JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Use of red blood cell membranes to evaluate the antioxidant potential of plant extracts.
Plant Foods Hum Nutr
PUBLISHED: 04-01-2014
Show Abstract
Hide Abstract
Antioxidant phytochemicals in fruits and vegetables of a vegetarian diet may account for the reduced risk of aging and stress oxidative associated diseases. In this study, a simple, rapid and accurate new bioassay for the determination of the antioxidant activity of purified or crude plant extracts and thier interactions is described, based on the fluorimetric determination of thiobarbituric acid reactive substances (TBARS) released by UV-B radiated red blood cell (RBC) ghosts. Pure resveratrol, white and red wine and pomegranate juice (PJ) were used as antioxidant source to test the biological method. TBARS production is a function of radiation time, the number of RBC ghosts in the radiated sample and the loaded antioxidant. The antioxidant activity of resveratrol was detected at a submicromolar concentration range [0.02 ?g/mL-0.1 ?mol/L]. The activity of red wine was almost 10 times higher than that of white wine, and PJ juice had the highest activity. Submaximal protective effects of PJ and red wine were additive.
Related JoVE Video
Aqueous extract from Vitis vinifera tendrils is able to enrich keratinocyte antioxidant defences.
Nat Prod Commun
PUBLISHED: 09-28-2011
Show Abstract
Hide Abstract
An aqueous extract of V. vinifera L. tendrils was evaluated for its ability to enrich the antioxidant capacity of cultured cells. The long-time antioxidant capability of the extract was measured by in vitro chemical methods, and its influence on reduced glutathione levels and plasma membrane oxido reductase activity was determined in cultured human keratinocytes (NCTC 2544). Keratinocytes are cells normally exposed to oxidative stress, and for this reason adequately equipped with antioxidant defences. However, it has long been suggested that exogenous antioxidants may play an important role in minimizing the adverse effects of oxidative stress on skin.We demonstrated that V. vinifera tendril aqueous extract was able to increase, in a time- and dose-dependent manner, the reduced glutathione concentration and activity of trans plasma membrane oxido reductase as an indirect evaluation of the intracellular redox status of the cells demonstrating a relevant antioxidant activity of this phytocomplex.
Related JoVE Video
Effects of oxidative stress on mitochondrial content and integrity of human anastomotic colorectal dehiscence: a preliminary DNA study.
Can. J. Gastroenterol.
PUBLISHED: 09-14-2011
Show Abstract
Hide Abstract
Anastomotic dehiscence is one of the most severe complications of colorectal surgery. Gaining insight into the molecular mechanisms responsible for the development of anastomotic dehiscence following colorectal surgery is important for the reduction of postoperative complications.
Related JoVE Video
Effect of surgical stress on nuclear and mitochondrial DNA from healthy sections of colon and rectum of patients with colorectal cancer.
J. Biosci.
PUBLISHED: 06-10-2011
Show Abstract
Hide Abstract
Surgical resection at any location in the body leads to stress response with cellular and subcellular change, leading to tissue damage. The intestine is extremely sensitive to surgical stress with consequent postoperative complications. It has been suggested that the increase of reactive oxygen species as subcellular changes plays an important role in this process. This article focuses on the effect of surgical stress on nuclear and mitochondrial DNA from healthy sections of colon and rectum of patients with colorectal cancer. Mitochondrial DNA copy number, mitochondrial common deletion and nuclear and mitochondrial 8-oxo-2-deoxyguanosine content were measured. Both the colon and rectal tissue were significantly damaged either at the nuclear or mitochondrial level. In particular, mitochondrial DNA was more damaged in rectum than in colon. The present investigation found an association between surgical stress and nuclear and mitochondrial DNA damage, suggesting that surgery may generate an increase in free radicals, which trigger a cascade of molecular changes, including alterations in DNA.
Related JoVE Video
Gene expression profile in cultured human umbilical vein endothelial cells exposed to a 300?mT static magnetic field.
