JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Electrostatic analysis of bacterial expansins.
Proteins
PUBLISHED: 09-17-2014
Show Abstract
Hide Abstract
Expansins are a family of proteins with plant cell wall remodeling-activity, which bind cell wall components through hydrophobic and electrostatic interactions. A shallow area on the surface of the protein serves as the polysaccharide binding site (PBS) and it is composed of conserved residues. However, electric charge differences on the opposite face of the PBS produce basic, neutral or acidic proteins. An analysis of forty-four bacterial expansins, homologues of BsEXLX1, revealed two main groups defined by: a) the presence or absence of disulfide bonds; and b) by the proteins isoelectric point (pI). We determined the location of the residues responsible for the pI on the structure of representative expansins. Our results suggest that the electric charge at the opposite site of the PBS may help in substrate differentiation among expansins from different species; in addition, electrostatic polarization between the front and the back of the molecule could affect expansin activity on cellulose. © Proteins 2014;. © 2014 Wiley Periodicals, Inc.
Related JoVE Video
Comparative genomics of nucleotide metabolism: a tour to the past of the three cellular domains of life.
BMC Genomics
PUBLISHED: 03-25-2014
Show Abstract
Hide Abstract
Nucleotide metabolism is central to all biological systems, due to their essential role in genetic information and energy transfer, which in turn suggests its possible presence in the last common ancestor (LCA) of Bacteria, Archaea and Eukarya. In this context, elucidation of the contribution of the origin and diversification of de novo and salvage pathways of nucleotide metabolism will allow us to understand the links between the enzymatic steps associated with the LCA and the emergence of the first metabolic pathways.
Related JoVE Video
PcExl1 a novel acid expansin-like protein from the plant pathogen Pectobacterium carotovorum, binds cell walls differently to BsEXLX1.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Microbial expansins act on plant cell walls similarly to plant expansins, albeit their loosening activity levels are tenfold lesser compared to plant expansins. We report the characterization of an expansin-like gene from the plant pathogen Pectobacterium carotovorum, named exl1. PcExl1 is an acidic protein that binds cellulose (Avicel), and weakens filter paper. The acidic nature of PcExl1 confers different binding properties when compared to Bacillus subtilis BsEXLX1, which is a basic protein. PcExl1 binding to wheat cell wall increased when acidic components were depleted, reaching a similar level to the binding to Avicel, indicating that cellulose is the target of PcExl1.
Related JoVE Video
Diversity and distribution of transcription factors: their partner domains play an important role in regulatory plasticity in bacteria.
Microbiology (Reading, Engl.)
PUBLISHED: 06-02-2011
Show Abstract
Hide Abstract
The ability of bacteria to deal with diverse environmental changes depends on their repertoire of genes and their ability to regulate their expression. In this process, DNA-binding transcription factors (TFs) have a fundamental role because they affect gene expression positively and/or negatively depending on operator context and ligand-binding status. Here, we show an exhaustive analysis of winged helix-turn-helix domains (wHTHs), a class of DNA-binding TFs. These proteins were identified in high proportions and widely distributed in bacteria, representing around half of the total TFs identified so far. In addition, we evaluated the repertoire of wHTHs in terms of their partner domains (PaDos), identifying a similar trend, as with TFs, i.e. they are abundant and widely distributed in bacteria. Based on the PaDos, we defined three main groups of families: (i) monolithic, those families with little PaDo diversity, such as LysR; (ii) promiscuous, those families with a high PaDo diversity; and (iii) monodomain, with families of small sizes, such as MarR. These findings suggest that PaDos have a very important role in the diversification of regulatory responses in bacteria, probably contributing to their regulatory complexity. Thus, the TFs discriminate over longer regions on the DNA through their diverse DNA-binding domains. On the other hand, the PaDos would allow a great flexibility for transcriptional regulation due to their ability to sense diverse stimuli through a variety of ligand-binding compounds.
Related JoVE Video
Identification of functional motions in the adenylate kinase (ADK) protein family by computational hybrid approaches.
