactive oxygen species-mediated up-regulation of antioxidant enzymes in rats.
Anesth. Analg.
PUBLISHED: 03-08-2011
Show Abstract
Hide Abstract
It has been reported that sevoflurane preconditioning can induce neuroprotection, the mechanisms of which, however, are poorly elucidated. We designed the present study to examine the hypothesis that sevoflurane preconditioning could reduce cerebral ischemia- reperfusion injury through up-regulating antioxidant enzyme activities before ischemic injury by generating reactive oxygen species (ROS).
Related JoVE Video
The myocardial protective effects of adenosine pretreatment in children undergoing cardiac surgery: a randomized controlled clinical trial.
Eur J Cardiothorac Surg
PUBLISHED: 02-20-2011
Show Abstract
Hide Abstract
Adenosine pretreatment reduces injury caused by ischemia-reperfusion. To investigate the hypothesis that adenosine pretreatment would modulate injury induced by cardiopulmonary bypass (CPB) and myocardial ischemia/reperfusion, we conducted a randomized controlled trial on the effects of adenosine pretreatment in children undergoing surgery to repair congenital heart defects.
Related JoVE Video
Cannabinoid receptor type 2 activation yields delayed tolerance to focal cerebral ischemia.
Curr Neurovasc Res
PUBLISHED: 01-26-2011
Show Abstract
Hide Abstract
We demonstrated in our previous research that pretreatment with electroacupuncture (EA) induces rapid (2h after EA) and delayed (24h after EA) tolerance to focal cerebral ischemia. We further elucidate the endocannabinoid and cannabinoid receptor type 1(CB1) involvment in the rapid ischemic tolerance induced by EA pretreatment. The present study aimed at investigating the involvement of the cannabinoid receptor type 2 (CB2) in the neuroprotection conferred by EA pretreatment. Focal cerebral ischemia was induced by middle cerebral artery occlusion for 120 min at 2h and 24h following EA pretreatment in male Sprague-Dawley rats, respectively. Cerebral ischemic injury was evaluated by neurobehavioral scores and infarction volume percentages 72 h after reperfusion in the presence or absence of AM251, a selective CB1 receptor antagonist, and AM630, a selective CB2 receptor antagonist. The expression of CB1 and CB2 receptor in the striatum of ischemic hemisphere was also evaluated. The rapid and delayed ischemic tolerance induced by EA pretreatment was respectively reversed by AM251 and AM630. CB2 receptor expression was up-regulated in the striatum of rat brains at 24h after EA stimuli. These results indicate that CB2 receptor contributed to the delayed neuroprotective effect whereas CB1 receptor to the rapid ischemic tolerance induced by EA pretreatment against focal cerebral ischemia in rats.
Related JoVE Video
Neuroprotective effect of orexin-A is mediated by an increase of hypoxia-inducible factor-1 activity in rat.
Anesthesiology
PUBLISHED: 01-18-2011
Show Abstract
Hide Abstract
Recent studies suggest that the novel neuropeptide orexin-A may play an essential role during neuronal damage. However, the function of orexin-A during brain ischemia remains unclear. Recently, hypoxia-inducible factor-1? (HIF-1?) was shown to be activated by orexin-A. The aim of the current study is to test the hypothesis that administration of exogenous orexin-A can attenuate ischemia-reperfusion injury through the facilitation of HIF-1? expression.
Related JoVE Video
Spatial-temporal expression of NDRG2 in rat brain after focal cerebral ischemia and reperfusion.
Brain Res.
PUBLISHED: 01-08-2011
Show Abstract
Hide Abstract
N-myc downstream regulated gene 2 (NDRG2) was reported to be widely expressed in the nervous system. However, the expression and potential role of NDRG2 in focal cerebral ischemia brain remain unclear. Herein, we investigated spatial-temporal expression of NDRG2 in the rat brain following transient focal cerebral ischemia. Male Sprague-Dawley rats underwent a 120-min transient occlusion of middle cerebral artery. Rats were killed and brain samples were harvested at 4, 12, 24, and 72h after reperfusion. Expression of NDRG2 in the brain was determined by reverse transcriptase-polymerase chain reaction (RT-PCR), Western blot analysis and immunohistochemical staining. Cellular apoptosis was assessed by TUNEL staining. The results showed that NDRG2 was expressed on cells with an astrocytes-like morphology in ischemic penumbra. NDRG2 mRNA and protein expression began to increase at 4h after reperfusion and peaked at 24h in the ischemic penumbra. By using immunofluorescence, NDRG2 signals were co-localized with GFAP-positive astrocytes, and NDRG2 expression in astrocytes translocated from a cytoplasm to a nuclear localization at 24h after reperfusion. Double immunofluorescent staining for TUNEL and NDRG2 showed that some NDRG2 signals co-localized with TUNEL-positive cells, and that the apoptotic cells increased with enhancement of NDRG2-positive signals. In conclusion, NDRG2 expression is up-regulated in ischemic penumbra following transient focal cerebral ischemia. NDRG2 expression in astrocytes may play important pathological roles in cell apoptosis after stroke.
Related JoVE Video
Beneficial effects of hydrogen gas against spinal cord ischemia-reperfusion injury in rabbits.
Brain Res.
PUBLISHED: 01-04-2011
Show Abstract
Hide Abstract
Recently, hydrogen gas (H?) is reported to be a new therapeutic agent in organ damage induced by ischemia-reperfusion (I/R). The present study was designed to investigate the beneficial effects of H? against spinal cord I/R injury and its associated mechanisms. Spinal cord ischemia was induced by infrarenal aortic occlusion for 20 min in male New Zealand white rabbits. Treatment with 1%, 2% or 4% H? inhalation was given from 10 min before reperfusion to 60 min after reperfusion (total 70 min). Here, we found that I/R-challenged animals showed significant spinal cord damage characterized by the decreased numbers of normal motor neurons and hind-limb motor dysfunction, which was significantly improved by 2% and 4 % H? treatment. Furthermore, we found that the beneficial effects of H? treatment against spinal cord I/R injury were associated with the decreased levels of oxidative products [8-iso-prostaglandin F2? (8-iso-PGF2?) and malondialdehyde (MDA)] and pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-?) and high-mobility group box 1 (HMGB1)], as well as increased activities of antioxidant enzymes [superoxide dismutase (SOD) and catalase (CAT)] in serum and spinal cord. In addition, H? treatment reduced motor neuron apoptosis in the spinal cord of this model. Thus, H? inhalation may be an effective therapeutic strategy for spinal cord I/R damage.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.