JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Integrated pathway clusters with coherent biological themes for target prioritisation.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Prioritising candidate genes for further experimental characterisation is an essential, yet challenging task in biomedical research. One way of achieving this goal is to identify specific biological themes that are enriched within the gene set of interest to obtain insights into the biological phenomena under study. Biological pathway data have been particularly useful in identifying functional associations of genes and/or gene sets. However, biological pathway information as compiled in varied repositories often differs in scope and content, preventing a more effective and comprehensive characterisation of gene sets. Here we describe a new approach to constructing biologically coherent gene sets from pathway data in major public repositories and employing them for functional analysis of large gene sets. We first revealed significant overlaps in gene content between different pathways and then defined a clustering method based on the shared gene content and the similarity of gene overlap patterns. We established the biological relevance of the constructed pathway clusters using independent quantitative measures and we finally demonstrated the effectiveness of the constructed pathway clusters in comparative functional enrichment analysis of gene sets associated with diverse human diseases gathered from the literature. The pathway clusters and gene mappings have been integrated into the TargetMine data warehouse and are likely to provide a concise, manageable and biologically relevant means of functional analysis of gene sets and to facilitate candidate gene prioritisation.
Related JoVE Video
Understanding the biological context of NS5A-host interactions in HCV infection: a network-based approach.
J. Proteome Res.
PUBLISHED: 05-17-2013
Show Abstract
Hide Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver disease. HCV NS5A protein plays an important role in HCV infection through its interactions with other HCV proteins and host factors. In an attempt to further our understanding of the biological context of protein interactions between NS5A and host factors in HCV pathogenesis, we generated an extensive physical interaction map between NS5A and cellular factors. By combining a yeast two-hybrid assay with comprehensive literature mining, we built the NS5A interactome composed of 132 human proteins that interact with NS5A. These interactions were integrated into a high-confidence human protein interactome (HPI) with the help of the TargetMine data warehouse system to infer an overall protein interaction map linking NS5A with the components of the host cellular networks. The NS5A-host interactions that were integrated with the HPI were shown to participate in compact and well-connected cellular networks. Functional analysis of the NS5A "infection" network using TargetMine highlighted cellular pathways associated with immune system, cellular signaling, cell adhesion, cellular growth and death among others, which were significantly targeted by NS5A-host interactions. In addition, cellular assays with in vitro HCV cell culture systems identified two ER-localized host proteins RTN1 and RTN3 as novel regulators of HCV propagation. Our analysis builds upon the present understanding of the role of NS5A protein in HCV pathogenesis and provides potential targets for more effective anti-HCV therapeutic intervention.
Related JoVE Video
Prediction and experimental validation of a putative non-consensus binding site for transcription factor STAT3 in serum amyloid A gene promoter.
Biochim. Biophys. Acta
PUBLISHED: 01-04-2013
Show Abstract
Hide Abstract
We previously demonstrated that though the human SAA1 gene shows no typical STAT3 response element (STAT3-RE) in its promoter region, STAT3 and the nuclear factor (NF-?B) p65 first form a complex following interleukin IL-1 and IL-6 (IL-1+6) stimulation, after which STAT3 interacts with a region downstream of the NF-?B RE in the SAA1 promoter. In this study, we employed a computational approach based on indirect read outs of protein-DNA contacts to identify a set of candidates for non-consensus STAT3 transcription factor binding sites (TFBSs). The binding of STAT3 to one of the predicted non-consensus TFBSs was experimentally confirmed through a dual luciferase assay and DNA affinity chromatography. The present study defines a novel STAT3 non-consensus TFBS at nt -75/-66 downstream of the NF-?B RE in the SAA1 promoter region that is required for NF-?B p65 and STAT3 to activate SAA1 transcription in human HepG2 liver cells. Our analysis builds upon the current understanding of STAT3 function, suggesting a wider array of mechanisms of STAT3 function in inflammatory response, and provides a useful framework for investigating novel TF-target associations with potential therapeutic implications.
Related JoVE Video
TargetMine, an integrated data warehouse for candidate gene prioritisation and target discovery.
PLoS ONE
PUBLISHED: 02-14-2011
Show Abstract
Hide Abstract
Prioritising candidate genes for further experimental characterisation is a non-trivial challenge in drug discovery and biomedical research in general. An integrated approach that combines results from multiple data types is best suited for optimal target selection. We developed TargetMine, a data warehouse for efficient target prioritisation. TargetMine utilises the InterMine framework, with new data models such as protein-DNA interactions integrated in a novel way. It enables complicated searches that are difficult to perform with existing tools and it also offers integration of custom annotations and in-house experimental data. We proposed an objective protocol for target prioritisation using TargetMine and set up a benchmarking procedure to evaluate its performance. The results show that the protocol can identify known disease-associated genes with high precision and coverage. A demonstration version of TargetMine is available at http://targetmine.nibio.go.jp/.
Related JoVE Video
Network based analysis of hepatitis C virus core and NS4B protein interactions.