Proteins
PUBLISHED: 03-01-2011
Show Abstract
Hide Abstract
Based on integrative computational hybrid approaches that combined statistical coupling analysis (SCA), molecular dynamics (MD), and normal mode analysis (NMA), evolutionarily coupled residues involved in functionally relevant motion in the adenylate kinase protein family were identified. The hybrids identified four top-ranking site pairs that belong to a conserved hydrogen bond network that is involved in the enzymes flexibility. A second group of top-ranking site pairs was identified in critical regions for functional dynamics, such as those related to enzymatic turnover. The high consistency of the results obtained by SCA with NMA (SCA.NMA) and by SCA.MD hybrid analyses suggests that suitable replacement of the matrix of cross-correlation analysis of atomic fluctuations (derived by using NMA) with those based on MD contributes to the identification of such sites by means of a fast computational calculation. The analysis presented here strongly supports the hypothesis that evolutionary forces, such as coevolution at the sequence level, have promoted functional dynamic properties of the adenylate kinase protein family. Finally, these hybrid approaches can be used to identify, at the residue level, protein motion coordination patterns not previously observed, such as in hinge regions.
Related JoVE Video
Loosenin, a novel protein with cellulose-disrupting activity from Bjerkandera adusta.
Microb. Cell Fact.
PUBLISHED: 02-11-2011
Show Abstract
Hide Abstract
Expansins and expansin-like proteins loosen cellulose microfibrils, possibly through the rupture of intramolecular hydrogen bonds. Together with the use of lignocellulolytic enzymes, these proteins are potential molecular tools to treat plant biomass to improve saccharification yields.
Related JoVE Video
Venom from the centipede Scolopendra viridis Say: purification, gene cloning and phylogenetic analysis of a phospholipase A2.
Toxicon
PUBLISHED: 02-18-2009
Show Abstract
Hide Abstract
Venom components from the centipede Scolopendra viridis Say were studied, using both the soluble venom and a cDNA library prepared from mRNA of the venomous glands. Separation of the soluble venom by high performance liquid chromatography (HPLC) permitted to obtain at least 54 different fractions. The fraction eluting at 46.24 min showed phospholipase activity. The enzyme was purified to homogeneity and the first 25 amino acid residues were identified by Edman degradation. From the cDNA library several genes were cloned, one of which codes for a protein with identical amino acid sequence as the one experimentally determined. The cloned gene codes for a signal peptide of 28 amino acids and a mature peptide of 119 residues. The molecular weight of the enzyme was estimated by mass spectrometry and shown to be 13,752 Da, which matches exactly with the molecular mass expected from the deduced amino acid sequence of the gene. Phylogenetic analysis of this sequence, in comparison with other known from venomous animals, showed that it is more similar to snake phospholipases than to insect or arachnid sequences, suggesting that it has been submitted to convergent evolution. To the best of our knowledge this is the first time that a phospholipase from this species of animal is fully characterized. We have named it Scol/Pla.
Related JoVE Video
Comparative metagenomics of two microbial mats at Cuatro Ciénegas Basin I: ancient lessons on how to cope with an environment under severe nutrient stress.
Astrobiology
Show Abstract
Hide Abstract
The Cuatro Ciénegas Basin (CCB) is an oasis in the desert of Mexico characterized by low phosphorus availability and by its great diversity of microbial mats. We compared the metagenomes of two aquatic microbial mats from the CCB with different nutrient limitations. We observed that the red mat was P-limited and dominated by Pseudomonas, while the green mat was N-limited and had higher species richness, with Proteobacteria and Cyanobacteria as the most abundant phyla. From their gene content, we deduced that both mats were very metabolically diverse despite their use of different strategies to cope with their respective environments. The red mat was found to be mostly heterotrophic, while the green mat was more autotrophic. The red mat had a higher number of transporters in general, including transporters of cellobiose and osmoprotectants. We suggest that generalists with plastic genomes dominate the red mat, while specialists with minimal genomes dominate the green mat. Nutrient limitation was a common scenario on the early planet; despite this, biogeochemical cycles were performed, and as a result the planet changed. The metagenomes of microbial mats from the CCB show the different strategies a community can use to cope with oligotrophy and persist.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.