JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Ribosomal protein mutations induce autophagy through S6 kinase inhibition of the insulin pathway.
PLoS Genet.
PUBLISHED: 05-01-2014
Show Abstract
Hide Abstract
Mutations affecting the ribosome lead to several diseases known as ribosomopathies, with phenotypes that include growth defects, cytopenia, and bone marrow failure. Diamond-Blackfan anemia (DBA), for example, is a pure red cell aplasia linked to the mutation of ribosomal protein (RP) genes. Here we show the knock-down of the DBA-linked RPS19 gene induces the cellular self-digestion process of autophagy, a pathway critical for proper hematopoiesis. We also observe an increase of autophagy in cells derived from DBA patients, in CD34+ erythrocyte progenitor cells with RPS19 knock down, in the red blood cells of zebrafish embryos with RP-deficiency, and in cells from patients with Shwachman-Diamond syndrome (SDS). The loss of RPs in all these models results in a marked increase in S6 kinase phosphorylation that we find is triggered by an increase in reactive oxygen species (ROS). We show that this increase in S6 kinase phosphorylation inhibits the insulin pathway and AKT phosphorylation activity through a mechanism reminiscent of insulin resistance. While stimulating RP-deficient cells with insulin reduces autophagy, antioxidant treatment reduces S6 kinase phosphorylation, autophagy, and stabilization of the p53 tumor suppressor. Our data suggest that RP loss promotes the aberrant activation of both S6 kinase and p53 by increasing intracellular ROS levels. The deregulation of these signaling pathways is likely playing a major role in the pathophysiology of ribosomopathies.
Related JoVE Video
Dissecting the transcriptional phenotype of ribosomal protein deficiency: implications for Diamond-Blackfan Anemia.
Gene
PUBLISHED: 04-04-2014
Show Abstract
Hide Abstract
Defects in genes encoding ribosomal proteins cause Diamond Blackfan Anemia (DBA), a red cell aplasia often associated with physical abnormalities. Other bone marrow failure syndromes have been attributed to defects in ribosomal components but the link between erythropoiesis and the ribosome remains to be fully defined. Several lines of evidence suggest that defects in ribosome synthesis lead to "ribosomal stress" with p53 activation and either cell cycle arrest or induction of apoptosis. Pathways independent of p53 have also been proposed to play a role in DBA pathogenesis. We took an unbiased approach to identify p53-independent pathways activated by defects in ribosome synthesis by analyzing global gene expression in various cellular models of DBA. Ranking-Principal Component Analysis (Ranking-PCA) was applied to the identified datasets to determine whether there are common sets of genes whose expression is altered in these different cellular models. We observed consistent changes in the expression of genes involved in cellular amino acid metabolic process, negative regulation of cell proliferation and cell redox homeostasis. These data indicate that cells respond to defects in ribosome synthesis by changing the level of expression of a limited subset of genes involved in critical cellular processes. Moreover, our data support a role for p53-independent pathways in the pathophysiology of DBA.
Related JoVE Video
Translation of branched-chain aminotransferase-1 transcripts is impaired in cells haploinsufficient for ribosomal protein genes.
Exp. Hematol.
PUBLISHED: 01-23-2014
Show Abstract
Hide Abstract
Diamond-Blackfan anemia (DBA) is a bone marrow failure syndrome linked to mutations in ribosomal protein (RP) genes that result in the impaired proliferation of hematopoietic progenitor cells. The etiology of DBA is not completely understood; however, the ribosomal nature of the genes involved has led to speculation that these mutations may alter the landscape of messenger RNA (mRNA) translation. Here, we performed comparative microarray analysis of polysomal mRNA transcripts isolated from lymphoblastoid cell lines derived from DBA patients carrying various haploinsufficient mutations in either RPS19 or RPL11. Different spectrums of changes were observed depending on the mutant gene, with large differences found in RPS19 cells and very few in RPL11 cells. However, we find that the small number of altered transcripts in RPL11 overlap for the most part with those altered in RPS19 cells. We show specifically that levels of branched-chain aminotransferase-1 (BCAT1) transcripts are significantly decreased on the polysomes of both RPS19 and RPL11 cells and that translation of BCAT1 protein is especially impaired in cells with small RP gene mutations, and we provide evidence that this effect may be due in part to the unusually long 5'UTR of the BCAT1 transcript. The BCAT1 enzyme carries out the final step in the biosynthesis and the first step of degradation of the branched-chain amino acids leucine, isoleucine, and valine. Interestingly, several animal models of DBA have reported that leucine ameliorates the anemia phenotypes generated by RPS19 loss. Our study suggests that RP mutations affect the synthesis of specific proteins involved in regulating amino acid levels that are important for maintaining the normal proliferative capacity of hematopoietic cells.
