JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Exploiting SNP correlations within random forest for genome-wide association studies.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The primary goal of genome-wide association studies (GWAS) is to discover variants that could lead, in isolation or in combination, to a particular trait or disease. Standard approaches to GWAS, however, are usually based on univariate hypothesis tests and therefore can account neither for correlations due to linkage disequilibrium nor for combinations of several markers. To discover and leverage such potential multivariate interactions, we propose in this work an extension of the Random Forest algorithm tailored for structured GWAS data. In terms of risk prediction, we show empirically on several GWAS datasets that the proposed T-Trees method significantly outperforms both the original Random Forest algorithm and standard linear models, thereby suggesting the actual existence of multivariate non-linear effects due to the combinations of several SNPs. We also demonstrate that variable importances as derived from our method can help identify relevant loci. Finally, we highlight the strong impact that quality control procedures may have, both in terms of predictive power and loci identification. Variable importance results and T-Trees source code are all available at www.montefiore.ulg.ac.be/~botta/ttrees/ and github.com/0asa/TTree-source respectively.
Related JoVE Video
Batch Mode Reinforcement Learning based on the Synthesis of Artificial Trajectories.
Ann Oper Res
PUBLISHED: 09-20-2013
Show Abstract
Hide Abstract
In this paper, we consider the batch mode reinforcement learning setting, where the central problem is to learn from a sample of trajectories a policy that satisfies or optimizes a performance criterion. We focus on the continuous state space case for which usual resolution schemes rely on function approximators either to represent the underlying control problem or to represent its value function. As an alternative to the use of function approximators, we rely on the synthesis of "artificial trajectories" from the given sample of trajectories, and show that this idea opens new avenues for designing and analyzing algorithms for batch mode reinforcement learning.
Related JoVE Video
An efficient algorithm to perform multiple testing in epistasis screening.
BMC Bioinformatics
PUBLISHED: 04-12-2013
Show Abstract
Hide Abstract
Research in epistasis or gene-gene interaction detection for human complex traits has grown over the last few years. It has been marked by promising methodological developments, improved translation efforts of statistical epistasis to biological epistasis and attempts to integrate different omics information sources into the epistasis screening to enhance power. The quest for gene-gene interactions poses severe multiple-testing problems. In this context, the maxT algorithm is one technique to control the false-positive rate. However, the memory needed by this algorithm rises linearly with the amount of hypothesis tests. Gene-gene interaction studies will require a memory proportional to the squared number of SNPs. A genome-wide epistasis search would therefore require terabytes of memory. Hence, cache problems are likely to occur, increasing the computation time. In this work we present a new version of maxT, requiring an amount of memory independent from the number of genetic effects to be investigated. This algorithm was implemented in C++ in our epistasis screening software MBMDR-3.0.3. We evaluate the new implementation in terms of memory efficiency and speed using simulated data. The software is illustrated on real-life data for Crohns disease.
Related JoVE Video
On the relevance of sophisticated structural annotations for disulfide connectivity pattern prediction.
PLoS ONE
PUBLISHED: 01-14-2013
Show Abstract
Hide Abstract
Disulfide bridges strongly constrain the native structure of many proteins and predicting their formation is therefore a key sub-problem of protein structure and function inference. Most recently proposed approaches for this prediction problem adopt the following pipeline: first they enrich the primary sequence with structural annotations, second they apply a binary classifier to each candidate pair of cysteines to predict disulfide bonding probabilities and finally, they use a maximum weight graph matching algorithm to derive the predicted disulfide connectivity pattern of a protein. In this paper, we adopt this three step pipeline and propose an extensive study of the relevance of various structural annotations and feature encodings. In particular, we consider five kinds of structural annotations, among which three are novel in the context of disulfide bridge prediction. So as to be usable by machine learning algorithms, these annotations must be encoded into features. For this purpose, we propose four different feature encodings based on local windows and on different kinds of histograms. The combination of structural annotations with these possible encodings leads to a large number of possible feature functions. In order to identify a minimal subset of relevant feature functions among those, we propose an efficient and interpretable feature function selection scheme, designed so as to avoid any form of overfitting. We apply this scheme on top of three supervised learning algorithms: k-nearest neighbors, support vector machines and extremely randomized trees. Our results indicate that the use of only the PSSM (position-specific scoring matrix) together with the CSP (cysteine separation profile) are sufficient to construct a high performance disulfide pattern predictor and that extremely randomized trees reach a disulfide pattern prediction accuracy of [Formula: see text] on the benchmark dataset SPX[Formula: see text], which corresponds to [Formula: see text] improvement over the state of the art. A web-application is available at http://m24.giga.ulg.ac.be:81/x3CysBridges.