Bioelectromagnetics
PUBLISHED: 01-11-2011
Show Abstract
Hide Abstract
In a previous investigation we reported that exposure to a moderate (300?mT) static magnetic field (SMF) causes transient DNA damage and promotes mitochondrial biogenesis in human umbilical vein endothelial cells (HUVECs). To better understand the response of HUVECs to the 300?mT SMF, a high-quality subtracted cDNA library representative of genes induced in cells after 4?h of static magnetic exposure was constructed. The global gene expression profile showed that several genes were induced after the SMF exposure. The characterized clones are involved in cell metabolism, energy, cell growth/division, transcription, protein synthesis, destination and storage, membrane injury, DNA damage/repair, and oxidative stress response. Quantitative real-time polymerase chain reaction (qRT-PCR) experiments were performed at 4 and 24?h on four selected genes. Their expression profiles suggest that HUVECs response to SMF exposure is transient. Furthermore, compared to control cells, an up-regulation of several genes involved in cell growth and division was observed. This up-regulation is likely to be the cause of the slight, but significant, increase in cell proliferation at 12?h post-treatment. These results provide additional support to the notion that SMFs may be harmless to human health, and could support the rationale for their possible use in medical treatments.
Related JoVE Video
Effects of a 300 mT static magnetic field on human umbilical vein endothelial cells.
Bioelectromagnetics
PUBLISHED: 07-13-2010
Show Abstract
Hide Abstract
This study describes the effects of a static magnetic field (SMF) on cell growth and DNA integrity of human umbilical vein endothelial cells (HUVECs). Fast halo assay was used to investigate nuclear damage; quantitative polymerase chain reaction (QPCR), standard PCR, and real-time PCR were used to evaluate mitochondrial DNA integrity, content, and gene expression. HUVECs were continually exposed to a 300 mT SMF for 4, 24, 48, and 72 h. Compared to control samples (unexposed cultures) the SMF-exposed cells did not show a statistically significant change in their viability. Conversely, the static field was shown to be significant after 4 h of exposure, inducing damage on both the nuclear and mitochondrial levels, reducing mitochondrial content and increasing reactive oxygen species. Twenty-four hours of exposure increased mitochondrial DNA content as well as expression of one of the main genes related to mitochondrial biogenesis. No significant differences between exposed and sham cultures were found after 48 and 72 h of exposure. The results suggest that a 300 mT SMF does not cause permanent DNA damage in HUVECs and stimulates a transient mitochondrial biogenesis.
Related JoVE Video
Morphological and molecular modifications induced by different carbohydrate sources in Tuber borchii.
J. Mol. Microbiol. Biotechnol.
PUBLISHED: 03-19-2010
Show Abstract
Hide Abstract
During the life cycle of mycorrhizal fungi, morphological, genetic and metabolic modifications are induced in the fungus and its symbiotic partner. These changes are influenced by environmental factors: light, gravity, oxygen, temperature, soil type, nutrients, root exudates and the presence of particular bacterial and perhaps fungal and viral populations in the mycorrhizosphere. To determine whether different carbohydrates lead to cell-signalling events and morphofunctional changes in cultured Tuber borchii mycelia, the expression level of genes involved in morphological modifications was investigated using a macroarray technique and real-time RT-PCR. The morphological study showed an increased growth of Tuber mycelia in glucose, while the hyphae were thinner and less branched in sucrose and maltose. This was accompanied by an upregulation of the genes involved in the general cell metabolism, detoxification processes, hyphal growth and cytoskeleton organization. Since glucose is also present in root exudates, the increased expression of these genes might support the hypothesis that glucose can act as a signal for the fungus to indicate the presence of the plant, and to trigger the complex symbiotic process. These mechanisms can lead to morphological modifications, including increased branching of the root which is necessary for the fungus to establish the symbiosis.
Related JoVE Video
New evidence for nitrogen fixation within the Italian white truffle Tuber magnatum.
Fungal Biol
PUBLISHED: 02-03-2010
Show Abstract
Hide Abstract
Diversity of nitrogen-fixing bacteria and the nitrogen-fixation activity was investigated in Tuber magnatum, the most well-known prized species of Italian white truffle. Degenerate PCR primers were applied to amplify the nitrogenase gene nifH from T. magnatum ascomata at different stages of maturation. Putative amino acid sequences revealed mainly the presence of Alphaproteobacteria belonging to Bradyrhizobium spp. and expression of nifH genes from Bradyrhizobia was detected. The nitrogenase activity evaluated by acetylene reduction assay was 0.5-7.5?molC(2)H(4)h(-1)g(-1), comparable with early nodules of legumes associated with specific nitrogen-fixing bacteria. This is the first demonstration of nitrogenase expression gene and activity within truffle.