Related JoVE Video
Defects in DBA: more than meets the eye.
Blood
PUBLISHED: 08-10-2013
Show Abstract
Hide Abstract
In this issue of Blood, Garçon et al describe successful derivation of induced pluripotent stem cells (iPSs) from fibroblasts of Diamond Blackfan anemia (DBA) patients with 2 distinct ribosomal defects. Using these cells, the authors showed that they not only exhibit defective erythropoiesis but also globally impaired hematopoiesis affecting multipotent progenitors.
Related JoVE Video
Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders.
Blood Rev.
PUBLISHED: 05-09-2013
Show Abstract
Hide Abstract
Hereditary spherocytosis and elliptocytosis are the two most common inherited red cell membrane disorders resulting from mutations in genes encoding various red cell membrane and skeletal proteins. Red cell membrane, a composite structure composed of lipid bilayer linked to spectrin-based membrane skeleton is responsible for the unique features of flexibility and mechanical stability of the cell. Defects in various proteins involved in linking the lipid bilayer to membrane skeleton result in loss in membrane cohesion leading to surface area loss and hereditary spherocytosis while defects in proteins involved in lateral interactions of the spectrin-based skeleton lead to decreased mechanical stability, membrane fragmentation and hereditary elliptocytosis. The disease severity is primarily dependent on the extent of membrane surface area loss. Both these diseases can be readily diagnosed by various laboratory approaches that include red blood cell cytology, flow cytometry, ektacytometry, electrophoresis of the red cell membrane proteins, and mutational analysis of gene encoding red cell membrane proteins.
Related JoVE Video
The ribosomal basis of Diamond-Blackfan Anemia: mutation and database update.
Hum. Mutat.
PUBLISHED: 10-21-2010
Show Abstract
Hide Abstract
Diamond-Blackfan Anemia (DBA) is characterized by a defect of erythroid progenitors and, clinically, by anemia and malformations. DBA exhibits an autosomal dominant pattern of inheritance with incomplete penetrance. Currently nine genes, all encoding ribosomal proteins (RP), have been found mutated in approximately 50% of patients. Experimental evidence supports the hypothesis that DBA is primarily the result of defective ribosome synthesis. By means of a large collaboration among six centers, we report here a mutation update that includes nine genes and 220 distinct mutations, 56 of which are new. The DBA Mutation Database now includes data from 355 patients. Of those where inheritance has been examined, 125 patients carry a de novo mutation and 72 an inherited mutation. Mutagenesis may be ascribed to slippage in 65.5% of indels, whereas CpG dinucleotides are involved in 23% of transitions. Using bioinformatic tools we show that gene conversion mechanism is not common in RP genes mutagenesis, notwithstanding the abundance of RP pseudogenes. Genotype-phenotype analysis reveals that malformations are more frequently associated with mutations in RPL5 and RPL11 than in the other genes. All currently reported DBA mutations together with their functional and clinical data are included in the DBA Mutation Database.
Related JoVE Video
Additional erythrocytic and reticulocytic parameters helpful for diagnosis of hereditary spherocytosis: results of a multicentre study.
Ann. Hematol.
