JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Zero thermal expansion and ferromagnetism in cubic Sc(1-x)M(x)F3 (M = Ga, Fe) over a wide temperature range.
J. Am. Chem. Soc.
PUBLISHED: 09-22-2014
Show Abstract
Hide Abstract
The rare physical property of zero thermal expansion (ZTE) is intriguing because neither expansion nor contraction occurs with temperature fluctuations. Most ZTE, however, occurs below room temperature. It is a great challenge to achieve isotropic ZTE at high temperatures. Here we report the unconventional isotropic ZTE in the cubic (Sc1-xMx)F3 (M = Ga, Fe) over a wide temperature range (linear coefficient of thermal expansion (CTE), ?l = 2.34 × 10(-7) K(-1), 300-900 K). Such a broad temperature range with a considerably negligible CTE has rarely been documented. The present ZTE property has been designed using the introduction of local distortions in the macroscopic cubic lattice by heterogeneous cation substitution for the Sc site. Even though the macroscopic crystallographic structure of (Sc0.85Ga0.05Fe0.1)F3 adheres to the cubic system (Pm3?m) according to the results of X-ray diffraction, the local structure exhibits a slight rhombohedral distortion. This is confirmed by pair distribution function analysis of synchrotron radiation X-ray total scattering. This local distortion may weaken the contribution from the transverse thermal vibration of fluorine atoms to negative thermal expansion, and thus may presumably be responsible for the ZTE. In addition, the present ZTE compounds of (Sc1-xMx)F3 can be functionalized to exhibit high-Tc ferromagnetism and a narrow-gap semiconductor feature. The present study shows the possibility of obtaining ZTE materials with multifunctionality in future work.
Related JoVE Video
Ordered structure and thermal expansion in tungsten bronze Pb?K(0.5)Li(0.5)Nb?O??.
Inorg Chem
PUBLISHED: 08-12-2014
Show Abstract
Hide Abstract
The crystal structure and thermal expansion behaviors of a new tetragonal tungsten bronze (TTB) ferroelectric, Pb2K(0.5)Li(0.5)Nb5O15, were systematically investigated by selected-area electron diffraction (SAED), neutron powder diffraction, synchrotron X-ray diffraction (XRD), and high-temperature XRD. SAED and Rietveld refinement reveal that Pb2K(0.5)Li(0.5)Nb5O15 displays a commensurate superstructure of simple orthorhombic TTB structure at room temperature. The structure can be described with space group Bb2?m. The transition to a paraelectric phase (P4/mbm) occurs at 500 °C. Compared with Pb2KNb5O15 (PKN), the substitution of 0.5K(+) with small 0.5Li(+) into PKN causes the tilting of NbO6 octahedra away from the c axis with ?? ? 10° and raises the Curie temperature by 40 °C, and the negative thermal expansion coefficient along the polar b axis increases more than 50% in the temperature range 25-500 °C. We present that, by introduction of Li(+), the enhanced spontaneous polarization is responsible for the enhanced negative thermal expansion along the b axis, which may be caused by more Pb(2+) in the pentagonal caves.
Related JoVE Video
Rapid synthesis, structure and photocatalysis of pure bismuth A-site perovskite of Bi(Mg3/8Fe2/8Ti3/8)O3.
Dalton Trans
PUBLISHED: 05-13-2014
Show Abstract
Hide Abstract
Bi(Mg3/8Fe2/8Ti3/8)O3, a member of a small group of pure Bi(3+) A site perovskites, exhibiting a high ferroelectric Curie point (Tc), was rapidly synthesized by a sample method of molten salt synthesis. The purity of Bi(Mg3/8Fe2/8Ti3/8)O3 samples is directly affected by the reaction conditions such as the soaking temperature, and the heating and cooling rates. The as-prepared Bi(Mg3/8Fe2/8Ti3/8)O3 particles are well-formed, cube-shaped single-crystals with sizes ranging from 200-300 nm. The chemical states of Bi and Fe ions are Bi(3+) and Fe(3+) in Bi(Mg3/8Fe2/8Ti3/8)O3. UV-vis diffuse reflectance spectra and preliminary photocatalytic experiments indicate that the pure Bi(3+) A site perovskite of Bi(Mg3/8Fe2/8Ti3/8)O3 has a suitable energy bandgap (1.86 eV) and shows obvious photocatalytic activity for the decolorization of methyl blue under visible-light irradiation. The present work suggests potential future applications of Bi(Mg3/8Fe2/8Ti3/8)O3 in photocatalysis and ferroelectric photovoltaic effects.
Related JoVE Video
Large remanent polarization and small leakage in sol-gel derived Bi(Zn(1/2)Zr(1/2))O3-PbTiO3 ferroelectric thin films.
Dalton Trans
Show Abstract
Hide Abstract
The applications of ferroelectric thin films such as the sensitivity of nonvolatile ferroelectric random access memories are closely linked with large remnant polarization. The high-T(C) (1-x)Bi(Zn(1/2)Zr(1/2))O(3)-xPbTiO(3) (x = 0.7-0.9) thin films with high (100) orientation were fabricated on Pt(111)/Ti/SiO(2)/Si substrates via a sol-gel method. The thin films could be crystallized well in a phase-pure perovskite structure. The electrical properties of the sol-gel-derived BZZ-PT thin films were investigated. A large remanent polarization with 2P(r) up to 110 ?C cm(-2) and a small leakage current of 3.8 × 10(-7) A cm(-2) under an electric field of 150 kV cm(-1) are observed on the 0.2BZZ-0.8PT thin films. Furthermore, a relatively stable polarization fatigue property was achieved, indicating a potential application in high-temperature ferroelectric devices.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.