Related JoVE Video
Rhodiola rosea ability to enrich cellular antioxidant defences of cultured human keratinocytes.
Arch. Dermatol. Res.
PUBLISHED: 05-06-2009
Show Abstract
Hide Abstract
Keratinocytes are cells strongly exposed to oxidative stress, but normally good equipped for antioxidant responses. However, it has long been suggested that exogenous antioxidants could play a useful role in minimizing the adverse skin responses associated with such oxidant species. In this work it was paid attention to the extract of Rhodiola rosea L. roots by using the phytocomplex as a whole because of the important activity of its composition and mutual distribution of its components. We have measured the protection afforded by the extract to reduced glutathione levels, glyceraldehyde-3-phosphate dehydrogenase activity, and thiobarbituric acid reactive substances levels in cultured human keratinocytes (NCTC 2544) exposed to different oxidative insults: Fe(II)/ascorbate, Fe(II)/H(2)O(2), and tert-butyl-hydroperoxide. We also have investigated the influence of the R. rosea extract on the production of intracellular reactive oxygen species and on the activity of antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase). Furthermore, we have demonstrated that R. rosea extract was able to increase in a time- and dose-dependent manner the activity of the trans plasma membrane oxido reductase activity as an indirect evaluation of the intracellular redox status and this effect was already evident with small concentration of the extract and in a long time. As a result, NCTC 2544 are able to better counteract to several oxidative insults if incubated with R. rosea extract demonstrating a very good antioxidant activity of this phytocomplex.
Related JoVE Video
Effect of 300 mT static and 50 Hz 0.1 mT extremely low frequency magnetic fields on magnetic Tuber borchii mycelium.
Can. J. Microbiol.
Show Abstract
Hide Abstract
The present work aimed to investigate whether exposure to static magnetic field (SMF) and extremely low frequency magnetic field (ELF-MF) can induce biomolecular changes on Tuber borchii hyphal growth. Tuber borchii mycelium was exposed for 1 h for 3 consecutive days to a SMF of 300 mT or an ELF-MF of 0.1 mT 50 Hz. Gene expression and biochemical analyses were performed. In mycelia exposed to ELF-MF, some genes involved in hyphal growth, investigated using quantitative real-time polymerase chain reaction, were upregulated, and the activity of many glycolytic enzymes was increased. On the contrary, no differences were observed in gene expression after exposure to SMF treatment, and only the activities of glucose 6-phosphate dehydrogenase and hexokinase increased. The data herein presented suggest that the electromagnetic field can act as an environmental factor in promoting hyphal growth and can be used for applicative purposes, such as the set up of new in vitro cultivation techniques.
Related JoVE Video
Effect of 300 mT static and 50 Hz 0.1 mT extremely low frequency magnetic fields on Tuber borchii mycelium.
Can. J. Microbiol.
Show Abstract
Hide Abstract
The present work aimed to investigate whether exposure to static magnetic field (SMF) and extremely low frequency magnetic field (ELF-MF) can induce biomolecular changes on Tuber borchii hyphal growth. Tuber borchii mycelium was exposed for 1 h for 3 consecutive days to a SMF of 300 mT or an ELF-MF of 0.1 mT 50 Hz. Gene expression and biochemical analyses were performed. In mycelia exposed to ELF-MF, some genes involved in hyphal growth, investigated using quantitative real-time polymerase chain reaction, were upregulated, and the activity of many glycolytic enzymes was increased. On the contrary, no differences were observed in gene expression after exposure to SMF treatment, and only the activities of glucose 6-phosphate dehydrogenase and hexokinase increased. The data herein presented suggest that the electromagnetic field can act as an environmental factor in promoting hyphal growth and can be used for applicative purposes, such as the set up of new in vitro cultivation techniques.
Related JoVE Video
Inhibition of AMPK signalling by doxorubicin: at the crossroads of the cardiac responses to energetic, oxidative, and genotoxic stress.
Cardiovasc. Res.
Show Abstract
Hide Abstract
Cardiotoxic side effects of anthracyclines, the most widely used anticancer drugs, are well documented, while mechanisms involved are not fully elucidated. The cellular energy sensor and regulator AMP-activated protein kinase (AMPK) was suggested as a putative mediator of cardiotoxicity of doxorubicin, the leading anthracycline drug, by our earlier work. Here, we study the interference of doxorubicin with AMPK signalling and potentially involved mechanisms.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.