PUBLISHED: 08-22-2010
Show Abstract
Hide Abstract
Hereditary spherocytosis (HS) is characterised by weakened vertical linkages between the membrane skeleton and the red blood cells lipid bilayer, leading to the release of microparticles. All the reference tests suffer from specific limitations. The aim of this study was to develop easy to use diagnostic tool for screening of hereditary spherocytosis based on routinely acquired haematological parameters like percentage of microcytes, percentage of hypochromic cells, reticulocyte counts, and percentage of immature reticulocytes. The levels of haemoglobin, mean cell volume, mean corpuscular haemoglobin concentration, reticulocytes (Ret), immature reticulocytes fraction (IRF), hypochromic erythrocytes (Hypo-He) and microcytic erythrocytes (MicroR) were determined on EDTA samples on Sysmex instruments from a cohort of 45 confirmed SH. The HS group was then compared with haemolytical disorders, microcytic anaemia, healthy individuals and routine samples (n = 1,488). HS is characterised by a high Ret count without an equally elevated IRF. All 45 HS have Ret >80,000/?l and Ret(10(9)/L)/IRF (%) greater than 7.7 (rule 1). Trait and mild HS had a Ret/IRF ratio greater than 19. Moderate and severe HS had increased MicroR and MicroR/Hypo-He (rule 2). Combination of both rules gave predictive positive value and negative predictive value of respectively 75% and 100% (n=1,488), which is much greater than single parameters or existing rules. This simple and fast diagnostic method could be used as an excellent screening tool for HS. It is also valid for mild HS, neonates and ABO incompatibilities and overcomes the lack of sensitivity of electrophoresis in ankyrin deficiencies.
Related JoVE Video
A dominant mutation in the gene encoding the erythroid transcription factor KLF1 causes a congenital dyserythropoietic anemia.
Am. J. Hum. Genet.
PUBLISHED: 08-13-2010
Show Abstract
Hide Abstract
The congenital dyserythropoietic anemias (CDAs) are inherited red blood cell disorders whose hallmarks are ineffective erythropoiesis, hemolysis, and morphological abnormalities of erythroblasts in bone marrow. We have identified a missense mutation in KLF1 of patients with a hitherto unclassified CDA. KLF1 is an erythroid transcription factor, and extensive studies in mouse models have shown that it plays a critical role in the expression of globin genes, but also in the expression of a wide spectrum of genes potentially essential for erythropoiesis. The unique features of this CDA confirm the key role of KLF1 during human erythroid differentiation. Furthermore, we show that the mutation has a dominant-negative effect on KLF1 transcriptional activity and unexpectedly abolishes the expression of the water channel AQP1 and the adhesion molecule CD44. Thus, the study of this disease-causing mutation in KLF1 provides further insights into the roles of this transcription factor during erythropoiesis in humans.
Related JoVE Video
Disorders of sex development and Diamond-Blackfan anemia: is there an association?
Pediatr. Nephrol.
PUBLISHED: 01-28-2010
Show Abstract
Hide Abstract
Diamond-Blackfan anemia (DBA) is a rare disorder characterized by congenital pure red cell aplasia. Mutations in ribosomal protein S19 (RPS19) have been identified in 25% of DBA patients. More recently, mutations in other ribosomal protein genes, namely RPS7, RPS15, RPS24, RPS17, RPS27A, RPL35a, RPL36, RPL11, and RPL5, have also been found in patients with DBA. Approximately 30-40% of affected patients have various associated physical anomalies, mostly craniofacial and at the extremities, but also cardiac or urogenital malformations. Anomalies of the urogenital tract in DBA patients comprise changes in the kidney (dysplasia, agenesis, duplication, horseshoe kidney) and genitalia (hypospadias). To date, disorders of sex development (DSD) have only been described once in association with DBA. We report here four DBA patients who exhibited DSD.
Related JoVE Video
Genetic variants in the noncoding region of RPS19 gene in Diamond-Blackfan anemia: potential implications for phenotypic heterogeneity.
Am. J. Hematol.