Related JoVE Video
On the encoding of proteins for disordered regions prediction.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Disordered regions, i.e., regions of proteins that do not adopt a stable three-dimensional structure, have been shown to play various and critical roles in many biological processes. Predicting and understanding their formation is therefore a key sub-problem of protein structure and function inference. A wide range of machine learning approaches have been developed to automatically predict disordered regions of proteins. One key factor of the success of these methods is the way in which protein information is encoded into features. Recently, we have proposed a systematic methodology to study the relevance of various feature encodings in the context of disulfide connectivity pattern prediction. In the present paper, we adapt this methodology to the problem of predicting disordered regions and assess it on proteins from the 10th CASP competition, as well as on a very large subset of proteins extracted from PDB. Our results, obtained with ensembles of extremely randomized trees, highlight a novel feature function encoding the proximity of residues according to their accessibility to the solvent, which is playing the second most important role in the prediction of disordered regions, just after evolutionary information. Furthermore, even though our approach treats each residue independently, our results are very competitive in terms of accuracy with respect to the state-of-the-art. A web-application is available at http://m24.giga.ulg.ac.be:81/x3Disorder.
Related JoVE Video
High-density lipoprotein proteome dynamics in human endotoxemia.
Proteome Sci
PUBLISHED: 06-28-2011
Show Abstract
Hide Abstract
A large variety of proteins involved in inflammation, coagulation, lipid-oxidation and lipid metabolism have been associated with high-density lipoprotein (HDL) and it is anticipated that changes in the HDL proteome have implications for the multiple functions of HDL. Here, SELDI-TOF mass spectrometry (MS) was used to study the dynamic changes of HDL protein composition in a human experimental low-dose endotoxemia model. Ten healthy men with low HDL cholesterol (0.7+/-0.1 mmol/L) and 10 men with high HDL cholesterol levels (1.9+/-0.4 mmol/L) were challenged with endotoxin (LPS) intravenously (1 ng/kg bodyweight). We previously showed that subjects with low HDL cholesterol are more susceptible to an inflammatory challenge. The current study tested the hypothesis that this discrepancy may be related to differences in the HDL proteome.
Related JoVE Video
Discovery and biochemical characterisation of four novel biomarkers for osteoarthritis.
Ann. Rheum. Dis.
PUBLISHED: 02-28-2011
Show Abstract
Hide Abstract
Knee osteoarthritis (OA) is a heterogeneous, complex joint pathology of unknown aetiology. Biomarkers have been widely used to investigate OA but currently available biomarkers lack specificity and sensitivity. Therefore, novel biomarkers are needed to better understand the pathophysiological processes of OA initiation and progression.
Related JoVE Video
Inferring regulatory networks from expression data using tree-based methods.
PLoS ONE
PUBLISHED: 05-05-2010
Show Abstract
Hide Abstract
One of the pressing open problems of computational systems biology is the elucidation of the topology of genetic regulatory networks (GRNs) using high throughput genomic data, in particular microarray gene expression data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge aims to evaluate the success of GRN inference algorithms on benchmarks of simulated data. In this article, we present GENIE3, a new algorithm for the inference of GRNs that was best performer in the DREAM4 In Silico Multifactorial challenge. GENIE3 decomposes the prediction of a regulatory network between p genes into p different regression problems. In each of the regression problems, the expression pattern of one of the genes (target gene) is predicted from the expression patterns of all the other genes (input genes), using tree-based ensemble methods Random Forests or Extra-Trees. The importance of an input gene in the prediction of the target gene expression pattern is taken as an indication of a putative regulatory link. Putative regulatory links are then aggregated over all genes to provide a ranking of interactions from which the whole network is reconstructed. In addition to performing well on the DREAM4 In Silico Multifactorial challenge simulated data, we show that GENIE3 compares favorably with existing algorithms to decipher the genetic regulatory network of Escherichia coli. It doesnt make any assumption about the nature of gene regulation, can deal with combinatorial and non-linear interactions, produces directed GRNs, and is fast and scalable. In conclusion, we propose a new algorithm for GRN inference that performs well on both synthetic and real gene expression data. The algorithm, based on feature selection with tree-based ensemble methods, is simple and generic, making it adaptable to other types of genomic data and interactions.
Related JoVE Video
Supervised learning with decision tree-based methods in computational and systems biology.