Mol Biosyst
PUBLISHED: 10-18-2010
Show Abstract
Hide Abstract
Hepatitis C virus (HCV) is a major cause of chronic liver disease worldwide. Here we attempt to further our understanding of the biological context of protein interactions in HCV pathogenesis, by investigating interactions between HCV proteins Core and NS4B and human host proteins. Using the yeast two-hybrid (Y2H) membrane protein system, eleven human host proteins interacting with Core and 45 interacting with NS4B were identified, most of which are novel. These interactions were used to infer overall protein interaction maps linking the viral proteins with components of the host cellular networks. Core and NS4B proteins contribute to highly compact interaction networks that may enable the virus to respond rapidly to host physiological responses to HCV infection. Analysis of the interaction networks highlighted enriched biological pathways likely influenced in HCV infection. Inspection of individual interactions offered further insights into the possible mechanisms that permit HCV to evade the host immune response and appropriate host metabolic machinery. Follow-up cellular assays with cell lines infected with HCV genotype 1b and 2a strains validated Core interacting proteins ENO1 and SLC25A5 and host protein PXN as novel regulators of HCV replication and viral production. ENO1 siRNA knockdown was found to inhibit HCV replication in both the HCV genotypes and viral RNA release in genotype 2a. PXN siRNA inhibition was observed to inhibit replication specifically in genotype 1b but not in genotype 2a, while SLC25A5 siRNA facilitated a minor increase in the viral RNA release in genotype 2a. Thus, our analysis can provide potential targets for more effective anti-HCV therapeutic intervention.
Related JoVE Video
A combined proteomics and computational approach provides a better understanding of HCV-induced liver disease.
Expert Rev Proteomics
Show Abstract
Hide Abstract
HCV is a major cause of chronic liver disease worldwide and is a formidable therapeutic challenge. Recently, Diamond et al. analyzed the proteomic profiles of liver samples from HCV-positive liver transplant recipients, supplemented with an independent metabolite analysis. They used a computational approach, which highlighted the enriched functional themes and topological attributes associated with the protein association network based on their clinical data and suggested a crucial role of oxidative stress in fibrosis progression in HCV infection. Their findings provide new insights into the mechanisms that regulate the progression of HCV-associated liver fibrosis, which may be useful for identification of suitable biomarkers to evaluate the onset and severity of hepatic fibrosis and the development of new therapeutic and anti-HCV strategies.
Related JoVE Video
Inhibitory roles of signal transducer and activator of transcription 3 in antitumor immunity during carcinogen-induced lung tumorigenesis.
Cancer Res.
Show Abstract
Hide Abstract
Stat3 mediates a complex spectrum of cellular responses, including inflammation, cell proliferation, and apoptosis. Although evidence exists in support of a positive role for Stat3 in cancer, its role has remained somewhat controversial because of insufficient study of how its genetic deletion may affect carcinogenesis in various tissues. In this study, we show using epithelium-specific knockout mice (Stat3(?/?)) that Stat3 blunts rather than supports antitumor immunity in carcinogen-induced lung tumorigenesis. Although Stat3(?/?) mice did not show any lung defects in terms of proliferation, apoptosis, or angiogenesis, they exhibited reduced urethane-induced tumorigenesis and increased antitumor inflammation and natural killer (NK) cell immunity. Comparative microarray analysis revealed an increase in Stat3(?/?) tumors in proinflammatory chemokine production and a decrease in MHC class I antigen expression associated with NK cell recognition. Consistent with these findings, human non-small cell lung cancer (NSCLC) cells in which Stat3 was silenced displayed an enhancement of proinflammatory chemokine production, reduced expression of MHC class I antigen, and increased susceptibility to NK cell-mediated cytotoxicity. In addition, supernatants from Stat3-silenced NSCLC cells promoted monocyte migration. Collectively, our findings argue that Stat3 exerts an inhibitory effect on antitumor NK cell immunity in the setting of carcinogen-induced tumorigenesis.
Related JoVE Video
Proteomic analysis of hepatitis C virus (HCV) core protein transfection and host regulator PA28? knockout in HCV pathogenesis: a network-based study.
J. Proteome Res.
Show Abstract
Hide Abstract
Hepatitis C virus (HCV) causes chronic liver disease worldwide. HCV Core protein (Core) forms the viral capsid and is crucial for HCV pathogenesis and HCV-induced hepatocellular carcinoma, through its interaction with the host factor proteasome activator PA28?. Here, using BD-PowerBlot high-throughput Western array, we attempt to further investigate HCV pathogenesis by comparing the protein levels in liver samples from Core-transgenic mice with or without the knockout of PA28? expression (abbreviated PA28?(-/-)CoreTG and CoreTG, respectively) against the wild-type (WT). The differentially expressed proteins integrated into the human interactome were shown to participate in compact and well-connected cellular networks. Functional analysis of the interaction networks using a newly developed data warehouse system highlighted cellular pathways associated with vesicular transport, immune system, cellular adhesion, and cell growth and death among others that were prominently influenced by Core and PA28? in HCV infection. Follow-up assays with in vitro HCV cell culture systems validated VTI1A, a vesicular transport associated factor, which was upregulated in CoreTG but not in PA28?(-/-)CoreTG, as a novel regulator of HCV release but not replication. Our analysis provided novel insights into the Core-PA28? interplay in HCV pathogenesis and identified potential targets for better anti-HCV therapy and potentially novel biomarkers of HCV infection.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.