PUBLISHED: 01-08-2010
Show Abstract
Hide Abstract
Mutations in the RPS19 gene have been identified in 25% of individuals affected by Diamond-Blackfan anemia (DBA), a congenital erythroblastopenia characterized by an aregenerative anemia and a variety of malformations. More than 60 mutations in the five coding exons of RPS19 have been described to date. We previously reported a mutation (c.-1 + 26G>T) and an insertion at -631 upstream of ATG (c.-147_-146insGCCA) in the noncoding region. Because DBA phenotype is extremely heterogeneous from silent to severe and because haploinsufficiency seems to play a role in this process, it is likely that genetic variations in the noncoding regions affecting translation of RPS19 can modulate the phenotypic expression of DBA. However, to date, very few studies have addressed this question comprehensively. In this study, we performed detailed sequence analysis of the RPS19 gene in 239 patients with DBA and 110 of their relatives. We found that 6.2% of the patients with DBA carried allelic variations upstream of ATG: 3.3% with c.-1 + 26G>T; 2.5% with c.-147_-146insGCCA; and 0.4% with c.-174G>A. Interestingly, the c.-147_-146insGCCA, which has been found in a black American and French Caribbean control population, was not found in 500 Caucasian control chromosomes we studied. However, it was found in association with the same haplotype distribution of four intronic polymorphisms in our patients with DBA. Although a polymorphism, the frequency of this variant in the patients with DBA and its association with the same haplotype raises the possibility that this polymorphism and the other genetic variations in the noncoding region could play a role in DBA pathogenesis.
Related JoVE Video
High resolution genome-wide analysis of chromosomal alterations in Burkitts lymphoma.
PLoS ONE
PUBLISHED: 05-07-2009
Show Abstract
Hide Abstract
Additional chromosomal abnormalities are currently detected in Burkitts lymphoma. They play major roles in the progression of BL and in prognosis. The genes involved remain elusive. A whole-genome oligonucleotide array CGH analysis correlated with karyotype and FISH was performed in a set of 27 Burkitts lymphoma-derived cell lines and primary tumors. More than half of the 145 CNAs<2 Mb were mapped to Mendelian CNVs, including GSTT1, glutathione s-transferase and BIRC6, an anti-apoptotic protein, possibly predisposing to some cancers. Somatic cell line-specific CNVs localized to the IG locus were consistently observed with the 244 K aCGH platform. Among 136 CNAs >2 Mb, gains were found in 1q (12/27), 13q (7/27), 7q (6/27), 8q(4/27), 2p (3/27), 11q (2/27) and 15q (2/27). Losses were found in 3p (5/27), 4p (4/27), 4q (4/27), 9p (4/27), 13q (4/27), 6p (3/27), 17p (3/27), 6q (2/27),11pterp13 (2/27) and 14q12q21.3 (2/27). Twenty one minimal critical regions (MCR), (range 0.04-71.36 Mb), were delineated in tumors and cell lines. Three MCRs were localized to 1q. The proximal one was mapped to 1q21.1q25.2 with a 6.3 Mb amplicon (1q21.1q21.3) harboring BCA2 and PIAS3. In the other 2 MCRs, 1q32.1 and 1q44, MDM4 and AKT3 appeared as possible drivers of these gains respectively. The 13q31.3q32.1 <89.58-96.81> MCR contained an amplicon and ABCC4 might be the driver of this amplicon. The 40 Kb 2p16.1 <60.96-61> MCR was the smallest gained MCR and specifically encompassed the REL oncogene which is already implicated in B cell lymphomas. The most frequently deleted MCR was 3p14.1 <60.43-60.53> that removed the fifth exon of FHIT. Further investigations which combined gene expression and functional studies are essential to understand the lymphomagenesis mechanism and for the development of more effective, targeted therapeutic strategies.
Related JoVE Video
[Diamond-Blackfan anemia reveals the dark side of ribosome biogenesis].
Med Sci (Paris)
PUBLISHED: 01-22-2009
Show Abstract
Hide Abstract
Diamond-Blackfan anemia (DBA), a rare congenital erythroblastopenia, has recently become a paradigm for a growing set of genetic diseases linked to mutations in genes encoding ribosomal proteins or factors involved in ribosome biogenesis. Recent studies of the structure and the function of ribosomal proteins affected in DBA indicate that their mutation in DBA primarily impacts ribosome biogenesis. Accordingly, cells from DBA patients display anomalies in the maturation of ribosomal RNAs. The explanation of this unexpected link between ribosome biogenesis, a ubiquitous process, and a disease mostly affecting erythroid differentiation may stem in part from the emerging concept of ribosomal stress response, a signaling pathway triggering cell cycle arrest in response to a defect in ribosome synthesis. Future studies of DBA and other diseases related to defects in ribosome biogenesis are likely to rapidly provide important insights into the regulatory mechanisms linking cell cycle progression to this major metabolic pathway.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.