Mol Biosyst
PUBLISHED: 10-05-2009
Show Abstract
Hide Abstract
At the intersection between artificial intelligence and statistics, supervised learning allows algorithms to automatically build predictive models from just observations of a system. During the last twenty years, supervised learning has been a tool of choice to analyze the always increasing and complexifying data generated in the context of molecular biology, with successful applications in genome annotation, function prediction, or biomarker discovery. Among supervised learning methods, decision tree-based methods stand out as non parametric methods that have the unique feature of combining interpretability, efficiency, and, when used in ensembles of trees, excellent accuracy. The goal of this paper is to provide an accessible and comprehensive introduction to this class of methods. The first part of the review is devoted to an intuitive but complete description of decision tree-based methods and a discussion of their strengths and limitations with respect to other supervised learning methods. The second part of the review provides a survey of their applications in the context of computational and systems biology.
Related JoVE Video
Reinforcement learning versus model predictive control: a comparison on a power system problem.
IEEE Trans Syst Man Cybern B Cybern
PUBLISHED: 05-22-2009
Show Abstract
Hide Abstract
This paper compares reinforcement learning (RL) with model predictive control (MPC) in a unified framework and reports experimental results of their application to the synthesis of a controller for a nonlinear and deterministic electrical power oscillations damping problem. Both families of methods are based on the formulation of the control problem as a discrete-time optimal control problem. The considered MPC approach exploits an analytical model of the system dynamics and cost function and computes open-loop policies by applying an interior-point solver to a minimization problem in which the system dynamics are represented by equality constraints. The considered RL approach infers in a model-free way closed-loop policies from a set of system trajectories and instantaneous cost values by solving a sequence of batch-mode supervised learning problems. The results obtained provide insight into the pros and cons of the two approaches and show that RL may certainly be competitive with MPC even in contexts where a good deterministic system model is available.
Related JoVE Video
Biomarker discovery in asthma-related inflammation and remodeling.
Proteomics
PUBLISHED: 03-27-2009
Show Abstract
Hide Abstract
Asthma is a complex inflammatory disease of airways. A network of reciprocal interactions between inflammatory cells, peptidic mediators, extracellular matrix components, and proteases is thought to be involved in the installation and maintenance of asthma-related airway inflammation and remodeling. To date, new proteic mediators displaying significant activity in the pathophysiology of asthma are still to be unveiled. The main objective of this study was to uncover potential target proteins by using surface-enhanced laser desorption/ionization-time of flight-mass spectrometry (SELDI-TOF-MS) on lung samples from mouse models of allergen-induced airway inflammation and remodeling. In this model, we pointed out several protein or peptide peaks that were preferentially expressed in diseased mice as compared to controls. We report the identification of different five proteins: found inflammatory zone 1 or RELM alpha (FIZZ-1), calcyclin (S100A6), clara cell secretory protein 10 (CC10), Ubiquitin, and Histone H4.
Related JoVE Video
Decoding semi-constrained brain activity from FMRI using support vector machines and gaussian processes.
PLoS ONE
Show Abstract
Hide Abstract
Predicting a particular cognitive state from a specific pattern of fMRI voxel values is still a methodological challenge. Decoding brain activity is usually performed in highly controlled experimental paradigms characterized by a series of distinct states induced by a temporally constrained experimental design. In more realistic conditions, the number, sequence and duration of mental states are unpredictably generated by the individual, resulting in complex and imbalanced fMRI data sets. This study tests the classification of brain activity, acquired on 16 volunteers using fMRI, during mental imagery, a condition in which the number and duration of mental events were not externally imposed but self-generated. To deal with these issues, two classification techniques were considered (Support Vector Machines, SVM, and Gaussian Processes, GP), as well as different feature extraction methods (General Linear Model, GLM and SVM). These techniques were combined in order to identify the procedures leading to the highest accuracy measures. Our results showed that 12 data sets out of 16 could be significantly modeled by either SVM or GP. Model accuracies tended to be related to the degree of imbalance between classes and to task performance of the volunteers. We also conclude that the GP technique tends to be more robust than SVM to model unbalanced data sets.
Related JoVE Video
Statistical interpretation of machine learning-based feature importance scores for biomarker discovery.
Bioinformatics
Show Abstract
Hide Abstract
Univariate statistical tests are widely used for biomarker discovery in bioinformatics. These procedures are simple, fast and their output is easily interpretable by biologists but they can only identify variables that provide a significant amount of information in isolation from the other variables. As biological processes are expected to involve complex interactions between variables, univariate methods thus potentially miss some informative biomarkers. Variable relevance scores provided by machine learning techniques, however, are potentially able to highlight multivariate interacting effects, but unlike the p-values returned by univariate tests, these relevance scores are usually not statistically interpretable. This lack of interpretability hampers the determination of a relevance threshold for extracting a feature subset from the rankings and also prevents the wide adoption of these methods by practicians.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.